首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The molecular mechanism of insulin resistance induced by high-fructose feeding is not fully understood. The present study investigated the role of downstream signaling molecules of phosphatidylinositol 3-kinase (PI3K) in the insulin-stimulated skeletal muscle of high-fructose-fed rats. Rats were divided into chow-fed and fructose-fed groups. The results of the euglycemic clamp study (insulin infusion rates: 6 mU/kg BW/min) showed a significant decrease in the glucose infusion rate (GIR) and the metabolic clearance rate of glucose (MCR) in fructose-fed rats compared with chow-fed rats. In skeletal muscle removed immediately after the clamp procedure, high-fructose feeding did not alter protein levels of protein kinase B (PKB/Akt), protein kinase C zeta (PKCzeta), or glucose transporter 4 (GLUT4). However, insulin-stimulated phosphorylation of Akt and PKCzeta and GLUT4 translocation to the plasma membrane were reduced. Our findings suggest that insulin resistance in fructose-fed rats is associated with impaired Akt and PKCzeta activation and GLUT4 translocation in skeletal muscle.  相似文献   

2.
Liu IM  Tzeng TF  Liou SS  Lan TW 《Life sciences》2007,81(21-22):1479-1488
The present study was conducted to explore the effects of myricetin on insulin resistance in rats fed for 6 weeks with a diet containing 60% fructose. Repeated intravenous (i.v.) injection of myricetin (1 mg/kg per injection, 3 times daily) for 14 days was found to significantly decrease the high glucose and triglyceride levels in plasma of fructose chow-fed rats. Also, the higher degree of insulin resistance in fructose chow-fed rats as measured by homeostasis model assessment of basal insulin resistance was significantly decreased by myricetin treatment. Myricetin increased the whole-body insulin sensitivity in fructose chow-fed rats, as evidenced by the marked elevation of composite whole-body insulin sensitivity index during the oral glucose tolerance test. Myricetin was found to reverse the defect in expression of insulin receptor substrate-1 (IRS-1) and the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI 3-kinase) in soleus muscle of fructose chow-fed rats under the basal state, despite the protein expression of insulin receptor (IR). Increased basal phosphorylation of IR and IRS-1 as well as Akt was observed in parallel. The reduced level of insulin action on phosphorylation of IR, IRS-1 and Akt in soleus muscle of fructose chow-fed rats was reversed by myricetin treatment. Furthermore, myricetin treatment improved the defective insulin action on the translocation of glucose transporter subtype 4 (GLUT 4) in insulin-resistant soleus muscle. These findings indicate that myricetin improves insulin sensitivity through the enhancement of insulin action on IRS-1-associated PI 3-kinase and GLUT 4 activity in soleus muscles of animals exhibiting insulin resistance.  相似文献   

3.
The catalytic domain of overexpressed protein kinase C (PKC)-delta mediates phorbol 12-myristate 13-acetate (PMA)-induced differentiation or apoptosis in appropriate model cell lines. To define the portions of the catalytic domain that are critical for these isozyme-specific functions, we constructed reciprocal chimeras, PKC-delta/epsilonV5 and -epsilon/deltaV5, by swapping the V5 domains of PKC-delta and -epsilon. PKC-delta/epsilonV5 failed to mediate PMA-induced differentiation of 32D cells, showing the essential nature of the V5 domain for PKC-delta's functionality. The other chimera, PKC-epsilon/deltaV5, endowed inactive PKC-epsilon with nearly all PKC-delta's apoptotic ability, confirming the importance of PKC-delta in this function. Green fluorescent protein (GFP)-tagged PKC-deltaV5 and -epsilon/deltaV5 in A7r5 cells showed substantial basal nuclear localization, while GFP-tagged PKC-epsilon and -delta/epsilonV5 showed significantly less, indicating that the V5 region of PKC-delta contains determinants critical to its nuclear distribution. PKC-epsilon/deltaV5-GFP showed much slower kinetics of translocation to membranes in response to PMA than parental PKC-epsilon, implicating the PKC-epsilonV5 domain in membrane targeting. Thus, the V5 domain is critical in several of the isozyme-specific functions of PKC-delta and -epsilon.  相似文献   

