首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this investigation was to validate that in vivo measurement of skeletal muscle attenuation (MA) with computed tomography (CT) is associated with muscle lipid content. Single-slice CT scans performed on phantoms of varying lipid concentrations revealed good concordance between attenuation and lipid concentration (r(2) = 0.995); increasing the phantom's lipid concentration by 1 g/100 ml decreased its attenuation by approximately 1 Hounsfield unit (HU). The test-retest coefficient of variation for two CT scans performed in six volunteers was 0.51% for the midthigh and 0.85% for the midcalf, indicating that the methodological variability is low. Lean subjects had significantly higher (P < 0.01) MA values (49.2 +/- 2.8 HU) than did obese nondiabetic (39.3 +/- 7.5 HU) and obese Type 2 diabetic (33.9 +/- 4. 1 HU) subjects, whereas obese Type 2 diabetic subjects had lower MA values that were not different from obese nondiabetic subjects. There was also good concordance between MA in midthigh and midcalf (r = 0.60, P < 0.01), psoas (r = 0.65, P < 0.01), and erector spinae (r = 0.77, P < 0.01) in subsets of volunteers. In 45 men and women who ranged from lean to obese (body mass index = 18.5 to 35.9 kg/m(2)), including 10 patients with Type 2 diabetes mellitus, reduced MA was associated with increased muscle fiber lipid content determined with histological oil red O staining (P = -0.43, P < 0. 01). In a subset of these volunteers (n = 19), triglyceride content in percutaneous biopsy specimens from vastus lateralis was also associated with MA (r = -0.58, P = 0.019). We conclude that the attenuation of skeletal muscle in vivo determined by CT is related to its lipid content and that this noninvasive method may provide additional information regarding the association between muscle composition and muscle function.  相似文献   

2.
Numerous experimental and clinical studies have shown that skeletal muscle apoptotis may increase in wasting conditions and suggest that apoptosis might contribute to the loss of lean body mass. Data in cancer patients are still lacking. The present study aimed at verifying whether apoptosis was enhanced in the skeletal muscle of 16 patients with gastric cancer with respect to controls. A biopsy specimen was obtained from the rectus abdominis muscle. The occurrence of apoptosis in muscle biopsies was determined morphologically by the fluorescent transferase-mediated dUTP nick end labeling assay and by immunohistochemistry for caspase-3 and caspase-1. Mean weight loss was 6+/-2% in cancer patients and 0.5+/-0.1% in controls (p<0.0001). Serum albumin levels (g/dL) were 3.7+/-0.3 in cancer patients and 4.1+/-0.2 in controls (p<0.05). The percentage of apoptotic myonuclei was similar in cancer patients and in controls (1.5+/-0.3 versus 1.4+/-0.2, respectively; p=ns), in gastric cancer patients with mild (1.6+/-0.4) or moderate-severe weight loss (1.4+/-0.5) (p=ns), and in the different stages of disease (stages I-II: 1.5+/-0.7; stage III: 1.3+/-0.4; stage IV: 1.6+/-0.3; p=ns). By immunohistochemistry, caspase-1 and caspase-3 positive fibers were absent in controls and in neoplastic patients. Poly-ADP-ribosyl polymerase, a typical caspase-3 substrate whose processing is indicative of caspase-3 activation, was not cleaved in muscle biopsies of cancer patients. These data suggest that skeletal muscle apoptosis is not increased in neoplastic patients with mild-moderate weight loss and argue against the hypotheses that caspase-3 activation might be an essential step of myofibrillar proteolysis in cancer-related muscle wasting.  相似文献   

