首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H H Suh  L F Tseng 《Life sciences》1990,46(11):759-765
Antinociceptive tolerance and cross-tolerance to intracerebroventricular (i.c.v.) beta-endorphin, morphine, and DPDPE (D-Pen2-D-Pen5-enkephalin) induced by a prior i.c.v. administration of beta-endorphin, morphine and DPDPE, respectively, were studied in mice. Acute tolerance was induced by i.c.v. pretreatment with beta-endorphin (0.58 nmol), morphine (6 nmol) and DPDPE (31 nmol) for 120, 180 and 75 min, respectively. Various doses of beta-endorphin, morphine or DPDPE were then injected. The tail-flick and hot-plate tests were used as antinociceptive tests. Pretreatment of mice with beta-endorphin i.c.v. reduced inhibition of the tail-flick and hot-plate responses to i.c.v. administered beta-endorphin, but not morphine and DPDPE. Pretreatment of mice with morphine i.c.v. reduced inhibition of the tail-flick and hot-plate responses to morphine but not beta-endorphin. Pretreatment of mice with DPDPE reduced inhibition of the tail-flick and hot-plate responses to DPDPE but not beta-endorphin. The results indicate that one injection of beta-endorphin, morphine or DPDPE induces acute antinociceptive tolerance to its own distinctive opioid receptor and does not induce cross-tolerance to other opioid agonists with different opioid receptor specificities. The data support the hypothesis that beta-endorphin, morphine and DPDPE produce antinociception by stimulating specific epsilon, mu- and delta-opioid receptors, respectively.  相似文献   

2.
Previously, we have demonstrated that intrathecally (i.t.) administered corticotropin-releasing factor (CRF) in mice produces stimulus-specific antinociception and modulation of morphine-induced antinociception by mechanisms involving spinal kappa opioid receptors. Recently, we also have found that CRF releases immunoreactive dynorphin A, a putative endogenous kappa opioid receptor agonist, from superfused mice spinal cords in vitro. Dynorphin A administered intracerebroventricularlly (i.c.v.) to mice has been shown to modulate the expression of morphine tolerance. In the present study, the possible modulatory effects of i.t. administered CRF as well as dynorphin A on morphine tolerance were studied in an acute tolerance model. Subcutaneous administration of 100 mg/kg of morphine sulfate (MS) to mice caused an acute tolerance to morphine-induced antinociception. The antinociceptive ED50 of MS was increased from 4.4 mg/kg (naive mice) to 17.9 mg/kg (4 hours after the injection of 100 mg/kg MS). To study the modulatory effects of spinally administered CRF and dynorphin A on the expression of morphine tolerance, CRF and dynorphin A were injected i.t. at 15 min and 5 min, respectively, before testing the tolerant mice by the tail-flick assay. The antinociceptive ED50 of MS in tolerant mice was decreased to 8.8 mg/kg and 7.1 mg/kg, respectively, after i.t. administration of CRF (0.1 nmol) and dynorphin A (0.2 nmol). In contrast, 0.5 nmol of alpha-helical CRF (9-41), a CRF antagonist and 0.4 nmol of norbinaltorphimine, a highly selective kappa opioid receptor antagonist, when administered i.t. at 15 min before the tail-flick test in tolerant mice, increased the antinociceptive ED50 of MS to 56.6 mg/kg and 88.8 mg/kg, respectively. These data confirmed the modulatory effect of dynorphin A on morphine tolerance and suggested that CRF, which releases dynorphin A in several central nervous system regions, also plays a modulatory role in the expression of morphine tolerance.  相似文献   