4.
Isoforms of protein kinase C (PKC) have been shown to modulate some cellular responses such as pathological secretion and generation of inflammatory mediators during acute pancreatitis (AP). We propose that PKC also participates in premature zymogen activation within the pancreatic acinar cell, a key event in the initiation of AP. This hypothesis was examined in in vivo and cellular models of caerulein-induced AP using PKC activators and inhibitors. Phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA, 200 nM), a known activator of PKC, enhanced zymogen activation at both 0.1 nM and 100 nM caerulein, concentrations which mimic physiological and supraphysiological effects of the hormone cholecystokinin, respectively, in preparations of pancreatic acinar cells. Isoform-specific PKC inhibitors for PKC-delta and PKC-epsilon reduced supraphysiological caerulein-induced zymogen activation. Using a cell-free reconstitution system, we showed that inhibition of PKC-delta and -epsilon, reduced zymogen activation in both zymogen granule-enriched and microsomal fractions. In dispersed acinar cells, 100 nM caerulein stimulation caused PKC-delta and -epsilon isoform translocation to microsomal membranes using cell fractionation and immunoblot analysis. PKC translocation was confirmed with in vivo studies and immunofluorescence microscopy in pancreatic tissues from rats treated with or without 100 nM caerulein. PKC-epsilon redistributed from an apical to a supranuclear region following caerulein administration. The signal for PKC-epsilon overlapped with granule membrane protein, GRAMP-92, an endosomal/lysosomal marker, in a supranuclear region where zymogen activation takes place. These results indicate that PKC-delta and -epsilon isoforms translocate to specific acinar cell compartments and modulate zymogen activation.  相似文献   

5.
Rat soleus muscle was denervated for 3 or 7 days, and total membrane protein kinase C (PKC) activity and translocation and immunocytochemical localization of PKC isoforms were examined. Dietary administration of clenbuterol concomitant with denervation ameliorated the atrophic response and was associated with increased membrane PKC activity at both 3 (140%) and 7 (190%) days. Of the five PKC isoforms (alpha, epsilon, theta, zeta, and mu) detected in soleus muscle by Western immunoblotting, clenbuterol treatment affected only the PKC-alpha and PKC-theta forms. PKC-alpha was translocated to the membrane fraction upon denervation, and the presence of clenbuterol increased membrane-bound PKC-alpha and active PKC-alpha as assayed by Ser(657) phosphorylation. PKC-theta protein was downregulated upon denervation, and treatment with clenbuterol further decreased both cytosolic and membrane levels. Immunolocalization of PKC-theta showed differences for regulatory and catalytic domains, with the latter showing fast-fiber type specificity. The results suggest potential roles of PKC-alpha and PKC-theta in the mechanism of action of clenbuterol in alleviating denervation-induced atrophy.  相似文献   

6.
We studied the expression and the hormonal regulation of the PDS gene product, pendrin, which is, in thyrocytes, responsible for the iodide transport out of the cell. We show that PC Cl3 cells, a fully differentiated thyroid cell line, grown without TSH and insulin, express very low level of PDS mRNA; such expression is greatly increased after stimulation with insulin or TSH. (125)I pre-loaded cells showed an (125)I efflux accelerated in chloride-containing buffer with respect to chloride-free buffer, suggesting that this efflux is chloride dependent. By immunoblotting, pendrin was found in agonists-stimulated cells, whereas it was barely detectable in un-stimulated cells. An increase in both PDS mRNA and protein was also obtained using phorbol ester PMA, or using 8-Br-cAMP and forskolin. Stimulation with insulin (1 microg/ml; 0-40 min) provoked the cytosol-to-membrane translocation of pendrin and a decrease of intracellular I(-) content in (125)I pre-loaded cells. Insulin- or PMA-treated cells also showed a cytosol-to-membrane translocation of PKC-delta and -epsilon. Inhibition of both PKC-delta and -epsilon activities by GF109203X blocked pendrin translocation, whilst the inhibition of PKA did not. The selective inhibition of PKC-delta by rottlerin did not affect the insulin-provoked translocation of pendrin whilst it was inhibited by a PKC-epsilon translocation inhibitor peptide and also by PKC-epsilon downregulation using the small interfering RNA, thus indicating that such translocation was due to PKC-epsilon activity. In conclusion, our study demonstrates that, in PC Cl3 cells, pendrin expression and localisation are regulated by insulin and influenced by a PKC-epsilon-dependent intracellular pathway.  相似文献   

