首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The objectives of this study were to 1). examine skeletal muscle fatty acid oxidation in individuals with varying degrees of adiposity and 2). determine the relationship between skeletal muscle fatty acid oxidation and the accumulation of long-chain fatty acyl-CoAs. Muscle was obtained from normal-weight [n = 8; body mass index (BMI) 23.8 +/- 0.58 kg/m(2)], overweight/obese (n = 8; BMI 30.2 +/- 0.81 kg/m(2)), and extremely obese (n = 8; BMI 53.8 +/- 3.5 kg/m(2)) females undergoing abdominal surgery. Skeletal muscle fatty acid oxidation was assessed in intact muscle strips. Long-chain fatty acyl-CoA concentrations were measured in a separate portion of the same muscle tissue in which fatty acid oxidation was determined. Palmitate oxidation was 58 and 83% lower in skeletal muscle from extremely obese (44.9 +/- 5.2 nmol x g(-1) x h(-1)) patients compared with normal-weight (71.0 +/- 5.0 nmol x g(-1) x h(-1)) and overweight/obese (82.2 +/- 8.7 nmol x g(-1) x h(-1)) patients, respectively. Palmitate oxidation was negatively (R = -0.44, P = 0.003) associated with BMI. Long-chain fatty acyl-CoA content was higher in both the overweight/obese and extremely obese patients compared with normal-weight patients, despite significantly lower fatty acid oxidation only in the extremely obese. No associations were observed between long-chain fatty acyl-CoA content and palmitate oxidation. These data suggest that there is a defect in skeletal muscle fatty acid oxidation with extreme obesity but not overweight/obesity and that the accumulation of intramyocellular long-chain fatty acyl-CoAs is not solely a result of reduced fatty acid oxidation.  相似文献   

2.
3.
Obesity is associated with a decrement in the ability of skeletal muscle to oxidize lipid. The purpose of this investigation was to determine whether clinical interventions (weight loss, exercise training) could reverse the impairment in fatty acid oxidation (FAO) evident in extremely obese individuals. FAO was assessed by incubating skeletal muscle homogenates with [1-(14)C]palmitate and measuring (14)CO(2) production. Weight loss was studied using both cross-sectional and longitudinal designs. Muscle FAO in extremely obese women who had lost weight (decrease in body mass of approximately 50 kg) was compared with extremely obese and lean individuals (BMI of 22.8 +/- 1.2, 50.7 +/- 3.9, and 36.5 +/- 3.5 kg/m(2) for lean, obese, and obese after weight loss, respectively). There was no difference in muscle FAO between the extremely obese and weight loss groups, and FAO was depressed (-45%; P < or = 0.05) compared with the lean subjects. Muscle FAO also did not change in extremely obese women (n = 8) before and 1 yr after a 55-kg weight loss. In contrast, 10 consecutive days of exercise training increased (P < or = 0.05) FAO in the skeletal muscle of lean (+1.7-fold), obese (+1.8-fold), and previously extremely obese subjects after weight loss (+2.6-fold). mRNA content for PDK4, CPT I, and PGC-1alpha corresponded with FAO in that there were no changes with weight loss and an increase with physical activity. These data indicate that a defect in the ability to oxidize lipid in skeletal muscle is evident with obesity, which is corrected with exercise training but persists after weight loss.  相似文献   

