首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Hearts from insulin-resistant type 2 diabetic db/db mice exhibit features of a diabetic cardiomyopathy with altered metabolism of exogenous substrates and reduced contractile performance. Therefore, the effect of chronic oral administration of 2-(2-(4-phenoxy-2-propylphenoxy)ethyl)indole-5-acetic acid (COOH), a novel ligand for peroxisome proliferator-activated receptor-gamma that produces insulin sensitization, to db/db mice (30 mg/kg for 6 wk) on cardiac function was assessed. COOH treatment reduced blood glucose from 27 mM in untreated db/db mice to a normal level of 10 mM. Insulin-stimulated glucose uptake was enhanced in cardiomyocytes from COOH-treated db/db hearts. Working perfused hearts from COOH-treated db/db mice demonstrated metabolic changes with enhanced glucose oxidation and decreased palmitate oxidation. However, COOH treatment did not improve contractile performance assessed with ex vivo perfused hearts and in vivo by echocardiography. The reduced outward K+ currents in diabetic cardiomyocytes were still attenuated after COOH. Metabolic changes in COOH-treated db/db hearts are most likely indirect, secondary to changes in supply of exogenous substrates in vivo and insulin sensitization.  相似文献   

2.
Hearts from type 2 diabetic (db/db) mice demonstrate altered substrate utilization with high rates of fatty acid oxidation, decreased functional recovery following ischemia, and reduced cardiac efficiency. Although db/db mice show overall insulin resistance in vivo, we recently reported that insulin induces a marked shift toward glucose oxidation in isolated perfused db/db hearts. We hypothesize that such a shift in metabolism should improve cardiac efficiency and consequently increase functional recovery following low-flow ischemia. Hearts from db/db and nondiabetic (db/+) mice were perfused with 0.7 mM palmitate plus either 5 mM glucose (G), 5 mM glucose and 300 microU/ml insulin (GI), or 33 mM glucose and 900 microU/ml insulin (HGHI). Substrate oxidation and postischemic recovery were only moderately affected by GI and HGHI in db/+ hearts. In contrast, GI and particularly HGHI markedly increased glucose oxidation and improved postischemic functional recovery in db/db hearts. Cardiac efficiency was significantly improved in db/db, but not in db/+ hearts, in the presence of HGHI. In conclusion, insulin and glucose normalize cardiac metabolism, restore efficiency, and improve postischemic recovery in type 2 diabetic mouse hearts. These findings may in part explain the beneficial effect of glucose-insulin-potassium therapy in diabetic patients with cardiac complications.  相似文献   

3.
Diabetic (db/db) mice provide an animal model of Type 2 diabetes characterized by marked in vivo insulin resistance. The effect of insulin on myocardial metabolism has not been fully elucidated in this diabetic model. In the present study we tested the hypothesis that the metabolic response to insulin in db/db hearts will be diminished due to cardiac insulin resistance. Insulin-induced changes in glucose oxidation (GLUox) and fatty acid (FA) oxidation (FAox) were measured in isolated hearts from control and diabetic mice, perfused with both low as well as high concentration of glucose and FA: 10 mM glucose/0.5 mM palmitate and 28 mM glucose/1.1 mM palmitate. Both in the absence and presence of insulin, diabetic hearts showed decreased rates of GLUox and elevated rates of FAox. However, the insulin-induced increment in GLUox, as well as the insulin-induced decrement in FAox, was similar or even more pronounced in diabetic that in control hearts. During elevated FA and glucose supply, however, the effect of insulin was blunted in db/db hearts with respect to both FAox and GLUox. Finally, insulin-stimulated deoxyglucose uptake was markedly reduced in isolated cardiomyocytes from db/db mice, whereas glucose uptake in isolated perfused db/db hearts was clearly responsive to insulin. These results show that, despite reduced insulin-stimulated glucose uptake in isolated cardiomyocytes, isolated perfused db/db hearts are responsive to metabolic actions of insulin. These results should advocate the use of insulin therapy (glucose-insulin-potassium) in diabetic patients undergoing cardiac surgery or during reperfusion after an ischemic insult.  相似文献   