7.
This study was initiated in an attempt to see if the insulin resistance associated with maturation in young rats could be prevented by environmental manipulation. Consequently, seven week-old rats were either housed in standard laboratory cages and fed a calorie-restricted diet or placed individually in exercise wheel cages and allowed to eat chow ad lib. A control group of rats was housed in standard laboratory cages from seven weeks to five months of age, and also allowed to eat chow ad lib. When studied at five months of age, the chow-fed rats weighed more (624 +/- 8 g) than either the calorie restricted (479 +/- 9 g) or exercise trained (485 +/- 13 g) rats. Insulin action was compared in the three groups by assessing the steady-state serum glucose (SSSG) and insulin (SSSI) concentrations achieved during a continuous intravenous infusion of glucose and exogenous insulin. The results of these studies indicated that SSSG concentration was significantly higher (P less than 0.001) in chow-fed rats than in the two experimental groups. Since SSSI concentrations were the same in all three groups, lower SSSG concentrations in calorie-restricted and exercise trained rats indicates that insulin-stimulated glucose uptake was preserved in these two groups as compared to the chow-fed population. In an attempt to understand why exercise training and calorie restriction prevented the development of insulin resistance, muscle glycogen synthase activity and muscle capillary density were compared in the three groups of five month-old rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.

Background and aims

Phosphatase and tensin homolog (PTEN) is a phosphoinositide phosphatase that regulates crucial cellular functions, including insulin signaling, lipid and glucose metabolism, as well as survival and apoptosis. Silymarin is the active ingredient in milk thistle and exerts numerous effects through the activation of PTEN. However, the effect of silymarin on the development of insulin resistance remains unknown.

Methods

Wistar rats fed fructose-rich chow or normal chow were administered oral silymarin to identify the development of insulin resistance using the homeostasis model assessment of insulin resistance and hyperinsulinemic- euglycemic clamping. Changes in PTEN expression in skeletal muscle and liver were compared using western blotting analysis. Further investigation was performed in L6 cells to check the expression of PTEN and insulin-related signals. PTEN deletion in L6 cells was achieved by small interfering ribonucleic acid transfection.

Results

Oral administration of silymarin at a dose of 200 mg/kg once daily induced insulin resistance in normal rats and enhanced insulin resistance in fructose-rich chow-fed rats. An increase of PTEN expression was observed in the skeletal muscle and liver of rats with insulin resistance. A decrease in the phosphorylation of Akt in L6 myotube cells, which was maintained in a high-glucose condition, was also observed. Treatment with silymarin aggravated high-glucose-induced insulin resistance. Deletion of PTEN in L6 cells reversed silymarin-induced impaired insulin signaling and glucose uptake.

Conclusions

Silymarin has the ability to disrupt insulin signaling through increased PTEN expression. Therefore, silymarin should be used carefully in type-2 diabetic patients.  相似文献   