3.
We evaluated the effects of pretreatment with clorgyline, an irreversible monoamine oxidase (MAO)-A inhibitor, on morphine-induced hyperlocomotion and antinociception. A single administration of morphine (30 mg/kg, i.p.) to male ICR mice induced a hyperlocomotion. ANOVA analysis revealed the statistical significance of the morphine effect on horizontal locomotion and of the clorgyline pretreatment × morphine interaction effect, but not of the effect of clorgyline pretreatment. The initial (5 min after challenge) phase of morphine actions vs. saline challenge appeared as if morphine had a strong inhibitory effect on locomotor activity in combination with different doses of clorgyline. The mice administered with morphine in combination of clorgyline (1 and 10 mg/kg) did not show any stereotypic behaviors. Clorgyline at a dose of 0.1 mg/kg but not other doses tested significantly potentiated morphine-induced antinociception evaluated by tail flick but not hot plate test. During the measurements of locomotor activity and antinociception, clorgyline at doses of 1 and 10 mg/kg significantly inhibited monoamine metabolism through MAO. These results suggest that clorgyline showed an inhibitory effect on morphine-induced hyperlocomotion, but not antinociception, through MAO inhibition. There is not a possibility that clorgyline pretreatment enhanced morphine action on motor activity, resulting in the abnormal behavior from hyperlocomotion to stereotypic movements.  相似文献   

4.
Morphine releases endogenous opioids into the circulation of dogs. To test the stereospecificity of this effect, as well as to determine whether morphine also releases endogenous opioids centrally, which might be involved in its antinociceptive action, the effects of (-)-morphine sulfate (10 mg/kg, sc) or (+)-morphine hydrobromide on antinociception in a dog tail-flick test, on semi-quantified morphine-induced signs of salivation, emesis, defecation and ataxia, and on the plasma and cerebrospinal fluid (CSF) levels of endogenous opioid peptides were studied. Plasma and CSF levels of immunoreactive beta-endorphin (i-BE), met-enkephalin (i-ME), leu-enkephalin (i-LE), and dynorphin (i-DY) were quantified by radioimmunoassay in octadecylsilyl-silica cartridge extracts. Immunoreactive morphine (i-M) levels were measured in unextracted samples. (-)-Morphine treatment significantly increased antinociception, morphine-induced signs, i-M levels in plasma and CSF, and i-BE, i-ME, and i-LE levels in plasma, but not CSF. Levels of i-DY remained constant in plasma and CSF. (+)-Morphine treatment did not alter any of these parameters, indicating that the effects of morphine on nociception, behavioral signs, and plasma endogenous opioids in dogs were stereoselective. It is concluded that morphine does not cause an increase in immunoreactive endogenous opioid peptides in the CSF at the time of its peak antinociceptive effect.  相似文献   

5.
Narita M  Imai S  Itou Y  Yajima Y  Suzuki T 《Life sciences》2002,70(20):2341-2354
Fentanyl has been shown to be a potent analgesic with a lower propensity to produce tolerance and physical dependence in the clinical setting. The present study was designed to investigate the mechanisms of fentanyl- or morphine-induced antinociception at both supraspinal and spinal sites. In the mouse tail-flick test, the antinociceptive effects induced by both fentanyl and morphine were blocked by either the mu1-opioid receptor antagonist naloxonazine or the mu1/mu2-opioid receptor antagonist beta-funaltrexamine (beta-FNA) after s.c., i.c.v. or i.t. injection. In contrast, both fentanyl and morphine given i.c.v. or i.t. failed to produce antinociception in mu1-deficient CXBK mice. These findings indicate that like morphine, the antinociception induced by fentanyl may be mediated predominantly through mu1-opioid receptors at both supraspinal and spinal sites in mice. We also determined the ED50 values for s.c.-, i.c.v.- and i.t.-administered fentanyl- or morphine-induced antinociception in mice. The ED50 values for s.c.-, i.c.v.- and i.t.-administered fentanyl-induced antinociception were 73.7, 18.5 and 1.2-fold lower than that of morphine, respectively. The present data clearly suggest the usefulness of peripheral treatment with fentanyl for the control of pain.  相似文献   