4.
Peroxisome proliferator-activated receptor-alpha (PPARalpha) regulates the expression of fatty acid (FA) oxidation genes in liver and heart. Although PPARalpha ligands increased FA oxidation in cultured cardiomyocytes, the cardiac effects of chronic PPARalpha ligand administration in vivo have not been studied. Diabetic db/db mouse hearts exhibit characteristics of a diabetic cardiomyopathy, with altered metabolism and reduced contractile function. A testable hypothesis is that chronic administration of a PPARalpha agonist to db/db mice will normalize cardiac metabolism and improve contractile function. Therefore, a PPARalpha ligand (BM 17.0744) was administered orally to control and type 2 diabetic (db/db) mice (37.9 +/- 2.5 mg/(kg.d) for 8 weeks), and effects on cardiac metabolism and contractile function were assessed. BM 17.0744 reduced plasma glucose in db/db mice, but no change was observed in control mice. FA oxidation was significantly reduced in BM 17.0744 treated db/db hearts with a corresponding increase in glycolysis and glucose oxidation; glucose and FA oxidation in control hearts was unchanged by BM 17.0744. PPARalpha treatment did not alter expression of PPARalpha target genes in either control or diabetic hearts. Therefore, metabolic alterations in hearts from PPARalpha-treated diabetic mice most likely reflect indirect mechanisms related to improvement in diabetic status in vivo. Despite normalization of cardiac metabolism, PPARalpha treatment did not improve cardiac function in diabetic hearts.  相似文献   

5.
Control db/+ and diabetic db/db mice at 6 and 12 wk of age were subjected to echocardiography to determine whether contractile function was reduced in vivo and restored in transgenic db/db-human glucose transporter 4 (hGLUT4) mice (12 wk old) in which cardiac metabolism has been normalized. Systolic function was unchanged in 6-wk-old db/db mice, but fractional shortening and velocity of circumferential fiber shortening were reduced in 12-wk-old db/db mice (43.8 +/- 2.1% and 8.3 +/- 0.5 circs/s, respectively) relative to db/+ control mice (59.5 +/- 2.3% and 11.8 +/- 0.4 circs/s, respectively). Doppler flow measurements were unchanged in 6-wk-old db/db mice. The ratio of E and A transmitral flows was reduced from 3.56 +/- 0.29 in db/+ mice to 2.40 +/- 0.20 in 12-wk-old db/db mice, indicating diastolic dysfunction. Thus a diabetic cardiomyopathy with systolic and diastolic dysfunction was evident in 12-wk-old diabetic db/db mice. Cardiac function was normalized in transgenic db/db-hGLUT4 mice, indicating that altered cardiac metabolism can produce contractile dysfunction in diabetic db/db hearts.  相似文献   

6.
Isolated perfused hearts from type 2 diabetic (db/db) mice show impaired ventricular function, as well as altered cardiac metabolism. Assessment of the relationship between myocardial oxygen consumption (MVO(2)) and ventricular pressure-volume area (PVA) has also demonstrated reduced cardiac efficiency in db/db hearts. We hypothesized that lowering the plasma fatty acid supply and subsequent normalization of altered cardiac metabolism by chronic treatment with a peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist will improve cardiac efficiency in db/db hearts. Rosiglitazone (23 mg/kg body weight/day) was administered as a food admixture to db/db mice for five weeks. Ventricular function and PVA were assessed using a miniaturized (1.4 Fr) pressure-volume catheter; MVO(2) was measured using a fibre-optic oxygen sensor. Chronic rosiglitazone treatment of db/db mice normalized plasma glucose and lipid concentrations, restored rates of cardiac glucose and fatty acid oxidation, and improved cardiac efficiency. The improved cardiac efficiency was due to a significant decrease in unloaded MVO(2), while contractile efficiency was unchanged. Rosiglitazone treatment also improved functional recovery after low-flow ischemia. In conclusion, the present study demonstrates that in vivo PPARgamma-treatment restores cardiac efficiency and improves ventricular function in perfused hearts from type 2 diabetic mice.  相似文献   