9.
10.
Calcium influx triggers exocytosis by promoting vesicle fusion with the plasma membrane. However, different subtypes of voltage-gated calcium channel (VGCC) have distinct roles in exocytosis. We previously reported that repetitive stimulation induces activity-dependent potentiation (ADP) which represents the increase of neurotransmitter release. Here, we show that L-type VGCC have a dominant role in ADP of large dense-core vesicle (LDCV) exocytosis. Repetitive stimulation activating VGCC can induce ADP, whereas activation of bradykinin (BK) G protein-coupled receptors or purinergic P2X cation channels can not. L-type VGCC has the dominant role in ADP of LDCV exocytosis by regulating Protein Kinase C (PKC)-epsilon translocation and phosphorylation of myristoylated alanine-rich C kinase substrate (MARCKS), a target molecule of PKC-epsilon. We provide evidence that L-type VGCC, PKC-epsilon, and MARCKS, but not Q-type VGCC, are selectively located in lipid rafts. Also, PKC-epsilon translocation induced by L-type VGCC activation occurs in lipid rafts. Disruption of lipid rafts abolishes ADP of LDCV exocytosis and changes the fusion pore kinetics without affecting the first stimulation-induced exocytosis, showing that lipid rafts are involved in the potentiation process. Taken together, we suggest that L-type VGCC in lipid rafts selectively mediates ADP of LDCV exocytosis by regulating PKC-epsilon translocation and MARCKS phosphorylation.  相似文献   

11.
In this study we examined the effects of insulin on protein kinase C (PKC) activity in cultured fetal chick neurons. PKC activity, measured as 32P incorporation into histone H1 in the presence of calcium (500 microM), phosphatidylserine (100 micrograms/ml), and diolein (3.3 micrograms/ml) minus the incorporation in the presence of calcium alone, was detected in neuronal cytosolic (207 +/- 33 pmol/min/mg) and membrane (33 +/- 8 pmol/min/mg) fractions. Insulin added to intact neurons increased the activity of PKC in both cytosolic and membrane fractions by about 40%. Neurons preincubated with cycloheximide (10 micrograms/ml) 30 min prior to insulin treatment showed the same degree of stimulation of PKC activity by insulin. The activation of PKC was maximal within 5-10 min of insulin exposure and was sustained for at least 60 min. Insulin stimulated PKC in a dose-dependent manner, with a maximal response obtained at 100 ng/ml. Addition of phosphatidylserine and diolein to neuronal cell extracts resulted in the phosphorylation of four major cytosolic proteins (70, 57, 18, and 16 kDa) and one major membrane protein (75 kDa). Phosphorylation of all five proteins was increased 2-fold in extracts from insulin-treated neurons. Immunoblot analysis of whole cell extracts using antibodies against PKC-alpha, PKC-beta, PKC-gamma, PKC-delta, and PKC-epsilon revealed that cultured fetal chick neurons contained only one of these PKC isoforms, the epsilon-isoform. The enzyme was mostly cytosolic. Insulin had no effect on either the amount of distribution of PKC-epsilon in cultured neurons but induced a small change in the mobility of PKC-epsilon on sodium dodecyl sulfate-polyacrylamide gels. When assay conditions were designed to measure specifically the activity of PKC-epsilon, using a synthetic peptide substrate in the absence of calcium, activity was 50 +/- 12% higher in insulin-treated cells (p less than 0.005). PKC activity in control and insulin treated-neurons was almost completely inhibited when assays included a peptide identical to the pseudo-substrate binding site of PKC-epsilon. We conclude that PKC-epsilon is the major PKC isoform present in cultured fetal chick neurons. Insulin stimulates PKC-epsilon activity by a mechanism that does not involve translocation of the enzyme from cytosol to membrane.  相似文献   