3.
4.
The present study evaluated whether nuclear factor-kappaB (NF-kappaB) activation contributes to the apoptotic-like death of striatal neurons induced by kainic acid (KA) receptor stimulation. Intrastriatally infused KA (1.25-5.0 nmol) produced substantial neuronal loss as indicated by an 8-73% decrease in 67-kDa glutamic acid decarboxylase (p<0.05). KA (1.25-5.0 nmol) elicited internucleosomal DNA fragmentation that was inhibited by the AMPA/KA receptor antagonist NBQX (1,2,3,4-tetrahydro-6-nitro-2,3-dibenzo[f]quinoxaline-7-sulfonamide) but not by the NMDA receptor antagonist MK-801. A decrease in IkappaB-alpha protein levels, which was accompanied by an increase in NF-kappaB binding activity, was found from 6 to 72 h after KA (2.5 nmol) infusion. NF-kappaB was composed mainly of p65 and c-Rel as revealed by supershift assay. In addition, c-Myc and p53 increased from five- to sevenfold from 24 to 72 h after KA (2.5 nmol) administration. Immunohistochemistry revealed high levels of c-Myc and p53 immunoreactivity, mainly in medium-sized striatal neurons. Pretreatment with the cell-permeable recombinant peptide NF-kappaB SN50 (5-20 microg) blocked NF-kappaB nuclear translocation, but had no effect on AP-1 binding. NF-kappaB SN50 also inhibited the KA-induced up-regulation of c-Myc and p53, as well as internucleosomal DNA fragmentation. The apoptotic-like destruction of rat striatal neurons induced by KA receptor stimulation thus appears to involve biochemical mechanisms similar to those mediating the excitotoxic response to NMDA receptor stimulation. The present results provide additional support for the view that NF-kappaB activation contributes to c-Myc and p53 induction and subsequent apoptosis in an excitotoxic model of Huntington's disease.  相似文献   

5.
The search for novel and more efficient chemo-agents against malignant osteoblastoma is important. In this study, we examined the potential anti-osteoblastoma function of bufotalin, and studied the underlying mechanisms. Our results showed that bufotalin induced osteoblastoma cell death and apoptosis in dose- and time-dependent manners. Further, bufotalin induced endoplasmic reticulum (ER) stress activation in osteoblastoma cells, the latter was detected by the induction of C/EBP homologous protein (CHOP), phosphorylation of inositol-requiring enzyme 1 (IRE1) and PKR-like endoplasmic reticulum kinase (PERK), as well as caspase-12 activation. Conversely, the ER stress inhibitor salubrinal, the caspase-12 inhibitor z-ATAD-fmk as well as CHOP depletion by shRNA significantly inhibited bufotalin-induced osteoblastoma cell death and apoptosis. Finally, by using a mice xenograft model, we demonstrated that bufotalin inhibited U2OS osteoblastoma cell growth in vivo. In summary, our results suggest that ER stress contributes to bufotalin-induced apoptosis in osteoblastoma cells. Bufotalin might be investigated as a novel anti-osteoblastoma agent.  相似文献   

6.
An association between oxidative stress and muscle atrophy and weakness in vivo is supported by elevated oxidative damage and accelerated loss of muscle mass and force with aging in CuZn-superoxide dismutase-deficient (Sod1(-/-)) mice. The purpose was to determine the basis for low specific force (N/cm(2)) of gastrocnemius muscles in Sod1(-/-) mice and establish the extent to which structural and functional changes in muscles of Sod1(-/-) mice resemble those associated with normal aging. We tested the hypothesis that muscle weakness in Sod1(-/-) mice is due to functionally denervated fibers by comparing forces during nerve and direct muscle stimulation. No differences were observed for wild-type mice at any age in the forces generated in response to nerve and muscle stimulation. Nerve- and muscle-stimulated forces were also not different for 4-wk-old Sod1(-/-) mice, whereas, for 8- and 20-mo-old mice, forces during muscle stimulation were 16 and 30% greater, respectively, than those obtained using nerve stimulation. In addition to functional evidence of denervation with aging, fiber number was not different for Sod1(-/-) and wild-type mice at 4 wk, but 50% lower for Sod1(-/-) mice by 20 mo, and denervated motor end plates were prevalent in Sod1(-/-) mice at both 8 and 20 mo and in WT mice by 28 mo. The data suggest ongoing denervation in muscles of Sod1(-/-) mice that results in fiber loss and muscle atrophy. Moreover, the findings support using Sod1(-/-) mice to explore mechanistic links between oxidative stress and the progression of deficits in muscle structure and function.  相似文献   