4.
5.
The effect of relative body fat mass on exercise-induced stimulation of lipolysis and fatty acid oxidation was evaluated in 15 untrained men (5 lean, 5 overweight, and 5 obese with body mass indexes of 21 +/- 1, 27 +/- 1, and 34 +/- 1 kg/m2, respectively, and %body fat ranging from 12 to 32%). Palmitate and glycerol kinetics and substrate oxidation were assessed during 90 min of cycling at 50% peak aerobic capacity (VO2 peak) by use of stable isotope-labeled tracer infusion and indirect calorimetry. An inverse relationship was found between %body fat and exercise-induced increase in glycerol appearance rate relative to fat mass (r2 = 0.74; P < 0.01). The increase in total fatty acid uptake during exercise [(micromol/kg fat-free mass) x 90 min] was approximately 50% smaller in obese (181 +/- 70; P < 0.05) and approximately 35% smaller in overweight (230 +/- 71; P < 0.05) than in lean (354 +/- 34) men. The percentage of total fatty acid oxidation derived from systemic plasma fatty acids decreased with increasing body fat, from 49 +/- 3% in lean to 39 +/- 4% in obese men (P < 0.05); conversely, the percentage of nonsystemic fatty acids, presumably derived from intramuscular and possibly plasma triglycerides, increased with increasing body fat (P < 0.05). We conclude that the lipolytic response to exercise decreases with increasing adiposity. The blunted increase in lipolytic rate in overweight and obese men compared with lean men limits the availability of plasma fatty acids as a fuel during exercise. However, the rate of total fat oxidation was similar in all groups because of a compensatory increase in the oxidation of nonsystemic fatty acids.  相似文献   

6.
A reduction in fatty acid oxidation has been associated with lipid accumulation and insulin resistance in the skeletal muscle of obese individuals. We examined whether this decrease in fatty acid oxidation was attributable to a reduction in muscle mitochondrial content and/or a dysfunction in fatty acid oxidation within mitochondria obtained from skeletal muscle of age-matched, lean [body mass index (BMI) = 23.3 +/- 0.7 kg/m2] and obese women (BMI = 37.6 +/- 2.2 kg/m2). The mitochondrial marker enzymes citrate synthase (-34%), beta-hydroxyacyl-CoA dehydrogenase (-17%), and cytochrome c oxidase (-32%) were reduced (P < 0.05) in obese participants, indicating that mitochondrial content was diminished. Obesity did not alter the ability of isolated mitochondria to oxidize palmitate; however, fatty acid oxidation was reduced at the whole muscle level by 28% (P < 0.05) in the obese. Mitochondrial fatty acid translocase (FAT/CD36) did not differ in lean and obese individuals, but mitochondrial FAT/CD36 was correlated with mitochondrial fatty acid oxidation (r = 0.67, P < 0.05). We conclude that the reduction in fatty acid oxidation in obese individuals is attributable to a decrease in mitochondrial content, not to an intrinsic defect in the mitochondria obtained from skeletal muscle of obese individuals. In addition, it appears that mitochondrial FAT/CD36 may be involved in regulating fatty acid oxidation in human skeletal muscle.  相似文献   

7.
Coagulation and fibrinolytic activities are under strong genetic control. We studied the effects of acquired obesity, independent of genetic factors on coagulation and fibrinolysis activities in obesity-discordant healthy monozygotic (MZ) twin pairs. Fourteen obesity-discordant (BMI within-pair difference >3 kg/m(2)) and 10 concordant (BMI difference <2 kg/m(2)) MZ twin pairs were identified from the nationwide FinnTwin16 study. Body composition (dual-energy x-ray absorptiometry), abdominal fat distribution (magnetic resonance imaging), liver fat (magnetic resonance spectroscopy), high sensitivity C-reactive protein, insulin sensitivity (euglycemic hyperinsulinemic clamp), and a panel of different markers of blood coagulation and fibrinolysis in the fasting state were measured. Strong resemblance was observed in most coagulation factors within all twin pairs, with the intraclass correlations ranging from 0.73 to 0.97, P < 0.03. However, the activities of fibrinogen and FIX, FXI, and FXII, and plasminogen activator inhibitor-1 (PAI-1) activities were increased in the obese co-twins (P < 0.05) and strongly correlated with the measures of adiposity, inflammation, and insulin resistance (r = 0.32-0.73, P < 0.05) among the twin individuals. Intrapair differences in fibrinogen and PAI-1 correlated with those in BMI, adiposity, and fasting insulin levels (r = 0.40-0.58, P < 0.05) indicating the independent effect of obesity. Derangements of blood coagulation and fibrinolysis are present already in early adulthood in obese subjects. Acquired obesity, independent of genetic factors, increases the activities of fibrinogen and activities of FIX, FXI, FXII, and PAI-1. This study confirms the mechanisms of simultaneous activities of intrinsic coagulation factors and impaired fibrinolysis predisposing obese subjects to thrombosis.  相似文献   