12.
Protein kinase C-epsilon (PKC-epsilon) plays a central role in cardiac cell signaling, but mechanisms of translocation and anchoring upon activation are poorly understood. Conventional PKC isoforms rely on a rapid Ca2+-mediated recruitment to cell membranes, but this mechanism cannot be employed by PKC-epsilon or other PKC isoforms lacking a Ca2+-binding domain. In this study, we used recombinant green fluorescent protein (GFP) fusion constructs and confocal microscopy to examine the localization, kinetics, and reversibility of PKC-epsilon anchoring in permeabilized rat cardiac myocytes. PKC-epsilon-GFP bound with a striated pattern that co-localized with alpha-actinin, a marker of the Z-line of the sarcomere. Binding required activation of PKC and occurred slowly but reversibly with apparent rate constants of k(on) = 4.6 +/- 1.2 x 10(3) M(-1) x s(-1) and k(off) = 1.4 +/- 0.5 x 10(-3) s(-1) (t1/2 = 8 min) as determined by fluorescence recovery after photobleaching and by perfusion experiments. A truncated construct composed of the N-terminal 144-amino-acid variable region of PKC-epsilon (epsilonV1-GFP), but not an analogous N-terminal domain of PKC-delta, mimicked the Z-line decoration and slow binding rate of the full-length enzyme. These findings suggest that the epsilonV1 domain is important in determining PKC-epsilon localization and translocation kinetics in cardiac muscle. Moreover, PKC-epsilon translocation is not a diffusion-controlled binding process but instead may be limited by intramolecular conformational changes within the V1 domain. The k(off) for epsilonV1-GFP was two- to threefold faster than for full-length enzyme, indicating that other domains in PKC-epsilon contribute to anchoring by prolonging the bound state.  相似文献   

13.
This study concentrated on the initial events triggering the development of nonalcoholic fatty liver disease induced by a high-fat plus fructose (HF-F) diet and on the possibility of delaying nonalcoholic fatty liver disease progression by adding dehydroepiandrosterone (DHEA) to the diet. Sterol regulatory element binding protein-1c (SREBP-1c) activation plays a crucial role in the progression of nonalcoholic fatty liver disease induced by an HF-F diet. This study investigated the protective effects of DHEA, a compound of physiological origin with multitargeted antioxidant properties, against the induction of SREBP-1c and on liver insulin resistance in rats fed an HF-F diet, which mimics a typical unhealthy Western diet. An HF-F diet, fortified or not with DHEA (0.01%, w/w), was administered for 15 weeks to male Wistar rats. After HF-F the liver showed unbalanced oxidative status, fatty infiltration, hepatic insulin resistance, and inflammation. The addition of DHEA to the diet reduced both activation of oxidative-stress-dependent pathways and expression of SREBP-1c and partially restored the expression of liver X-activated receptor-α and insulin receptor substrate-2 genes. DHEA supplementation of the HF-F diet reduced de novo lipogenesis and delayed progression of nonalcoholic fatty liver disease, demonstrating a relationship between oxidative stress and nonalcoholic fatty liver disease via SREBP-1c.  相似文献   

14.
Lang W  Wang H  Ding L  Xiao L 《Cellular signalling》2004,16(4):457-467
Phorbol esters can induce activation of two mitogen-activated protein kinase (MAPK) pathways, the extracellular signal-regulated kinase (ERK) pathway and the c-Jun N-terminal kinase (JNK) pathway. Unlike ERK activation, JNK activation by phorbol esters is somehow cell-specific. However, the mechanism(s) that contribute to the cell-specific JNK activation remain elusive. In this study, we found that phorbol 12-myristate 13-acetate (PMA) induced JNK activation only in non-small cell lung cancer (NSCLC) cells, but not in small cell lung cancer (SCLC) cells, whereas ERK activation was detected in both cell types. In NSCLC cells, PMA induced JNK activation in a time- and dose-dependent manner. JNK activation was attenuated by protein kinase C (PKC) down-regulation through prolonged pre-treatment with PMA and significantly inhibited by PKC inhibitors G?6976 and GF109203X. Subcellular localization studies demonstrated that PMA induced translocation of PKC-alpha, -betaII, and -epsilon isoforms, but not PKC-delta, from the cytosol to the membrane. Analysis of various PKC isoforms revealed that PKC-epsilon was exclusively absent in the SCLC cell lines tested. Ectopic expression of PKC-epsilon in SCLC cells restored PMA activation of JNK signaling only in the presence of PKC-alpha, suggesting that PKC-alpha and PKC-epsilon act cooperatively in regulating JNK activation in response to PMA. Furthermore, using dominant negative mutants and pharmacological inhibitors, we define that a putative Rac1/Cdc42/PKC-alpha pathway is convergent with the PKC-epsilon/MEK1/2 pathway in terms of the activation of JNK by PMA.  相似文献   