7.
There is scarce information on the possible effects of chronic exposure to mercury on skeletal muscle. Dental personnel are frequently exposed to inhalation of metallic mercury vapours. The skeletal muscle of five technicians and one dentist (females, age 36-55) was studied. All of them presented symptoms of chronic mercury poisoning. Needle biopsy was taken from the quadriceps femoris muscle and samples were prepared for light microscope histochemistry and for transmission electron microscopy. Selective atrophy of type IIB muscle fibres was found in patients, and in one of them there was fibre grouping. Most of the muscles showed increased fibre area per capillary. Atrophy was confirmed by the ultrastructural study, demonstrating increase of intermyofibrillar spaces, loss of myofibrils or complete disappearance in some fibres, and sarcolemmal foldings. Splitting of the fibres was also found. Some capillaries were altered, showing endothelial infoldings into the lumen, thickened basement membrane and partial or total occlusion. The alterations found in muscle may be secondary to nerve damage, to ischemia caused by capillary lesion and/or to a direct effect of mercury on muscle fibre proteins.  相似文献   

8.
Insulin signaling was examined in muscle made insulin resistant by short-term (24-h) denervation. Insulin-stimulated glucose transport in vitro was reduced by 28% (P < 0.05) in denervated muscle (DEN). In control muscle (SHAM), insulin increased levels of surface-detectable GLUT-4 (i.e., translocated GLUT-4) 1.8-fold (P < 0.05), whereas DEN surface GLUT-4 was not increased by insulin (P > 0.05). Insulin treatment in vivo induced a rapid appearance of phospho[Ser(473)]Akt-alpha in SHAM 3 min after insulin injection. In DEN, phospho[Ser(473)]Akt-alpha also appeared at 3 min, but Ser(473)-phosphorylated Akt-alpha was 36% lower than in SHAM (P < 0. 05). In addition, total Akt-alpha protein in DEN was 37% lower than in SHAM (P < 0.05). Akt-alpha kinase activity was lower in DEN at two insulin levels tested: 0.1 U insulin/rat (-22%, P < 0.05) and 1 U insulin/rat (-26%, P < 0.01). These data indicate that short-term (24-h) denervation, which lowers insulin-stimulated glucose transport, is associated with decreased Akt-alpha activation and impaired insulin-stimulated GLUT-4 appearance at the muscle surface.  相似文献   

9.
10.
Objective: When compared with other ethnic groups, African ancestry individuals have lower triglycerides and higher High‐density lipoprotein cholesterol (HDL‐C) levels, although the mechanisms for these differences remain unclear. A comprehensive array of factors potentially related to fasting serum lipid and lipoprotein levels in African ancestry men was evaluated. Design and Methods: Men (1,821) underwent dual‐energy X‐ray absorptiometry measures of total body fat and quantitative computed tomography assessments of calf skeletal muscle adiposity [subcutaneous and intermuscular adipose tissue (AT), and muscle density as a measure of intra‐muscular AT]. Results: Multivariable linear regression analysis identified age (?), total body fat (+), subcutaneous AT (?), fasting glucose (+), fasting insulin (+), diastolic blood pressure (+), and non‐African ancestry (+) as independent correlates of triglycerides (all P < 0.05). Total body fat (+), intra‐muscular AT (?), and diastolic blood pressure (+) were independent correlates of Low‐density lipoprotein cholesterol (LDL‐C) (all P < 0.001). Age (+), waist circumference (?), fasting insulin (?), physical activity (+), and alcohol intake (+) were independent correlates of HDL‐C (all P < 0.05). Conclusions: A novel relationship between skeletal muscle adiposity and serum lipid and lipoprotein levels in African ancestry men, independent of total and central adiposity was illuminated. In African ancestry populations, genetic factors are likely a significant determinant of triglycerides levels.  相似文献   