8.
Elevated serum retinol-binding protein (RBP) concentration has been associated with obesity and insulin resistance, but accompanying retinol values have not been reported. Assessment of retinol is required to discriminate between apo-RBP, which may act as an adipokine, and holo-RBP, which transports vitamin A. The relations between serum RBP, retinol, retinyl esters, BMI, and measures of insulin resistance were determined in obese adults. Fasting blood (> or =8 h) was collected from obese men and women (n = 76) and blood chemistries were obtained. Retinol and retinyl esters were quantified by HPLC and RBP by ELISA. RBP and retinol were determined in age and sex-matched, nonobese individuals (n = 41) for comparison. Serum apo-RBP was two-fold higher in obese (0.90 +/- 0.62 microM) than nonobese subjects (0.44 +/- 0.56 microM) (P < 0.001). The retinol to RBP ratio (retinol:RBP) was significantly lower in obese (0.73 +/- 0.13) than nonobese subjects (0.90 +/- 0.22) (P < 0.001) and RBP was strongly associated with retinol in both groups (r = 0.71 and 0.90, respectively, P < 0.0001). In obese subjects, RBP was associated with insulin (r = 0.26, P < 0.05), homeostatic model assessment of insulin resistance (r = 0.29, P < 0.05), and quantitative insulin sensitivity check index (r = -0.27, P < 0.05). RBP was associated with BMI only when obese and nonobese subjects were combined (r = 0.25, P < 0.01). Elevated serum RBP, derived in part from apo-RBP, was more strongly associated with retinol than with BMI or measures of insulin resistance in obese adults. Investigations into the role of RBP in obesity and insulin resistance should include retinol to facilitate the measurement of apo-RBP and retinol:RBP. When evaluating the therapeutic potential of lowering serum RBP, consideration of the consequences of vitamin A metabolism is paramount.  相似文献   

9.
10.
The current study was undertaken to examine metabolic and body composition correlates of fatty liver in type 2 diabetes mellitus (DM). Eighty-three men and women with type 2 DM [mean body mass index (BMI): 34 +/- 0.5 kg/m2] and without clinical or laboratory evidence of liver dysfunction had body composition assessments of fat mass (FM), visceral adipose tissue (VAT), liver and spleen computed tomography (CT) attenuation (ratio of liver to spleen), muscle CT attenuation, and thigh adiposity; these assessments were also performed in 12 lean and 15 obese nondiabetic volunteers. Insulin sensitivity was measured with a euglycemic insulin infusion (40 mU. m-2. min-1) combined with systemic indirect calorimetry to assess glucose and lipid oxidation, and with infusions of [2H2]glucose for assessment of endogenous glucose production. A majority of those with type 2 DM (63%) met CT criteria for fatty liver, compared with 20% of obese and none of the lean nondiabetic volunteers. Fatty liver was most strongly correlated with VAT (r = -0.57, P < 0.0001) and less strongly but significantly associated with BMI (r = -0.42, P < 0.001) and FM (r = -0.37, P < 0.001), but only weakly associated with subcutaneous adiposity (r = -0.29; P < 0.01). Fatty liver was also correlated with subfascial adiposity of skeletal muscle (r = -0.44; P < 0.01). Volunteers with type 2 DM and fatty liver were substantially more insulin resistant those with type 2 DM but without fatty liver (P < 0.001) and had higher levels of plasma free fatty acids (P < 0.01) and more severe dyslipidemia (P < 0.01), a pattern observed in both genders. Plasma levels of cytokines were increased in relation to fatty liver (r = -0.34; P < 0.01). In summary, fatty liver is relatively common in overweight and obese volunteers with type 2 DM and is an aspect of body composition related to severity of insulin resistance, dyslipidemia, and inflammatory markers.  相似文献   

