首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of the degree and mode of light limitation on growth characteristics of turbidostat cultures of Rhodobacter capsulatus was investigated using mass and energy balance regularities. Light limitation was achieved by increasing the steady-state biomass concentration at constant incident light intensity ( approximately 100 W/m(2)) or by decreasing the incident light intensity at constant steady-state biomass concentration ( approximately 500 mg of dry biomass/L). It was shown that under conditions of light limitation of Rh. capsulatus, the content of P and N in the biomass as well as the biomass degree of reduction were determined by the growth rate of the cultures. The energetic yield of biomass of Rh. capsulatus and total bacteriochlorophyll a content increased when light limitation increased. These parameters were higher in the cultures, in which light limitation was achieved by lowering the incident light intensity at low biomass concentration. This seems to be due to different distribution of light within the photobioreactor when dissimilar modes of light limitation were used.  相似文献   

2.
研究了不同浓度NO3-胁迫对黄瓜幼苗叶片光合速率、PSⅡ光化学效率及光能分配的影响.结果表明,当NO3-浓度较低时(14~98 mmol·L-1),适当增加NO3-浓度,可增强黄瓜幼苗叶片对光的捕获能力,促进光合作用.随着NO3-浓度的进一步增加(140~182 mmol·L-1),PSⅡ光化学效率降低,电子传递受到抑制,净光合速率降低;吸收的光能中,通过天线色素的热耗散增加,用于光化学反应的能量降低,光化学效率下降.140和182 mmol·L-1 NO3-处理黄瓜幼苗叶片6 d后净光合速率(Pn)极显著下降,分别比对照降低了35%和78%;PSⅡ最大光化学效率(Fv/Fm)、天线转化效率(Fv’/Fm’)、实际光化学效率(ΦPSⅡ)、光化学猝灭系数(qP)均低于对照,非光化学猝灭(NPQ)高于对照,激发能在两个光系统间的分配不平衡性(β/α-1)增大.高浓度NO3-处理的黄瓜幼苗叶片各荧光参数变化幅度比低浓度大.当光照增强时,高浓度NO3-胁迫下黄瓜幼苗叶片吸收的光能中应用于光化学反应的份额(P) 显著降低,天线热耗散的份额(D)显著增加. 天线热耗散是耗散过剩能量的主要途径.  相似文献   

3.
The light distribution in the externally illuminated cylindrical photo-bioreactor for production of hydrogen by a photosynthetic bacterium Rhodobacter capsulatus ST-410 was estimated. The estimation was performed on the basis of the Matsuura and Smith's diffuse model [1]. In the diffuse model, the incident light rays are assumed to proceed in every direction and the local intensity is calculated as the sum of the intensities of light. Since Lambert-Beer's law, extensively used in photometry, was not useful for explaining the decrease in the intensity of light by the biomass, an empirical expression was used. The measurement of the intensities from every direction was conducted in an externally illuminated cylindrical photo-bioreactor having an inner diameter of 60mm and a working volume of 550ml. The obtained results confirmed our estimation. The light distribution was applied to estimate the hydrogen production by R. capsulatus ST-410 using the same photo-bioreactor. The overall hydrogen-production rate was successfully estimated.  相似文献   

4.
The ability of purple nonsulfur bacteria Rhodobacter capsulatus B10 to synthesize bacteriochlorophyll under phototrophic and dark conditions was studied. The modes for cultivation in the dark with oxygen limitation in a continuous culture at D = 0.1 h(-1) were selected. The yield of biomass reached 20 g/l; the bacteriochlorophyll a output of the process amounted to 16.6 mg/l h(-1).  相似文献   

5.
6.
The dimethylsulfoxide reductase (DMSOR) from Rhodobacter capsulatus is known to retain its three-dimensional structure and enzymatic activity upon substitution of molybdenum, the metal that occurs naturally at the active site, by tungsten. The redox properties of tungsten-substituted DMSOR (W-DMSOR) have been investigated by a dye-mediated reductive titration with the concentration of the W(V) state monitored by EPR spectroscopy. At pH 7.0, E(m)(W(VI)/W(V)) is -194 mV and E(m)(W(V)/W(IV)) is -134 mV. Each E(m) value of W-DMSOR is significantly lower (220 and 334 mV, respectively) than that of the corresponding couple of Mo-DMSOR. These redox potentials are consistent with the ability of Mo-DMSOR to catalyze both the reduction of DMSO to DMS and the back reaction, whereas W-DMSOR is very effective in catalyzing the forward reaction, but shows no ability to catalyze the oxidation of DMS to DMSO.  相似文献   