11.
Peripheral motor nerve trauma severely compromises skeletal muscle contractile function. Satellite cells respond to denervation by dividing multiple times, ultimately fusing with other satellite cells or myocytes to form new muscle fibers. After chronic denervation, satellite cell numbers decline dramatically, impairing the ability to regenerate and repair myofibers. This satellite cell depletion may contribute to the mechanical deficit observed in denervated or reinnervated muscle. Apoptosis, an evolutionarily conserved form of cell suicide, is a potential mechanism for satellite cell depletion in denervated skeletal muscle. This work tested the hypothesis that skeletal muscle denervation increases satellite cell susceptibility to apoptotic cell death. Adult rats underwent sciatic nerve transection to denervate the distal hindlimb musculature; rats of similar age without the operation served as controls. Two, 6, 10, or 20 weeks after denervation (n = 6 each group), the gastrocnemius and soleus were excised, enzymatically digested, and plated for satellite cell culture. After reaching 95 percent confluence, satellite cells were treated for 24 hours with tumor necrosis factor-alpha (20 ng/ml) and actinomycin D (250 ng/ml), known pro-apoptotic agents. Immunostaining for activated caspases, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), and hematoxylin and eosin staining were performed to identify apoptotic satellite cells. Percentages of apoptotic cells were quantified histomorphometrically. In addition, the presence or absence of bcl-2 and bax was determined by Western blot analysis of control, 6 weeks of denervation, and 10 weeks of denervation specimens. At 6 and 10 weeks after nerve transection, TUNEL and caspase activity were increased more than two-fold in satellite cells isolated from denervated muscle compared with those isolated from control muscle (p < 0.05). In all experimental groups, retention of adherence to the collagen-coated substrate was strongly associated with satellite cell survival. Western blot analysis revealed that adherent satellite cells from all groups expressed both bcl-2 and bax. These data support the authors' hypothesis that skeletal muscle denervation increases satellite cell susceptibility to apoptotic cell death. Apoptosis may play a causative role in the depletion of satellite cells in long-term denervated skeletal muscle.  相似文献   

12.
SGTB (Small glutamine-rich tetratricopeptide repeat (TPR)-containing, β) plays a critical role in protein–protein interactions. The interaction between SGTB and heat shock cognate protein (Hsc70)/heat shock protein (Hsp70) has aroused much attention in recent years. The present study was designed to elucidate dynamic changes in SGTB expression and distribution in the cerebral cortex in a lipopolysaccharide (LPS)-induced neuroinflammation rat model. It was found that SGTB expression was increased significantly in apoptotic neurons after LPS injection. The result of our in vitro study suggested that SGTB up-regulation might be associated with neuronal apoptosis after H2O2 challenge. In addition, silencing of SGTB in cultured PC12 (Pheochromocytoma) by siRNA indicated that SGTB was required for neuronal apoptosis induced by oxidative stress. Our finding about the cellular signal pathway may provide a new strategy against neuronal apoptosis in neuroinflammation in CNS.  相似文献   

13.
Platelet-activating factor (PAF) is a phospholipid inter- and intracellular mediator implicated in intestinal injury primarily via induction of an inflammatory cascade. We find that PAF also has direct pathological effects on intestinal epithelial cells (IEC). PAF induces Cl(-) channel activation, which is associated with intracellular acidosis and apoptosis. Using the rat small IEC line IEC-6, electrophysiological experiments demonstrated that PAF induces Cl(-) channel activation. This PAF-activated Cl(-) current was inhibited by Ca(2+) chelation and a calcium calmodulin kinase II inhibitor, suggesting PAF activation of a Ca(2+)-activated Cl(-) channel. To determine the pathological consequences of Cl(-) channel activation, microfluorimetry experiments were performed, which revealed PAF-induced intracellular acidosis, which is also inhibited by the Cl(-) channel inhibitor 4,4'diisothiocyanostilbene-2,2'disulfonic acid and Ca(2+) chelation. PAF-induced intracellular acidosis is associated with caspase 3 activation and DNA fragmentation. PAF-induced caspase activation was abolished in cells transfected with a pH compensatory Na/H exchanger construct to enhance H(+) extruding ability and prevent intracellular acidosis. As ClC-3 is a known intestinal Cl(-) channel dependent on both Ca(2+) and calcium calmodulin kinase II phosphorylation, we generated ClC-3 knockdown cells using short hairpin RNA. PAF induced Cl(-) current; acidosis and apoptosis were all significantly decreased in ClC-3 knockdown cells. Our data suggest a novel mechanism of PAF-induced injury by which PAF induces intracellular acidosis via activation of the Ca(2+)-dependent Cl(-) channel ClC-3, resulting in apoptosis of IEC.  相似文献   