11.
In obesity there is a decrease in basal and stimulated GH secretion. IGF-I, which has negative feedback effects on GH secretion, could be the initial mediator of such alterations. We studied IGF-I levels in obese subjects and their relationship to the obesity level and GH secretion. We determined plasma IGF-I, basal and stimulated GH in 30 normal and 30 obese women and related these variables to obesity indices (body mass index, BMI, and % overweight). Baseline plasma GH values were 1.2 +/- 0.3 and 2.3 +/- 0.6 micrograms/l in obese subjects and controls, respectively (NS). Mean peak GH secretion after stimuli were 11.2 +/- 1.4 and 34.4 +/- 5.6 micrograms/l in obese subjects and controls, respectively (p less than 0.001). Plasma IGF-I were 1.0 +/- 0.1 U/ml and 0.7 +/- 0.1 U/l in obese subjects and controls, respectively (NS). There was a significant negative correlation between plasma IGF-I and age (r = -0.55, p less than 0.001) and a significant negative correlation between mean peak GH secretion and weight (r = -0.60, p less than 0.001), BMI (r = -0.64, p less than 0.001) and percentage of ideal body weight (r = -0.67, p less than 0.001). We did not find any correlation between IGF-I and indices of overweight. These data suggest that the reduced GH secretion found in obesity is not related to a negative feedback inhibition by elevated levels of IGF-I and that adiposity is not associated with a decline in IGF-I levels. We confirm the existence of a negative correlation between GH secretion and obesity indices.  相似文献   

12.
Alterations in glucocorticoid (GC) metabolism may contribute to the development of obesity and insulin resistance. We aimed to study the role of 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2) in human adiposity, paying special attention to the association between altered GC metabolism and insulin sensitivity. In 24-h urine samples of 72 extremely obese (mean BMI 45.5 +/- 1.1 kg/m(2)), but otherwise healthy patients urinary free cortisol (UFF), urinary free cortisone (UFE), tetrahydrocortisol (THF), 5alpha-tetrahydrocortisol (5alpha-THF), and tetrahydrocortisone (THE) were quantified by radioimmunoassay. The sum of the three major tetrahydrometabolites is an estimate for daily GC secretion, and the sum of UFF and UFE represents potentially bioactive-free-GCs. Thirty healthy lean subjects (BMI 22.3 +/- 0.3 kg/m(2)) served as controls. In obese subjects, absolute daily GC secretion and the potentially bioactive-free-GCs were significantly (P < 0.005) higher than in lean controls (11.8 +/- 0.7 vs. 8.0 +/- 0.6 mg/d; and 171.8 +/- 11.2 vs. 117.6 +/- 9.2 mug/d, respectively). However, when these values were corrected for body surface area (BSA), significant differences were no longer detectable. While enzyme activity indices for 5alpha-reductase and 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) were similar in lean and obese subjects, 11beta-HSD2 was markedly elevated in adiposity (3.7 +/- 0.2 vs. 2.1 +/- 0.1; P < 0.0001). This increase was accompanied by a significant reduction in UFF excretion corrected for BSA (16.5 +/- 1.2 vs. 21.7 +/- 2.0 mug/d/m(2); P = 0.0222). Besides, 11beta-HSD2 activity was significantly correlated with insulin sensitivity (P = 0.0262). When body size is accounted for, both adrenal GC secretion and potentially bioactive-free-GCs are indistinguishable between lean and extremely obese subjects. However in obesity, the kidney appears to intensify its supply of the direct substrate cortisone for extrarenal 11beta-HSD1, which may fuel visceral adiposity and insulin resistance.  相似文献   

13.
Whether a high-unsaturated-fat, high-protein (HFP), and low-carbohydrate (CHO) diet during gestation has long-lasting beneficial effects on lipid metabolism in the offspring was investigated using a mouse model. Female mice were fed either a standard (CHO rich) chow diet or a CHO HFP diet, before and during gestation and lactation. All offspring were weaned onto the same chow until adulthood. Although liver cholesterol concentration and fasting plasma triglyceride (TG), cholesterol, and free fatty acid concentrations were not affected in either male or female HFP offspring, hepatic TG concentration was reduced by approximately 51% (P < 0.05) in the female adult offspring from dams on the HFP diet, compared with females from dams on the chow diet (a trend toward reduced TG concentration was also observed in the male). Furthermore, hepatic protein levels for CD36, carnitine palmitoyltransferase-1 (CPT-1), and peroxisomal proliferator activated receptor-alpha (PPAR-alpha) were increased by approximately 46% (P < 0.001), approximately 52% (P < 0.001), and approximately 14% (P = 0.035), respectively, in the female HFP offspring. Liver TG levels were negatively correlated with protein levels of CD 36 (r = -0.69, P = 0.007), CPT-1 (r = -0.55, P = 0.033), and PPAR-alpha (r = -0.57, P = 0.025) in these offspring. In conclusion, a maternal HFP diet during gestation and lactation reduces hepatic TG concentration in female offspring, which is linked with increased protein levels in fatty acid oxidation.  相似文献   