7.
Ethanolamine was examined as a nitrogen source in the production of hydrogen by Rhodobacter capsulatus ST-410, a hydrogenase-deficient mutant of the strain B-100. It was found that ethanolamine supports cell growth as the sole nitrogen source and permits a large amount of hydrogen evolution, detected at 138 micromol/ml-culture from 3.5 mM ethanolamine and 30 mM DL-malate. The amount corresponded to a stoichiometric yield of 77% and was close to that obtained from 7.0 mM L-glutamate and 30 mM DL-malate. The hydrogen evolution rate per unit biomass (cells) was higher than that with L-glutamate, and the cells grown with ethanolamine had higher nitrogenase activity than the cells grown with L-glutamate. In terms of bioconversion of cellulosic and hemicellulosic biomass to hydrogen, D-glucose, D-xylose, and D-cellobiose were tested as substrates. The results indicated that those sugars permit a large evolution of hydrogen through cultivation with ethanolamine as a nitrogen source. For instance, the cells grown with 3.5 mM ethanolamine evolved hydrogen of 289 micromol/ml-culture (80% yield) from 30 mM D-glucose under a controlled pH of 6.4 to 6.9.  相似文献   

8.
Recently, we demonstrated that the RegB/RegA two-component regulatory system from Rhodobacter capsulatus functions as a global regulator of metabolic processes that either generate or consume reducing equivalents. For example, the RegB/RegA system controls expression of such energy generating processes as photosynthesis and hydrogen utilization. In addition, RegB/RegA also control nitrogen and carbon fixation pathways that utilize reducing equivalents. Here, we use a combination of DNase I protection and plasmid-based reporter expression studies to demonstrate that RegA directly controls synthesis of cytochrome cbb3 and ubiquinol oxidases that function as terminal electron acceptors in a branched respiratory chain. We also demonstrate that RegA controls expression of cytochromes c2, c(y) and the cytochrome bc1 complex that are involved in both photosynthetic and respiratory electron transfer events. These data provide evidence that the RegB/RegA two-component system has a major role in controlling the synthesis of numerous processes that affect reducing equivalents in Rhodobacter capsulatus.  相似文献   

9.
The balance of energy flow from light absorption into biomass was investigated under simulated natural light conditions in the diatom Phaeodactylum tricornutum and the green alga Chlorella vulgaris. The energy balance was quantified by comparative analysis of carbon accumulation in the new biomass with photosynthetic electron transport rates per absorbed quantum, measured both by fluorescence quenching and oxygen production. The difference between fluorescence- and oxygen-based electron flow is defined as 'alternative electron cycling'. The photosynthetic efficiency of biomass production was found to be identical for both algae under nonfluctuating light conditions. In a fluctuating light regime, a much higher conversion efficiency of photosynthetic energy into biomass was observed in the diatom compared with the green alga. The data clearly show that the diatom utilizes a different strategy in the dissipation of excessively absorbed energy compared with the green alga. Consequently, in a fluctuating light climate, the differences between green algae and diatoms in the efficiency of biomass production per photon absorbed are caused by the different amount of alternative electron cycling.  相似文献   

10.
Hydrogen release by recombinant strains of Rhodobacter sphaeroides pRK puf DD13 without a peripheral light-harvesting antenna complex and pRK puf deltaLM1 which is able to synthesize both antenna complexes, both of which were grown in conditions of nitrogen limitation, has been studied. The velocity of hydrogen release depended on light intensity. At high cell concentration (0.91 g l(-1)) of pRK puf DD 13, velocity was maximal at 2270 W m(-2) and was equal to 144.7 ml l(-1) h(-1) that evidences to an opportunity to increase the volume velocity of hydrogen release by application of the strains with low content of pigments.  相似文献   