14.
Biochemical events associated with activation of smooth muscle contraction   总被引:4,自引:0,他引:4  
Biochemical events associated with activation of smooth muscle contraction were studied in neurally stimulated bovine tracheal smooth muscle. A latency period of 500 ms preceded increases in isometric force and myosin light chain phosphorylation. However, stimulation resulted in the rapid hydrolysis of inositol phospholipids as demonstrated by increases in inositol phosphates by 500 ms. Inositol trisphosphate increased 2-fold with no significant change in inositol tetrakisphosphate. The apparent activation state of myosin light chain kinase was assessed indirectly through measurements of the fractional activation of a second calmodulin-dependent enzyme, cyclic nucleotide phosphodiesterase. The fractional activation of cyclic nucleotide phosphodiesterase increased after neural stimulation to a maximal extent by 500 ms and remained at this level for at least 4 s. The monophosphorylation of myosin light chain increased after 500 ms and reached a maximum value by 2 s. Diphosphorylation also occurred but to a much lesser extent. Fractional activation of cyclic nucleotide phosphodiesterase and myosin light chain phosphorylation both decreased after 10 min continuous stimulation, although the force response remained at a maximal level. These observations demonstrate that inositol trisphosphate formation and activation of cyclic nucleotide phosphodiesterase (and hence most likely myosin light chain kinase) by calmodulin precede myosin light chain phosphorylation and that these events are sufficiently rapid to mediate the contractile response of neurally stimulated tracheal smooth muscle.  相似文献   

15.
Skeletal muscle fatigue in vitro is temperature dependent   总被引:2,自引:0,他引:2  
Our purpose was to determine the effect of temperature on the fatigability of isolated soleus and extensor digitorum longus (EDL) muscles from rats during repeated isometric contractions. Muscles (70-90 mg) were studied at 20-40 degrees C in vitro. Fatigability was defined with respect to both the time and number of stimuli required to reach 50% of the force (P) developed at the onset of the fatigue test. Fatigue was studied during stimulation protocols of variable [force approximately 70% of maximum force (Po)] and constant frequency (28 Hz). Results for soleus and EDL muscles were qualitatively similar, but fatigue times were longer for soleus than for EDL muscles. During the variable-frequency protocol, development of approximately 70% of Po required an increase in stimulation frequency as temperature increased. During stimulation at these frequencies, fatigue time shortened as temperature increased. For both fatigue protocols, the relationship between temperature and the number of stimuli required to reach fatigue followed a bell-shaped curve, with maximum values at 25-30 degrees C. The temperature optimum for maximizing the number of isometric contractions to reach fatigue reflects direct effects of temperature on muscle function.  相似文献   

16.
17.
Zhang P  Cao M  Liu Y  Lv Z  Yang Q  Lin X  Li H  Wan Q 《Molecular biology reports》2012,39(5):5819-5829
CyclinD1 over-expression is the key pathogenetic event underlying airway smooth muscle (ASM) proliferation. Human antigen R (HuR) is a ubiquitously expressed RNA-binding protein, and is known to regulate the expression of multiple cell cycle regulators. The aim of the study is to investigate whether HuR might also be involved in ASM proliferation. In cultured ASM cells, PDGF treatment induced a significant elevation of HuR expression at both mRNA and protein levels. Immunofluorescence analysis demonstrated PDGF might promote HuR translocation from nucleus to cytoplasma as well. RNA-interference of HuR effectively decreased PDGF-induced cyclinD1 over-expression in ASM cells. Furthermore, AMPK activation by AICAR could effectively decrease PDGF-induced HuR cytoplasmatic translocation, cyclinD1 expression and ASM cells proliferation. In conclusion, altered expression and activity of HuR might participate in PDGF-induced ASM cells cyclinD1 expression and proliferation. The effectiveness of AMPK activation indicated a novel intervention method for airway remodeling.  相似文献   