7.
Glucose and fatty acid metabolism was assessed in isolated working hearts from control C57BL/KsJ-m+/+db mice and transgenic mice overexpressing the human GLUT-4 glucose transporter (db/+-hGLUT-4). Heart rate, coronary flow, cardiac output, and cardiac power did not differ between control hearts and hearts overexpressing GLUT-4. Hearts overexpressing GLUT-4 had significantly higher rates of glucose uptake and glycolysis and higher levels of glycogen after perfusion than control hearts, but rates of glucose and palmitate oxidation were not different. Insulin (1 mU/ml) significantly increased glycogen levels in both groups. Insulin increased glycolysis in control hearts but not in GLUT-4 hearts, whereas glucose oxidation was increased by insulin in both groups. Therefore, GLUT-4 overexpression increases glycolysis, but not glucose oxidation, in the heart. Although control hearts responded to insulin with increased rates of glycolysis, the enhanced entry of glucose in the GLUT-4 hearts was already sufficient to maximally activate glycolysis under basal conditions such that insulin could not further stimulate the glycolytic rate.  相似文献   

8.
Hearts from diabetic db/db mice, a model of Type 2 diabetes, exhibit left ventricular failure and altered metabolism of exogenous substrates. Peroxisome proliferator-activated receptor-alpha (PPAR-alpha) ligands reduce plasma lipid and glucose concentrations and improve insulin sensitivity in db/db mice. Consequently, the effect of 4- to 5-wk treatment of db/db mice with a novel PPAR-alpha ligand (BM 17.0744; 25-38 mg x kg(-1) x day(-1)), commencing at 8 wk of age, on ex vivo cardiac function and metabolism was determined. Elevated plasma concentrations of glucose, fatty acids, and triacylglycerol (34.0 +/- 3.6, 2.0 +/- 0.4, and 0.9 +/- 0.1 mM, respectively) were reduced to normal after treatment with BM 17.0744 (10.8 +/- 0.6, 1.1 +/- 0.1, and 0.6 +/- 0.1 mM). Plasma insulin was also reduced significantly in treated compared with untreated db/db mice. Chronic treatment of db/db mice with the PPAR-alpha agonist resulted in a 50% reduction in rates of fatty acid oxidation, with a concomitant increase in glycolysis (1.7-fold) and glucose oxidation (2.3- fold). Correction of the diabetes-induced abnormalities in systemic and cardiac metabolism after BM 17.0744 treatment did not, however, improve left ventricular contractile function.  相似文献   

9.
The db/db mouse is a well-established model of diabetes. Previous reports have documented contractile dysfunction (i.e., cardiomyopathy) in these animals, although the extant literature provides limited insights into cardiac structure and function as they change over time. To better elucidate the natural history of cardiomyopathy in db/db mice, we performed cardiac magnetic resonance (CMR) scans on these animals. CMR imaging was conducted with a 4.7-T magnet on female db/db mice and control db/+ littermates at 5, 9, 13, 17, and 22 wk of age. Gated gradient echo sequences were used to obtain cineographic short-axis slices from apex to base. From these images left ventricular (LV) mass (LVM), wall thickness, end-diastolic volume (LVEDV), and ejection fraction (LVEF) were determined. Additionally, cardiac [(18)F]fluorodeoxyglucose ([(18)F]FDG) PET scanning, pressure-volume loops, and real-time quantitative PCR on db/db myocardium were performed. Relative to control, db/db mice developed significant increases in LVM and wall thickness as early as 9 wk of age. LVEDV diverged slightly later, at 13 wk. Interestingly, compared with the baseline level, LVEF in the db/db group did not decrease significantly until 22 wk. Additionally, [(18)F]FDG metabolic imaging showed a 40% decrease in glucose uptake in db/db mice. Furthermore, contractile dysfunction was observed in 15-wk db/db mice undergoing pressure-volume loops. Finally, real-time quantitative PCR revealed an age-dependent recapitulation of the fetal gene program, consistent with a myopathic process. In summary, as assessed by CMR, db/db mice develop characteristic structural and functional changes consistent with cardiomyopathy.  相似文献   