14.
Adipose tissue is a major source of inflammatory and thrombotic cytokines. This study investigated the relationship of abdominal subcutaneous adipose tissue cytokine gene expression to body composition, fat distribution, and metabolic risk during obesity. We determined body composition, abdominal fat distribution, plasma lipids, and abdominal subcutaneous fat gene expression of leptin, TNF-alpha, IL-6, PAI-1, and adiponectin in 20 obese, middle-aged women (BMI, 32.7 +/- 0.8 kg/m2; age, 57 +/- 1 yr). A subset of these women without diabetes (n = 15) also underwent an OGTT. In all women, visceral fat volume was negatively related to leptin (r = -0.46, P < 0.05) and tended to be negatively related to adiponectin (r = -0.38, P = 0.09) gene expression. Among the nondiabetic women, fasting insulin (r = 0.69, P < 0.01), 2-h insulin (r = 0.56, P < 0.05), and HOMA index (r = 0.59, P < 0.05) correlated positively with TNF-alpha gene expression; fasting insulin (r = 0.54, P < 0.05) was positively related to, and 2-h insulin (r = 0.49, P = 0.06) tended to be positively related to, IL-6 gene expression; and glucose area (r = -0.56, P < 0.05) was negatively related to, and insulin area (r = -0.49, P = 0.06) tended to be negatively related to, adiponectin gene expression. Also, adiponectin gene expression was significantly lower in women with vs. without the metabolic syndrome (adiponectin-beta-actin ratio, 2.26 +/- 0.46 vs. 3.31 +/- 0.33, P < 0.05). We conclude that abdominal subcutaneous adipose tissue expression of inflammatory cytokines is a potential mechanism linking obesity with its metabolic comorbidities.  相似文献   

15.
We evaluated plasma fatty acid availability and plasma and whole body fatty acid oxidation during exercise in five lean and five abdominally obese women (body mass index = 21 +/- 1 vs. 38 +/- 1 kg/m(2)), who were matched on aerobic fitness, to test the hypothesis that obesity alters the relative contribution of plasma and nonplasma fatty acids to total energy production during exercise. Subjects exercised on a recumbent cycle ergometer for 90 min at 54% of their peak oxygen consumption. Stable isotope tracer methods ([(13)C]palmitate) were used to measure fatty acid rate of appearance in plasma and the rate of plasma fatty acid oxidation, and indirect calorimetry was used to measure whole body substrate oxidation. During exercise, palmitate rate of appearance increased progressively and was similar in obese and lean groups between 60 and 90 min of exercise [3.9 +/- 0.4 vs. 4.0 +/- 0.3 micromol. kg fat free mass (FFM)(-1). min(-1)]. The rate of plasma fatty acid oxidation was also similar in obese and lean subjects (12.8 +/- 1.7 vs. 14.5 +/- 1.8 micromol. kg FFM(-1). min(-1); P = not significant). However, whole body fatty acid oxidation during exercise was 25% greater in obese than in lean subjects (21.9 +/- 1.2 vs. 17.5 +/- 1.6 micromol. kg FFM(-1). min(-1); P < 0.05). These results demonstrate that, although plasma fatty acid availability and oxidation are similar during exercise in lean and obese women, women with abdominal obesity use more fat as a fuel by oxidizing more nonplasma fatty acids.  相似文献   