18.
Arterial smooth muscle cells grown in primary culture on a substrate of fibronectin in serum-free medium are converted from a contractile to a synthetic phenotype. This process is dependent on integrin signaling and includes a major structural reorganization with loss of myofilaments and formation of a large secretory apparatus. Functionally, the cells lose their contractility and become competent to migrate, secrete extracellular matrix components, and proliferate in response to growth factor stimulation. Here, it is demonstrated that the mitogen-activated protein kinases ERK1/2 play a vital role in the fibronectin-mediated modification of rat aortic smooth muscle cells. Immunoblotting showed that phosphorylated ERK1/2 (p44/p42) were expressed throughout the period when the change in phenotypic properties of the cells took place. Moreover, phosphorylated ERK1/2 accumulated in the nucleus as revealed by immunocytochemical staining. Additional support for an active role of ERK1/2 in the shift in smooth muscle phenotype was obtained by the finding that PD98059, an inhibitor of the upstream kinase MEK1, potently suppressed both the expression of phosphorylated ERK1/2 and the fine structural rebuilding of the cells. In conclusion, the observations point to an important and multifaceted role of ERK1/2 in the regulation of differentiated properties and growth of vascular smooth muscle cells.  相似文献   

19.
Abstract Arterial smooth muscle cells grown in primary culture on a substrate of fibronectin in serum-free medium are converted from a contractile to a synthetic phenotype. This process is dependent on integrin signaling and includes a major structural reorganization with loss of myofilaments and formation of a large secretory apparatus. Functionally, the cells lose their contractility and become competent to migrate, secrete extracellular matrix components, and proliferate in response to growth factor stimulation. Here, it is demonstrated that the mitogen-activated protein kinases ERK1/2 play a vital role in the fibronectin-mediated modification of rat aortic smooth muscle cells. Immunoblotting showed that phosphorylated ERK1/2 (p44/p42) were expressed throughout the period when the change in phenotypic properties of the cells took place. Moreover, phosphorylated ERK1/2 accumulated in the nucleus as revealed by immunocytochemical staining. Additional support for an active role of ERK1/2 in the shift in smooth muscle phenotype was obtained by the finding that PD98059, an inhibitor of the upstream kinase MEK1, potently suppressed both the expression of phosphorylated ERK1/2 and the fine structural rebuilding of the cells. In conclusion, the observations point to an important and multifaceted role of ERK1/2 in the regulation of differentiated properties and growth of vascular smooth muscle cells.  相似文献   

20.
Oxygen homeostasis is an essential regulation system for cell energy production and survival. The oxygen-sensitive subunit alpha of the hypoxia inducible factor-1 (HIF-1) complex is a key protein of this system. In this work, we analyzed mouse and rat HIF-1alpha protein and mRNA expression in parallel to energetic metabolism variations within skeletal muscle. Two physiological situations were studied using HIF-1alpha-specific Western blotting and semiquantitative RT-PCR. First, we compared HIF-1alpha expression between the predominantly oxidative soleus muscle and three predominantly glycolytic muscles. Second, HIF-1alpha expression was assessed in an energy metabolism switch model that was based on muscle disuse. These two in vivo situations were compared with the in vitro HIF-1alpha induction by CoCl(2) treatment on C(2)C(12) mouse muscle cells. HIF-1alpha mRNA and protein levels were found to be constitutively higher in the more glycolytic muscles compared with the more oxidative muscles. Our results gave rise to the hypothesis that the oxygen homeostasis regulation system depends on the fiber type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号