10.
This study examined cardiac function and glucose metabolism in the 6-month-old db/db mouse, a model of type-2 diabetes. Cine magnetic resonance spectroscopy (MRI) was used to measure cardiac function in vivo. The db/db mice had decreased heart rates (17%, p<0.01) and stroke volumes (21%, p<0.05) that resulted in lower cardiac output (35%, p<0.01) than controls. Although there was no difference in ejection fraction between the 2 groups, db/db mouse hearts had a 35% lower maximum rate of ejection (p<0.01) than controls. In a protocol designed to assess maximal insulin-independent glucose uptake, hearts were isolated and perfused in Langendorff mode and subjected to 0.75 mL.min(-1).(g wet mass)(-1) low flow ischemia for 32 min. Glucose uptake during ischemia was 21% lower than in controls, and post-ischemic recovery of cardiac function was decreased by 30% in db/db mouse hearts (p<0.05). Total cardiac GLUT 4 protein was 56% lower (p<0.01) in db/db mice than in controls. In summary, the db/db mouse has abnormal left ventricular function in vivo, with impaired glucose uptake during ischemia, leading to increased myocardial damage.  相似文献   

11.
Diabetic db/db mice exhibit profound insulin resistance in vivo, but the specific degree of cardiac insensitivity to insulin has not been assessed. Therefore, the effect of insulin on cardiomyocytes from db/db hearts was assessed by measuring two metabolic responses (deoxyglucose uptake and fatty acid oxidation) and the phosphorylation of two enzymes in the insulin-signaling cascade [Akt and AMP-activated protein kinase (AMPK)]. Maximal insulin-stimulated deoxyglucose transport was reduced to 58 and 40% of control in cardiomyocytes from db/db mice at two ages (6 and 12 wk). Insulin-stimulated deoxyglucose uptake was also reduced in myocytes from transgenic db/db mice overexpressing the insulin-sensitive glucose transporter (db/db-hGLUT4). Treatment of db/db mice for 1 wk with an insulin-sensitizing peroxisome proliferator-activated receptor-gamma agonist (COOH) completely normalized insulin-stimulated deoxyglucose uptake. Insulin had no direct effect on palmitate oxidation by either control or db/db cardiomyocytes, but the combination of insulin and glucose reduced palmitate oxidation, likely an indirect effect secondary to increased glucose uptake. Insulin had no effect on AMPK phosphorylation from either control or db/db cardiomyocytes. Insulin increased the phosphorylation of Akt in all cardiomyocyte preparations (control, db/db, COOH-treated db/db) to the same extent. Thus insulin has selective metabolic actions in mouse cardiomyocytes; deoxyglucose uptake and Akt phosphorylation are increased, but fatty acid oxidation and AMPK phosphorylation are unchanged. Insulin resistance in db/db cardiomyocytes is manifested by reduced insulin-stimulated deoxyglucose uptake.  相似文献   