16.
Muscle fatty acid (FA) metabolism is impaired in obesity and insulin resistance, reflected by reduced rates of FA oxidation and accumulation of lipids. It has been suggested that interventions that increase FA oxidation may enhance insulin action by reducing these lipid pools. Here, we examined the effect of endurance training on rates of mitochondrial FA oxidation, the activity of carnitine palmitoyltransferase I (CPT I), and the lipid content in muscle of obese individuals and related these to measures of glucose tolerance. Nine obese subjects completed 8 wk of moderate-intensity endurance training, and muscle biopsies were obtained before and after training. Training significantly improved glucose tolerance, with a reduction in the area under the curve for glucose (P < 0.05) and insulin (P = 0.01) during an oral glucose tolerance test. CPT I activity increased 250% (P = 0.001) with training and became less sensitive to inhibition by malonyl-CoA. This was associated with an increase in mitochondrial FA oxidation (+120%, P < 0.001). Training had no effect on muscle triacylglycerol content; however, there was a trend for training to reduce both the total diacylglcyerol (DAG) content (-15%, P = 0.06) and the saturated DAG-FA species (-27%, P = 0.06). Training reduced both total ceramide content (-42%, P = 0.01) and the saturated ceramide species (-32%, P < 0.05). These findings suggest that the improved capacity for mitochondrial FA uptake and oxidation leads not only to a reduction in muscle lipid content but also a to change in the saturation status of lipids, which may, at least in part, provide a mechanism for the enhanced insulin action observed with endurance training in obese individuals.  相似文献   

17.
Quercetin exhibits a wide range of biological functions. The first aim of the present work was to analyze the effects of quercetin on fat accumulation in adipose tissue and glycemic control in rats. Any potential involvement of muscle fatty acid oxidation in its effect on glycemic control was also assessed. Animals were fed a high-fat high-sucrose diet either supplemented with quercetin (30 mg/kg body weight/day), or not supplemented, for 6 weeks. One week before killing, a glucose tolerance test was carried out. Muscle triacylglycerol content, serum glucose, insulin, fructosamine and free fatty acids were measured, and homeostatic model assessment for insulin resistance (HOMA-IR) was calculated. The activities of lipogenic enzymes and lipoprotein lipase in adipose tissue, carnitine palmitoyl transferase-1b (CPT-1b) and citrate synthase in skeletal muscle, and the expression of several genes, ACO, CD36, CPT-1b, PPAR-α, PGC-1α, UCP3, TFAM and COX-2 in skeletal muscle were analyzed. Quercetin caused no significant reduction in body weight or adipose tissue sizes. However, fructosamine, basal glucose and insulin, and consequently HOMA-IR, were significantly reduced by quercetin. No changes were observed in the activity of lipogenic enzymes and lipoprotein lipase. Muscle triacylglycerol content was similar in both experimental groups. The expression of ACO, CD36, CPT-1b, PPAR-α, PGC-1α, UCP3, TFAM and COX-2 remained unchanged. It can be concluded that quercetin is more effective as an anti-diabetic than as an anti-obesity biomolecule. The improvement in insulin resistance induced by this flavonoid is not mediated by a delipidating effect in skeletal muscle.  相似文献   

18.
Nonalcoholic fatty liver disease (NAFLD), hypertriglyceridemia, and elevated free fatty acids are present in the majority of patients with metabolic syndrome and type 2 diabetes mellitus and are strongly associated with hepatic insulin resistance. In the current study, we tested the hypothesis that an increased rate of fatty acid oxidation in liver would prevent the potentially harmful effects of fatty acid elevation, including hepatic triglyceride (TG) accumulation and elevated TG secretion. Primary rat hepatocytes were transduced with adenovirus encoding carnitine palmitoyltransferase 1a (Adv-CPT-1a) or control adenoviruses encoding either beta-galactosidase (Adv-beta-gal) or carnitine palmitoyltransferase 2 (Adv-CPT-2). Overexpression of CPT-1a increased the rate of beta-oxidation and ketogenesis by approximately 70%, whereas esterification of exogenous fatty acids and de novo lipogenesis were unchanged. Importantly, CPT-1a overexpression was accompanied by a 35% reduction in TG accumulation and a 60% decrease in TG secretion by hepatocytes. There were no changes in secretion of apolipoprotein B (apoB), suggesting the synthesis of smaller, less atherogenic VLDL particles. To evaluate the effect of increasing hepatic CPT-1a activity in vivo, we injected lean or obese male rats with Adv-CPT-1a, Adv-beta-gal, or Adv-CPT-2. Hepatic CPT-1a activity was increased by approximately 46%, and the rate of fatty acid oxidation was increased by approximately 44% in lean and approximately 36% in obese CPT-1a-overexpressing animals compared with Adv-CPT-2- or Adv-beta-gal-treated rats. Similar to observations in vitro, liver TG content was reduced by approximately 37% (lean) and approximately 69% (obese) by this in vivo intervention. We conclude that a moderate stimulation of fatty acid oxidation achieved by an increase in CPT-1a activity is sufficient to substantially reduce hepatic TG accumulation both in vitro and in vivo. Therefore, interventions that increase CPT-1a activity could have potential benefits in the treatment of NAFLD.  相似文献   