11.
Assimilation of NH+/4-N and formation of cell biomass in Rhodobacter capsulatus ATCC 23782 were studied in batch cultures as a function of N and C concentration and light intensity. Growth occurred satisfactorily up to N and C levels of 1.2 and 6.0g/1, respectively. The maximum biomass density achieved was 2.3 g biomass-C/l at 0.8 g N/l and 4.0g C/l. Media containing initial C/N ratios of 5 provided good growth and almost complete assimilation and recovery of NH+/4-N and lactate-C, respectively. A light intensity of about 120 μE/m2/s was adequate for efficient growth. At low levels of NH+/4-N (<0.05 g N/l), the photobacterium could not maintain dominance under non-axenic growth conditions. Chloroxuron was necessary to prevent algal overgrowth. At concentrations of 0.2 and 0.4 g NH+/4-N/l, the photo-bacterium maintained dominance over several months under the appropriate conditions of temperature (30°C), light intensity (120μE/m2/s), carbon supply (C/N = 5) and cell residence time (5.5d). The protein of Rhb. capsulatus ATCC 23782 was rich in essential amino acids.  相似文献   

12.
The laser diode (LD) is a unique light source that can efficiently produce all radiant energy within the narrow wavelength range used most effectively by a photosynthetic microorganism. We have investigated the use of a single type of LD for the cultivation of the well-studied anoxygenic photosynthetic bacterium, Rhodobacter capsulatus (Rb. capsulatus). An array of vertical-cavity surface-emitting lasers (VCSELs) was driven with a current of 25 mA, and delivered radiation at 860 nm with 0.4 nm linewidth. The emitted light was found to be a suitable source of radiant energy for the cultivation of Rb. capsulatus. The dependence of growth rate on incident irradiance was quantified. Despite the unusual nearly monochromatic light source used in these experiments, no significant changes in the pigment composition and in the distribution of bacteriochlorophyll between LHII and LHI-RC were detected in bacterial cells transferred from incandescent light to laser light. We were also able to show that to achieve a given growth rate in a light-limited culture, the VCSEL required only 30% of the electricity needed by an incandescent bulb, which is of great significance for the potential use of laser-devices in biotechnological applications and photobioreactor construction.  相似文献   

13.
The extent to which PSII photoinactivation affects electron transport (PhiPSII) and CO2 assimilation remains controversial, in part because it frequently occurs alongside inactivation of other components of photosynthesis, such as PSI. By manipulating conditions (darkness versus low light) after a high light/low temperature treatment, we examined the influence of different levels of PSII inactivation at the same level of PSI inactivation on PhiPSII and CO2 assimilation for Arabidopsis. Furthermore, we compared PhiPSII at high light and optimum temperature for wild-type Arabidopsis and a mutant (npq4-1) with impaired capacities for energy dissipation. Levels of PSII inactivation typical of natural conditions (< 50%) were not associated with decreases in PhiPSII and CO2 assimilation at photon flux densities (PFDs) above 150 micromol m(-2) s(-1). At higher PFDs, the light energy being absorbed was in excess of the energy that could be utilized by downstream processes. Arabidopsis plants downregulate PSII activity to dissipate such excess in accordance with the level of PSII photoinactivation that also serves to dissipate absorbed energy. Therefore, the overall levels of non-photochemical dissipation and the efficiency of photochemistry were not affected by PSII inactivation at high PFD. Under low PFD conditions, such compensation is not necessary, because the amount of light energy absorbed is not in excess of that needed for photochemistry, and inactive PSII complexes are dissipating energy. We conclude that moderate photoinactivation of PSII complexes will only affect plant performance when periods of high PFD are followed by periods of low PFD.  相似文献   

14.
Abstract Nif mutants of Rhodobacter capsulatus carrying mutations either in the nifR4 regulatory gene or in the nifH structural gene both outgrew the wild-type strain B10 in mixed chemostat cultures under conditions favouring nitrogenase-mediated H2 production by the wild-type (ammonia as limiting nutrient, inert argon atmosphere, light as energy source), whereas under aerobic conditions in the dark, or in batch culture, the growth of Nif mutants was not favoured. Nitrogenase-mediated H2 production therefore appears to be detrimental to the growth of R. capsulatus in nitrogen-limited continuous culture, as may also be the case for other nitrogen fixers.  相似文献   