12.
Hydrolysis of triacylglycerols (TG) in circulating chylomicrons by endothelium-bound lipoprotein lipase (LPL) provides a source of fatty acids (FA) for cardiac metabolism. The effect of diabetes on the metabolism of chylomicrons by perfused mouse hearts was investigated with db/db (type 2) and streptozotocin (STZ)-treated (type 1) diabetic mice. Endothelium-bound heparin-releasable LPL activity was unchanged in both type 1 and type 2 diabetic hearts. The metabolism of LPL-derived FA was examined by perfusing hearts with chylomicrons containing radiolabeled TG and by measuring (3)H(2)O accumulation in the perfusate (oxidation) and incorporation of radioactivity into tissue TG (esterification). Rates of LPL-derived FA oxidation and esterification were increased 2.3-fold and 1.7-fold in db/db hearts. Similarly, LPL-derived FA oxidation and esterification were increased 3.4-fold and 2.5-fold, respectively, in perfused hearts from STZ-treated mice. The oxidation and esterification of [(3)H]palmitate complexed to albumin were also increased in type 1 and type 2 diabetic hearts. Therefore, diabetes may not influence the supply of LPL-derived FA, but total FA utilization (oxidation and esterification) was enhanced.  相似文献   

13.
Studies of cardiac fuel metabolism in mice have been almost exclusively conducted ex vivo. The major aim of this study was to assess in vivo plasma FFA and glucose utilization by the hearts of healthy control (db/+) and diabetic (db/db) mice, based on cardiac uptake of (R)-2-[9,10-(3)H]bromopalmitate ([3H]R-BrP) and 2-deoxy-D-[U-14C]glucose tracers. To obtain quantitative information about the evaluation of cardiac FFA utilization with [3H]R-BrP, simultaneous comparisons of [3H]R-BrP and [14C]palmitate ([14C]P) uptake were first made in isolated perfused working hearts from db/+ mice. It was found that [3H]R-BrP uptake was closely correlated with [14C]P oxidation (r2 = 0.94, P < 0.001). Then, methods for in vivo application of [3H]R-BrP and [14C]2-DG previously developed for application in the rat were specially adapted for use in the mouse. The method yields indexes of cardiac FFA utilization (R(f)*) and clearance (K(f)*), as well as glucose utilization (R(g)'). Finally, in the main part of the study, the ability of the heart to switch between FFA and glucose fuels (metabolic flexibility) was investigated by studying anesthetized, 8-h-fasted control and db/db mice in either the basal state or during glucose infusion. In control mice, glucose infusion raised plasma levels of glucose and insulin, raised R(g)' (+58%), and lowered plasma FFA level (-48%), K(f)* (-45%), and R(f)* (-70%). This apparent reciprocal regulation of glucose and FFA utilization by control hearts illustrates metabolic flexibility for substrate use. By contrast, in the db/db mice, glucose infusion raised glucose levels with no apparent influence on cardiac FFA or glucose utilization. In conclusion, tracer methodology for assessing in vivo tissue-specific plasma FFA and glucose utilization has been adapted for use in mice and reveals a profound loss of metabolic flexibility in the diabetic db/db heart, suggesting a fixed level of FFA oxidation in fasted and glucose-infused states.  相似文献   

14.
Clinical studies have reported that the incidence and severity of myocardial infarction is significantly greater in diabetics compared with nondiabetics after correction for all other risk factors. The majority of studies investigating the pathophysiology of myocardial ischemia-reperfusion injury have focused on otherwise healthy animals. At present, there is a paucity of experimental investigations on the pathophysiology of heart failure in diabetic animals. We hypothesized that the severity of myocardial reperfusion injury and the development of congestive heart failure would be markedly enhanced in the db/db diabetic mouse. Accordingly, we studied the effects of varying durations of in vivo myocardial ischemia and reperfusion on the incidence of heart failure in db/db diabetic mice. Nondiabetic and db/db diabetic mice (10 wk of age) were subjected to 30, 45, or 60 min of left coronary artery occlusion and 28 days of reperfusion. Survival at 24 h of reperfusion was 100% in nondiabetic mice subjected to 30 min of myocardial ischemia and 88% in nondiabetic mice subjected to 45 min of myocardial ischemia. In contrast, survival was 53% in db/db diabetic mice subjected to 30 min of myocardial ischemia and 44% in db/db mice after 45 min of myocardial ischemia. Prolonged survival in nondiabetic mice was not significantly attenuated when compared during the 28-day follow-up period with all groups experiencing >90% survival. Prolonged survival was significantly decreased in db/db mice after both 30 and 45 min of myocardial ischemia compared with sham controls. Furthermore, we observed a significant degree or left ventricular dilatation, cardiac hypertrophy, and cardiac contractile dysfunction in db/db mice subjected to 45 min of myocardial ischemia and 28 days reperfusion. In nondiabetic mice subjected to 45 min of myocardial ischemia, we failed to observe any changes in left ventricular dimensions or fractional shortening. These studies provide a feasible experimental model system for the investigation of heart failure secondary to acute myocardial infarction in the db/db diabetic mouse.  相似文献   