19.
Novel form of lipolysis induced by leptin.   总被引:14,自引:0,他引:14  
Hyperleptinemia causes disappearance of body fat without a rise in free fatty acids (FFA) or ketones, suggesting that leptin can deplete adipocytes of fat without releasing FFA. To test this, we measured FFA and glycerol released from adipocytes obtained from normal lean Zucker diabetic fatty rats (+/+) and incubated for 0, 3, 6, or 24 h in either 20 ng/ml recombinant leptin or 100 nM norepinephrine (NE). Whereas NE increased both FFA and glycerol release from adipocytes of +/+ rats, leptin increased glycerol release in +/+ adipocytes without a parallel increase in FFA release. In adipocytes of obese Zucker diabetic fatty rats (fa/fa) with defective leptin receptors, NE increased both FFA and glycerol release, but leptin had no effect on either. Leptin significantly lowered the mRNA of leptin and fatty acid synthase of adipocytes (FAS) (p < 0.05), and up-regulated the mRNA of peroxisome proliferator-activated receptor (PPAR)-alpha, carnitine palmitoyl transferase-1, (CPT-1), and acyl CoA oxidase (ACO) (p < 0.05). NE (100 nM) also lowered leptin mRNA (p < 0.05) but did not affect FAS, PPARalpha, ACO, or CPT-1 expression. We conclude that in normal adipocytes leptin directly decreases FAS expression, increases PPARalpha and the enzymes of FFA oxidation, and stimulates a novel form of lipolysis in which glycerol is released without a proportional release of FFA.  相似文献   

20.
We have previously shown that sex and obesity independently affect basal very low density lipoprotein (VLDL)-triglyceride (TG) kinetics. In the present study, we investigated the effect of hyperglycemia-hyperinsulinemia on VLDL-TG kinetics in lean and obese men and women (n = 6 in each group). VLDL-TG kinetics were measured during basal, postabsorptive conditions and during glucose infusion (5.5 mg x kg FFM(-1) x min(-1)) by using [(2)H(5)]glycerol bolus injection in conjunction with compartmental modeling analysis. Basal VLDL-TG secretion in plasma was greater in obese than in lean men (7.8 +/- 0.6 and 2.9 +/- 0.4 micromol x l plasma(-1) x min(-1); P < 0.001) but was not different in lean and obese women (5.0 +/- 1.1 and 5.9 +/- 1.1 micromol x l plasma(-1) x min(-1)). Glucose infusion decreased the VLDL-TG secretion rate by approximately 50% in lean and obese men and in lean women (to 1.5 +/- 0.4, 4.0 +/- 0.6, and 2.2 +/- 0.4 micromol x l plasma(-1) x min(-1), respectively; all P < 0.05) but had no effect on the VLDL-TG secretion rate in obese women (4.9 +/- 1.0 micromol x l plasma(-1) x min(-1)). These results demonstrate that both sex and adiposity affect the regulation of VLDL-TG metabolism. Glucose and insulin decrease VLDL-TG production in both lean men and lean women; obesity is associated with resistance to the glucose- and insulin-mediated suppression of VLDL-TG secretion in women, but not in men.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号