6.
Z H Song  A E Takemori 《Life sciences》1991,48(15):1447-1453
The modulatory effects of intrathecally (i.t.) administered dynorphin A(1-17) and dynorphin A(1-13) on morphine antinociception have been studied previously in rats by other investigators. However, both potentiating and attenuating effects have been reported. In this study, the modulatory effects of i.t. administered dynorphin A(1-17) as well as the smaller fragment, dynorphin A(1-8), were studied in mice. In addition, nor-binaltorphimine (nor-BNI), a highly selective kappa opioid receptor antagonist, and naltrindole (NTI), a highly selective delta opioid receptor antagonist, were used to characterize the possible involvement of spinal kappa and delta opioid receptors in the modulatory effects of the dynorphins. Dynorphin A(1-17) and dynorphin A(1-8) administered i.t. at doses that did not alter tail-flick latencies, were both able to antagonize in a dose-dependent manner, the antinociceptive action of s.c. administered morphine sulfate. The antinociceptive ED50 of morphine sulfate was increased 3.9- and 5.3-fold by 0.4 nmol/mouse of dynorphin A(1-17) and dynorphin A(1-8), respectively. Injections of 0.4 and 0.8 nmol/mouse of nor-BNI i.t., but not its inactive enantiomer (+)-1-nor-BNI, inhibited dose-dependently the antagonistic effects of the dynorphins. These doses of nor-BNI alone did not affect the antinociceptive action of morphine sulfate. Intrathecal administration of 5 nmol/mouse of NTI also did not affect the modulatory effects of dynorphins. These observations that dynorphins exert their antagonistic effects on morphine-induced antinociception stereoselectively through spinal kappa opioid receptors may suggest a coupling between spinal kappa and mu opioid receptors.  相似文献   

7.
实验在46只局部麻醉、肌肉麻痹和切断双侧颈迷走神经的家兔上进行。记录延髓孤束区的单位放电活动。观察微电泳单胺类受体阻断剂对呼吸性单位的吗啡诱发抑制效应的影响。全身应用吗啡前,在86个吸气性单位中,妥拉苏林引起阻遏的只有9个,在92个吸气性单位中,赛庚啶引起兴奋的只有1个。而在全身应用吗啡诱发单位活动抑制的背景上,在59个吸气性单位中,妥拉苏林引起阻遏的有42个,在74个吸气性单位中,赛庚啶引起兴奋的有12个。但两者对非呼吸性单位的影响,吗啡应用前后均无明显差别。这些结果进一步支持下述假设,即在吗啡所致的呼吸抑制效应中,5-HT 可能起着抑制性递质的作用,而 NE 起着兴奋性递质的作用。  相似文献   

8.
Morphine is often used in cancer pain and postoperative analgesic management but induces respiratory depression. Therefore, there is an ongoing search for drug candidates that can antagonize morphine-induced respiratory depression but have no effect on morphine-induced analgesia. Acetylcholine is an excitatory neurotransmitter in central respiratory control and physostigmine antagonizes morphine-induced respiratory depression. However, physostigmine has not been applied in clinical practice because it has a short action time, among other characteristics. We therefore asked whether donepezil (a long-acting acetylcholinesterase inhibitor used in the treatment of Alzheimer's disease) can antagonize morphine-induced respiratory depression. Using the anesthetized rabbit as our model, we measured phrenic nerve discharge as an index of respiratory rate and amplitude. We compared control indices with discharges after the injection of morphine and after the injection of donepezil. Morphine-induced depression of respiratory rate and respiratory amplitude was partly antagonized by donepezil without any effect on blood pressure and end-tidal C02. In the other experiment, apneic threshold PaC02 was also compared. Morphine increased the phrenic nerve apnea threshold but this was antagonized by donepezil. These findings indicate that systemically administered donepezil partially restores morphine-induced respiratory depression and morphine-deteriorated phrenic nerve apnea threshold in the anesthetized rabbit.  相似文献   