15.
Previous studies have shown that propionyl-L-carnitine (PLC) can exert cardiac antiischemic effects in models of diabetes. In the nonischemic diabetic rat heart, PLC improves ventricular function secondary to stimulation in the oxidation of glucose and palmitate. Whether this increase in the oxidation of these substrates can explain the beneficial effects of PLC in the ischemic reperfused diabetic rat heart has yet to be determined. Diabetes was induced in male Sprague-Dawley rats by an intravenous injection of streptozotocin (60 mg/kg). Treatment was initiated by supplementing the drinking water with propionyl-L-carnitine at the concentration of 1 g/L. After a 6-week treatment period, exogenous substrate oxidation and recovery of mechanical function following ischemia were determined in isolated working hearts. In aerobically perfused diabetic hearts, compared with those of controls, rates of glucose oxidation were lower, but those of palmitate oxidation were similar. Diabetes was also characterized by a pronounced decrease in heart function. Following treatment with by propionyl-L-carnitine, however, there was a marked increase in rates at which glucose and palmitate were oxidized by diabetic hearts and a significant improvement in heart performance. Postischemic recovery of function in diabetic hearts was also improved with PLC. This improvement in contractile function was accompanied by an increase in both glucose and palmitate oxidation. Our findings show that postischemic diabetic rat heart can be improved following chronic PLC treatment. This beneficial effect of propionyl-L-carnitine can be explained, in part, by an improvement in the oxidation of glucose and palmitate.  相似文献   

16.
Glycolysis uncoupled from glucose oxidation is a major reason for the intracellular acidosis that occurs during severe myocardial ischemia. The imbalance between glycolysis and glucose oxidation, and the resultant H+ produced from glycolytically derived ATP hydrolysis in the diabetic rat heart is the focus of this study. Isolated working hearts from 6 week streptozotocin diabetic rat hearts were perfused with 11 mM glucose and 1.2 mM palmitate and subjected to a 25 min period of global ischemia. A second series of experiments were also performed in which hearts from control, diabetic, and islet-transplanted diabetic rats were subjected to a 30 min aerobic perfusion, followed by a 60 min period of low-flow ischemia (coronary flow = 0.5 ml/min) and 30 min of aerobic reperfusion. H+ production from glucose metabolism was measured throughout the two protocols by simultaneous measurement of glycolysis and glucose oxidation using perfusate labelled with [5-3H/U-14C]-glucose. Rates of H+ production were calculated by measuring the difference between glycolysis and glucose oxidation. The H+ production throughout the perfusion was generally lower in diabetic rat hearts compared to control hearts, while islet-transplantation of diabetic rats increased H+ production to rates similar to those seen in control hearts. This occurred primarily due to a dramatic increase in the rates of glycolysis. Despite the difference in H+ production between control, diabetic and islet-transplanted diabetic rat hearts, no difference in mRNA levels of the cardiac Na+/H+-exchanger (NHE-1) was seen. This suggests that alterations in the source of protons (i.e. glucose metabolism) are as important as alterations in the fate of protons, when considering diabetes-induced changes in cellular pH. Furthermore, our data suggests that alterations in Na+/H+-exchange activity in the diabetic rat heart occur at a post-translational level, possibly due to direct alterations in the sarcolemmal membranes.  相似文献   