15.
Chronic intake of high-carbohydrate or high-lipid diets is a well-known insulin resistance inducer. This study investigates the immediate effect (1-6 h) of a carbohydrate- or lipid-enriched meal on insulin sensitivity. Fasted rats were refed with standard, carbohydrate-enriched (C), or lipid-enriched (L) meal. Plasma insulin, glucose, and non-esterified fatty acids (NEFA) were measured at 1, 2, 4, and 6 h of refeeding. The glucose-insulin index showed that either carbohydrates or lipids decreased insulin sensitivity at 2 h of refeeding. At this time point, insulin tolerance tests (ITTs) and glucose tolerance tests (GTTs) detected insulin resistance in C rats, while GTT confirmed it in L rats. Reduced glycogen and phosphorylated AKT and GSK3 content revealed hepatic insulin resistance in C rats. Reduced glucose uptake in skeletal muscle subjected to the fatty acid concentration that mimics the high NEFA level of L rats suggests insulin resistance in these animals is mainly in muscle. In conclusion, carbohydrate- or lipid-enriched meals acutely disrupt glycemic homeostasis, inducing a transient insulin resistance, which seems to involve liver and skeletal muscle, respectively. Thus, the insulin resistance observed when those types of diets are chronically consumed may be an evolution of repeated episodes of this transient insulin resistance.  相似文献   

16.
Protein kinase C-epsilon (PKC-epsilon) translocates to phagosomes and promotes uptake of IgG-opsonized targets. To identify the regions responsible for this concentration, green fluorescent protein (GFP)-protein kinase C-epsilon mutants were tracked during phagocytosis and in response to exogenous lipids. Deletion of the diacylglycerol (DAG)-binding epsilonC1 and epsilonC1B domains, or the epsilonC1B point mutant epsilonC259G, decreased accumulation at phagosomes and membrane translocation in response to exogenous DAG. Quantitation of GFP revealed that epsilonC259G, epsilonC1, and epsilonC1B accumulation at phagosomes was significantly less than that of intact PKC-epsilon. Also, the DAG antagonist 1-hexadecyl-2-acetyl glycerol (EI-150) blocked PKC-epsilon translocation. Thus, DAG binding to epsilonC1B is necessary for PKC-epsilon translocation. The role of phospholipase D (PLD), phosphatidylinositol-specific phospholipase C (PI-PLC)-gamma1, and PI-PLC-gamma2 in PKC-epsilon accumulation was assessed. Although GFP-PLD2 localized to phagosomes and enhanced phagocytosis, PLD inhibition did not alter target ingestion or PKC-epsilon localization. In contrast, the PI-PLC inhibitor U73122 decreased both phagocytosis and PKC-epsilon accumulation. Although expression of PI-PLC-gamma2 is higher than that of PI-PLC-gamma1, PI-PLC-gamma1 but not PI-PLC-gamma2 consistently concentrated at phagosomes. Macrophages from PI-PLC-gamma2-/- mice were similar to wild-type macrophages in their rate and extent of phagocytosis, their accumulation of PKC-epsilon at the phagosome, and their sensitivity to U73122. This implicates PI-PLC-gamma1 as the enzyme that supports PKC-epsilon localization and phagocytosis. That PI-PLC-gamma1 was transiently tyrosine phosphorylated in nascent phagosomes is consistent with this conclusion. Together, these results support a model in which PI-PLC-gamma1 provides DAG that binds to epsilonC1B, facilitating PKC-epsilon localization to phagosomes for efficient IgG-mediated phagocytosis.  相似文献   