9.
It is well known that prolonged exposure to morphine results in tolerance to morphine-induced antinociception. In the present study, we found that either intrathecal (i.t.) or subcutaneous (s.c.) injection of the selective metabotropic glutamate receptor 5 (mGluR5) antagonist, methyl-6-(phenylethynyl)-pyridine hydrochloride (MPEP), attenuated the development of tolerance to morphine-induced antinociception. Using the receptor binding assay, we found here that the number of mGluR5 in the mouse spinal cord was significantly increased by repeated treatment with morphine. Furthermore, repeated treatment with morphine produced a significant increase in the level of mGluR5 immunoreactivity in the dorsal horn of the mouse spinal cord. Double-labeling experiments showed that the increased mGluR5 was predominantly expressed in the neurons and sparsely expressed in the processes of astrocytes following repeated treatment with morphine. Consistent with these results, the response of Ca2+ to the selective group I mGluR agonist, 3,5-dihydroxyphenylglycine (DHPG), in cultured spinal cord neurons was potently enhanced by 3 days of in vitro treatment with morphine. These findings support the idea that the increased mGluR5 following repeated treatment with morphine leads to enhanced neuronal excitability and synaptic transmission in the dorsal horn of the spinal cord and, in turn, suppresses the morphine-induced antinociception in mice.  相似文献   

10.
Fangchinoline (FAN), a non-specific calcium antagonist, is a major alkaloidal component of the creeper Stephania tetrandra S. Moore (or fenfangji). It has been shown to possess antagonistic activity on morphine-induced antinociception in mice. This study was undertaken to assess the antagonistic mechanism. The results demonstrated that FAN (IP) attenuated morphine (SC)-induced antinociception in a dose-dependent manner with significant effect at doses of 30 and 60mg/kg body wt. (IP) in the tail-flick test but not the tail-pinch tests, carried out in mice. This antagonism was abolished by pretreatment with a serotonin precursor, 5-hydroxytryptophan (5-HTP, IP), but not by pretreatment with a noradrenaline precursor, L-dihydroxyphenylalanine (L-DOPA, IP) in the tail-flick test. On the other hand, the development of morphine-induced analgesic tolerance was not prevented by FAN. These results suggest that the serotonergic pathway may be involved in the antagonism of morphine-induced antinociception by FAN and, in agreement with other reports, also indicates the possible dissociation of the morphine analgesic effect from its tolerance-development mechanism.  相似文献   

11.
H Stamidis  G A Young 《Peptides》1992,13(4):755-760
In the present study, the effects of beta-FNA on DPDPE-induced increases in morphine EEG and EEG power spectra were assessed. Adult female Sprague-Dawley rats were implanted with cortical EEG electrodes and permanent indwelling ICV and IV cannulae. Rats were administered ICV beta-FNA at 20 nmol or ICV sterile water. Then 18-24 h later, rats were administered ICV DPDPE at 2.5 nmol or ICV sterile water followed, 10 min later, by IV morphine at 3 mg/kg. Morphine-induced changes in EEG global (1-50 Hz) spectral parameters, the duration of morphine-induced high voltage EEG bursts, the period of EEG and behavioral excitation, and the latency to onset of slow-wave sleep were statistically analyzed using a one-way analysis of variance. beta-FNA pretreatment significantly decreased morphine-induced total spectral power seen in the DPDPE + morphine group. beta-FNA pretreatment also significantly decreased the duration of morphine-induced EEG bursts, the period of EEG and behavioral excitation, and the latency to onset of slow-wave sleep in the DPDPE + morphine group. These data, therefore, suggest that DPDPE may be increasing the effects of morphine on EEG through delta opioid receptors associated with the mu-delta opioid receptor complex.  相似文献   