17.
18.
The development of diabetic cardiomyopathy is a key contributor to heart failure and mortality in obesity and type 2 diabetes (T2D). Current therapeutic interventions for T2D have limited impact on the development of diabetic cardiomyopathy. Clearly, new therapies are urgently needed. A potential therapeutic target is protein kinase D (PKD), which is activated by metabolic insults and implicated in the regulation of cardiac metabolism, contractility and hypertrophy. We therefore hypothesised that PKD inhibition would enhance cardiac function in T2D mice. We first validated the obese and T2D db/db mouse as a model of early stage diabetic cardiomyopathy, which was characterised by both diastolic and systolic dysfunction, without overt alterations in left ventricular morphology. These functional characteristics were also associated with increased PKD2 phosphorylation in the fed state and a gene expression signature characteristic of PKD activation. Acute administration of the PKD inhibitor CID755673 to normal mice reduced both PKD1 and 2 phosphorylation in a time and dose-dependent manner. Chronic CID755673 administration to T2D db/db mice for two weeks reduced expression of the gene expression signature of PKD activation, enhanced indices of both diastolic and systolic left ventricular function and was associated with reduced heart weight. These alterations in cardiac function were independent of changes in glucose homeostasis, insulin action and body composition. These findings suggest that PKD inhibition could be an effective strategy to enhance heart function in obese and diabetic patients and provide an impetus for further mechanistic investigations into the role of PKD in diabetic cardiomyopathy.  相似文献   

19.
ObjectivesInvestigation of the effect of SGLT2 inhibition by empagliflozin on left ventricular function in a model of diabetic cardiomyopathy.BackgroundSGLT2 inhibition is a new strategy to treat diabetes. In the EMPA-REG Outcome trial empagliflozin treatment reduced cardiovascular and overall mortality in patients with diabetes presumably due to beneficial cardiac effects, leading to reduced heart failure hospitalization. The relevant mechanisms remain currently elusive but might be mediated by a shift in cardiac substrate utilization leading to improved energetic supply to the heart.MethodsWe used db/db mice on high-fat western diet with or without empagliflozin treatment as a model of severe diabetes. Left ventricular function was assessed by pressure catheter with or without dobutamine stress.ResultsTreatment with empagliflozin significantly increased glycosuria, improved glucose metabolism, ameliorated left ventricular diastolic function and reduced mortality of mice. This was associated with reduced cardiac glucose concentrations and decreased calcium/calmodulin-dependent protein kinase (CaMKII) activation with subsequent less phosphorylation of the ryanodine receptor (RyR). No change of cardiac ketone bodies or branched-chain amino acid (BCAA) metabolites in serum was detected nor was cardiac expression of relevant catabolic enzymes for these substrates affected.ConclusionsIn a murine model of severe diabetes empagliflozin-dependent SGLT2 inhibition improved diastolic function and reduced mortality. Improvement of diastolic function was likely mediated by reduced spontaneous diastolic sarcoplasmic reticulum (SR) calcium release but independent of changes in cardiac ketone and BCAA metabolism.  相似文献   

20.
Postischemic recovery of contractile function is better in hearts from fasted rats than in hearts from fed rats. In this study, we examined whether feeding-induced inhibition of palmitate oxidation at the level of carnitine palmitoyl transferase I is involved in the mechanism underlying impaired recovery of contractile function. Hearts isolated from fasted or fed rats were submitted to no-flow ischemia followed by reperfusion with buffer containing 8 mM glucose and either 0.4 mM palmitate or 0.8 mM octanoate. During reperfusion, oxidation of palmitate was higher after fasting than after feeding, whereas oxidation of octanoate was not influenced by the nutritional state. In the presence of palmitate, recovery of left ventricular developed pressure was better in hearts from fasted rats. Substitution of octanoate for palmitate during reperfusion enhanced recovery of left ventricular developed pressure in hearts from fed rats. However, the chain length of the fatty acid did not influence diastolic contracture. The results suggest that nutritional variation of mitochondrial fatty acid transfer may influence postischemic recovery of contractile function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号