17.
18.
Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease   总被引:49,自引:0,他引:49  
Short term high fat feeding in rats results specifically in hepatic fat accumulation and provides a model of non-alcoholic fatty liver disease in which to study the mechanism of hepatic insulin resistance. Short term fat feeding (FF) caused a approximately 3-fold increase in liver triglyceride and total fatty acyl-CoA content without any significant increase in visceral or skeletal muscle fat content. Suppression of endogenous glucose production (EGP) by insulin was diminished in the FF group, despite normal basal EGP and insulin-stimulated peripheral glucose disposal. Hepatic insulin resistance could be attributed to impaired insulin-stimulated IRS-1 and IRS-2 tyrosine phosphorylation. These changes were associated with activation of PKC-epsilon and JNK1. Ultimately, hepatic fat accumulation decreased insulin activation of glycogen synthase and increased gluconeogenesis. Treatment of the FF group with low dose 2,4-dinitrophenol to increase energy expenditure abrogated the development of fatty liver, hepatic insulin resistance, activation of PKC-epsilon and JNK1, and defects in insulin signaling. In conclusion, these data support the hypothesis hepatic steatosis leads to hepatic insulin resistance by stimulating gluconeogenesis and activating PKC-epsilon and JNK1, which may interfere with tyrosine phosphorylation of IRS-1 and IRS-2 and impair the ability of insulin to activate glycogen synthase.  相似文献   

19.
Evaluating the glucose tolerance test in mice   总被引:1,自引:0,他引:1  
The objective of this study was to determine the optimal conditions under which to assess glucose tolerance in chow- and high-fat-fed C57BL/6J mice. Mice were fed either chow or high-fat diet for 8 wk. Variables tested were fasting duration (0-, 3-, 6-, and 24-h and overnight fasting), route of administration (intraperitoneal vs. oral) load of glucose given (2, 1, or 0.5 g/kg and fixed 50-mg dose), and state of consciousness. Basal glucose concentrations were increased in high-fat- compared with chow-fed mice following 6 h of fasting (9.1 +/- 0.3 vs. 7.9 +/- 0.4 mmol/l P = 0.01). Glucose tolerance was most different and therefore significant (P = 0.001) in high-fat-fed mice after 6 h of fasting (1,973 +/- 96 vs. 1,248 +/- 83 mmol.l(-1).120 min(-1)). The difference in glucose tolerance was greater following an OGTT (142%), in contrast to an IPGTT, with a 127% difference between high fat and chow. We also found that administering 2 g/kg of glucose resulted in a greater level of significance (P = 0.0008) in glucose intolerance in high-fat- compared with chow-fed mice. A fixed dose of 50 mg glucose regardless of body weight was enough to show glucose intolerance in high-fat- vs. chow-fed mice. Finally, high-fat-fed mice showed glucose intolerance compared with their chow-fed counterparts whether they were tested under conscious or anesthetized conditions. We conclude that 2 g/kg glucose administered orally following 6 h of fasting is best to assess glucose tolerance in mice under these conditions.  相似文献   

20.
In this study, we examined the role of specific protein kinase C (PKC) isoforms in the differentiation of PC12 cells in response to nerve growth factor (NGF) and epidermal growth factor (EGF). PC12 cells express PKC-alpha, -beta, -gamma, -delta, -epsilon, -mu, and -zeta. For PKC-delta, -epsilon, and -zeta, NGF and EGF exerted differential effects on translocation. Unlike overexpression of PKC-alpha and -delta, overexpression of PKC-epsilon caused enhanced neurite outgrowth in response to NGF. In the PKC-epsilon-overexpressing cells, EGF also dramatically induced neurite outgrowth, arrested cell proliferation, and induced a sustained phosphorylation of mitogen-activated protein kinase (MAPK), in contrast to its mitogenic effects on control cells or cells overexpressing PKC-alpha and -delta. The induction of neurite outgrowth by EGF was inhibited by the MAPK kinase inhibitor PD95098. In cells overexpressing a PKC-epsilon dominant negative mutant, NGF induced reduced neurite outgrowth and a more transient phosphorylation of MAPK than in controls. Our results suggest an important role for PKC-epsilon in neurite outgrowth in PC12 cells, probably via activation of the MAPK pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号