12.
Li W  Gao YH  Chang M  Peng YL  Yao J  Han RW  Wang R 《Peptides》2009,30(2):234-240
Neuropeptide S (NPS), a recently identified bioactive peptide, was reported to regulate arousal, anxiety, motoring and feeding behaviors. NPS precursor and NPS receptor mRNA were found in the amygdala, the ventral tegmental area (VTA) and the substantia nigra, the area thought to modulate rewarding properties of drugs. In the present study, we examined the influence of NPS on the rewarding action of morphine, using the unbiased conditioned place preference (CPP) paradigm. Morphine (1, 3 and 6 nmol, i.c.v.) induced a significant place preference. For testing the effect of NPS on the acquisition of morphine CPP, mice were given the combination of NPS and morphine on the conditioning days, and without drug treatment on the followed test day. To study the effect of NPS on the expression of morphine CPP, mice received the treatment of saline/morphine on the conditioning days, and NPS on the test day, 15 min before the placement in the CPP apparatus. Our results showed that NPS (0.3-10 nmol) alone neither induced place preference nor aversion, however, NPS (1 and 3 nmol) blocked the acquisition of CPP induced by 3 nmol morphine, and acquisition of 6 nmol morphine-induced CPP was also reduced by NPS (6 and 10 nmol). Moreover, the expression of CPP induced by 6 nmol morphine was also inhibited by NPS (0.1, 1 and 10 nmol). These results revealed the involvement of NPS in rewarding activities of morphine, and demonstrated the interaction between NPS system and opioid system for the first time.  相似文献   

13.
Hao S  Takahata O  Iwasaki H 《Life sciences》2000,66(15):PL195-PL204
It is known that spinal morphine produces antinociception that is modulated by alpha 2-adrenoceptors. Endomorphin-1, a newly-isolated endogenous opioid ligand, shows the greatest selectivity and affinity for the mu-opiate receptor of any endogenous substance found to date and may serve as a natural ligand for the mu-opiate receptor. We examined the antinociceptive effects of endomorphin-1 administered intrathecally (i.t.) in the rat tail flick, tail pressure and formalin tests. Intrathecal endomorphin-1 produced dose-dependent antinociceptive effects in the three tests. ED50 (CI95) values for antinociception of i.t. endomorphin-1 in the tail flick test and tail pressure test were 1.9 (0.96-3.76) nmol and 1.8 (0.8-4.2) nmol, respectively. ED50 (CI95) values for phase 1 and phase 2 in the formalin test were 12.5 (7.9-19.8) nmol and 17.5 (10.2-30) nmol, respectively. Pretreatment with i.t. beta-funaltrexamine (a mu-opioid receptor selective antagonist) significantly antagonized the antinociceptive effects of endomorphin-1 in the three tests. Beta-funaltrexamine alone had not effects on the three tests. The antinociceptive effects of endomorphin-1 were also antagonized by i.t. yohimbine (an alpha 2-adrenoceptor selective antagonist). The combination of ineffective doses of i.t. clonidine (an alpha 2-adrenoceptor agonist) and endomorphin-1 produced a significant antinociception in the three tests. The results showed that intrathecal endomorphin-1 produced antinociception in a dose-dependent manner in the rat tail flick, tail pressure and formalin tests, which was mediated by spinal mu-opioid receptors and modulated by alpha 2-adrenoceptors.  相似文献   

14.
TRK-820, a new type of 4,5-epoxymorphinan derivative, was investigated in vivo for antinociceptive activities and its selectivity on various opioid receptors in mice. TRK-820 given s.c. or p.o. was found to be 351- and 796-fold more potent than U50,488H with acetic acid-induced abdominal constriction test. The duration of the antinociceptive effect produced by TRK-820 was longer than that produced by mu-opioid receptor agonist morphine or other kappa-opioid receptor agonists. In addition, with four other antinociceptive assays, low temperature hot plate (51 degrees C), thermal tail flick, mechanical tail pressure and tail pinch tests, TRK-820 was also found to be 68- to 328-fold more potent than U-50488H, and 41- to 349-fold more potent than morphine in producing antinociception, as comparing the weight of the different compound. However, TRK-820 was less active in inhibiting the high temperature (55 degrees C) hot plate response. The antinociceptive effects produced by TRK-820 were inhibited by nor-BNI, but not by naloxone or naltrindole (NTI) with the abdominal constriction test, indicating that the antinociception is selectively mediated by the stimulation of kappa-, but not mu- or delta-opioid receptors. Co-administration of TRK-820 with morphine slightly enhanced the antinociception induced by morphine in the mouse hot plate test. On the other hand, pentazocine significantly reduced the morphine-induced antinociception. TRK-820 produced sedation at doses, which are much higher than the doses for producing antinociception. These results indicate that the potent antinociception induced by TRK-820 is mediated via the stimulation of kappa-, but not mu- or delta-opiod receptors.  相似文献   

15.
To determine whether the differences in development of acute tolerance to several morphine actions correlate with the mu receptor subtype mediating them, we have examined the appearance of acute tolerance to analgesia, respiratory depression, gastrointestinal transit, and hormone release in an intravenous morphine infusion model. Analgesia, a naloxonazine-sensitive mu1 action, peaked at 2 hr after initiation of the infusions. The log dose-response relationship of the infusion rate to peak tailflick latency was linear from 10 to 50 micrograms/kg/min. By 8 hr, the tailflick latencies declined nearly to baseline levels, implying the rapid development of tolerance. Tolerance to morphine-induced prolactin release, another mu1 action, also developed rapidly over 8 hr. In contrast two mu2 actions, respiratory depression measured with arterial blood gas, determinations and gastrointestinal transit, showed no significant tolerance over a similar 8 hr infusion. We also observed no tolerance to morphine-induced growth hormone release, a non-mu1 action, over the same period. Thus, these results demonstrate that mu1 actions develop tolerance in an infusion model far more rapidly than a number of naloxonazine-insensitive (non-mu1) ones and may help explain differences in the rate of tolerance development to morphine actions.  相似文献   

16.
The administration-time-dependent aspects of the drug interaction between lithium and morphine-induced analgesia were studied using the mouse hot-plate test at six different times of day, each scheduled at 4 h intervals. Lithium treatment alone, in doses of 1 to 10 mmol/kg administered intraperitoneally (i.p.) did not significantly alter test latencies compared to the corresponding clock-time in saline-injected controls. Basal pain sensitivity and morphine-induced antinociceptive activity displayed significant circadian rhythms as assessed by the hot-plate response latencies, with higher values occurring during the nocturnal activity than during the daytime rest span. Acute administration of lithium, in a dose of 3 mmol/kg, 30 min prior to morphine dosing did not influence morphine-induced analgesia compared to all the clock-time test-matched morphine groups, except the 9 HALO (Hours After Lights On) one. There was a prominent potentiation of the morphine-induced antinociception at this biological time during combined drug treatment. The latter finding demonstrates that administration-time-dependent differences in drug-drug interactions need to be considered in both experimental designs and clinical settings.  相似文献   

17.
Opioids, when co-administered with L-type calcium channel blockers (L-CCBs) show morphine like higher antinociceptive effect. This antinociceptive effect has been further investigated using a different experimental paradigm. The effect of two different L-CCBs (nifedipine and nimodipine) on morphine-induced antinociception was studied by the tail-flick test (40 min after morphine administration) in adult Wistar rats. A fixed-dose of nimodipine or nifedipine (2 mg/kg, once daily) was combined with a fixed dose of morphine (10 mg/kg, twice daily) for 10 days. Co-administration of L-CCBs significantly increased the antinociceptive effect of morphine, even 12 hr after administration. Also, nimodipine was more effective than nifedipine. Nimodipine was further studied using a higher and escalating doses of morphine (20-30 mg/kg twice daily for 14 days). Nimodipine increased the antinociceptive effect of morphine in the latter part of the study (days nine to fourteen) though significant difference was observed on 11th evening and 12th morning. No obvious adverse effects were observed in the present study. The results show for the first time that nimodipine is more effective than nifedipine and that these L-CCBs continue to be effective, even 12 hr after administration in the tail-flick test.  相似文献   

18.
A number of histamine receptor agonists and antagonists were utilized to study the effects of histamine on hepatocellular reduced glutathione (GSH) concentrations and the potential role of histamine as a mediator of morphine-induced hepatic GSH depression. Administration of histamine, the H1-histamine receptor agonist thiazolylethylamine, the H2-histamine receptor agonist impromidine, or the histamine-releasing substance compound 48/80 resulted in no significant change in hepatic GSH concentrations. The H1-histamine receptor antagonist chlorpheniramine and the H2-histamine receptor antagonist ranitidine were also without significant effect on hepatic GSH and did not antagonize morphine-induced GSH depression. These observations indicate that histamine release following morphine administration does not play a significant role in the subsequent depletion of hepatic GSH.  相似文献   

19.
Sun YG  Yu LC 《Regulatory peptides》2005,124(1-3):37-43
The fact that galanin, beta-endorphin and their receptors are present in the arcuate nucleus of hypothalamus (ARC), coupled with our previous observation that both beta-endorphin and galanin play antinociceptive roles in pain modulation in the ARC, made it of interest to study their interactions. The hindpaw withdrawal latency (HWL) in response to noxious thermal and mechanical stimulation was assessed by the hot-plate test and the Randall Selitto Test. We showed that the antinociceptive effect induced by intra-ARC injection of galanin was dose-dependently attenuated by the following intra-ARC injection of naloxone. Furthermore, intra-ARC administration of the selective mu-opioid receptor antagonist beta-funaltrexamine (beta-FNA) attenuated the increased HWL induced by intra-ARC injection of galanin in a dose-dependent manner, while the delta-opioid receptor antagonist naltrindole or the kappa-opioid receptor antagonist nor-binaltorphimine (nor-BNI) did not. Moreover, intra-ARC injection of a galanin receptor antagonist galantide attenuated intraperitoneal morphine-induced increases in HWLs. These results demonstrate that the antinociceptive effect of galanin was related to the opioid system, especially mu-opioid receptor was involved in, and that systemic morphine induced antinociception involves galanin in the ARC.  相似文献   

20.
氨基丁酸B型受体(GABAB受体)是治疗药物成瘾的潜在靶点,伏隔核壳部(nucleus accumbens shell, AcbSh)是成瘾环路的关键节点,但AcbSh GABA_B受体与记忆再巩固的关系尚不清楚。本文旨在探讨AcbSh微量灌注GABA_B受体激动剂巴氯芬(baclofen, BLF)对吗啡奖赏记忆再巩固及复吸行为的影响。建立吗啡条件位置性偏爱(conditioned place preference, CPP)小鼠模型,采用吗啡奖赏记忆提取激活实验,对比观察环境线索激活吗啡奖赏记忆后,双侧AcbSh灌注BLF对吗啡CPP、吗啡激发CPP重建以及自主活动量的影响。结果表明,吗啡奖赏记忆激活后,Acb Sh单次注入0.06nmol/0.2μL/侧或0.12nmol/0.2μL/侧BLF显著抑制吗啡CPP,且吗啡激发不能重建CPP,而0.01nmol/0.2μL/侧BLF灌注不能抑制吗啡CPP。激活后注入生理盐水及未激活组BLF灌注均未抑制CPP。无论是否激活吗啡奖赏记忆,BLF注入AcbSh都不影响小鼠自主活动。以上结果提示,AcbSh GABA_B受体参与了吗啡CPP的记忆再巩固。记忆激活后激动AcbSh GABA_B受体可通过阻断吗啡CPP的记忆再巩固,消除奖赏记忆,抑制复吸行为。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号