15.
16.
The bacterial cytochrome c peroxidase (BCCP) from Rhodobacter capsulatus was purified as a recombinant protein from an Escherichia coli clone over-expressing the BCCP structural gene. BCCP from Rb. capsulatus oxidizes the Rhodobacter cytochrome c2 and reduces hydrogen peroxide, probably functioning as a detoxification mechanism. The enzyme binds two haem c groups covalently. The gene encoding BCCP from Rb. capsulatus was cloned through the construction of a 7-kb subgenomic clone. In comparison with the protein sequence, the sequence deduced from the gene has a 21-amino-acid N-terminal extension with the characteristics of a signal peptide. The purified recombinant enzyme showed the same physico-chemical properties as the native enzyme. Spectrophotometric titration established the presence of a high-potential (Em=+270 mV) and a low-potential haem (between -190 mV and -310 mV) as found in other BCCPs. The enzyme was isolated in the fully oxidized but inactive form. It binds calcium tightly and EGTA treatment of the enzyme was necessary to show calcium activation of the mixed valence enzyme. This activation is associated with the formation of a high-spin state at the low-potential haem. BCCP oxidizes horse ferrocytochrome c better than the native electron donor, cytochrome c2; the catalytic activities ('turnover number') are 85 800 min(-1) and 63 600 min(-1), respectively. These activities are the highest ever found for a BCCP.  相似文献   

17.
Oxidation-reduction titrations for the active-site disulfide/dithiol couples of the helX- and ccl2-encoded proteins involved in cytochrome c biogenesis in the purple non-sulfur bacterium Rhodobacter capsulatus have been carried out. The R. capsulatus HelX and Ccl2 proteins are predicted to function as part of a dithiol/disulfide cascade that reduces a disulfide on the apocytochromes c so that two cysteine thiols are available to form thioether linkages between the heme prosthetic group and the protein. Oxidation-reduction midpoint potential (E(m)) values, at pH 7.0, of -300 +/- 10 and -210 +/- 10 mV were measured for the HelX and Ccl2 (a soluble, truncated form of Ccl2) R. capsulatus proteins, respectively. Titrations of the disulfide/dithiol couple of a peptide designed to serve as a model for R. capsulatus apocytochrome c(2) have also been carried out, and an E(m) value of -170 +/- 10 mV was measured for the model peptide at pH 7.0. E(m) versus pH plots for HelX, Ccl2, and the apocytochrome c(2) model peptide were all linear over the pH range from 5.0 to 8.0, with the -59 mV/pH unit slope expected for a reaction in which two protons are taken up for each disulfide that is reduced. These results provide thermodynamic support for the proposal that HelX reduces Ccl2 and that reduced Ccl2, in turn, serves as the reductant for the production of the two thiols of the CysXxxYyyCysHis heme-binding motif of the apocytochromes.  相似文献   

18.
Photoinactivation of PSII is thought to be caused by the excessive light energy that is neither used for photosynthetic electron transport nor dissipated as heat. However, the relationship between the photoinactivation rate and excess energy has not been quantitatively evaluated. Chenopodium album L. plants grown under high-light and high-nitrogen (HL-HN) conditions show higher tolerance to photoinactivation and have higher photosynthetic capacity than the high-light and low-nitrogen (HL-LN)- and low-light and high-nitrogen (LL-HN)-grown plants. The rate of photoinactivation in the LL-HN plants was faster than that in the HL-LN, which was similar to that in the HL-HN plants, while the LL-HN and HL-LN plants had similar photosynthetic capacities [Kato et al. (2002b) Funct. Plant Biol. 29: 787]. We quantified partitioning of light energy between the electron transport and heat dissipation at the light intensities ranging from 300 to 1,800 micromol m(-2) s(-1). The maximum electron transport rate was highest in the HL-HN plants, heat dissipation was greatest in the HL-LN plants, and the excess energy, which was neither consumed for electron transport nor dissipated as heat, was greatest in the LL-HN plants. The first-order rate constant of the PSII photoinactivation was proportional to the magnitude of excess energy, with a single proportional constant for all the plants, irrespective of their growth conditions. Thus the excess energy primarily determines the rate of PSII photoinactivation. A large photosynthetic capacity in the HL-HN plants and a large heat dissipation capacity in the HL-LN plants both contribute to the protection of PSII against photoinactivation.  相似文献   

19.
A flux model of the anaerobic metabolism of Rhodobacter capsulatus related to hydrogen production has been constructed. The performance of this model has been assessed by comparing the computed metabolic fluxes with experimental values obtained by several research groups who worked on various strains of R. capsulatus and utilized different growth setups. We have investigated the photoheterotrophic metabolism of R. capsulatus on acetate and have shown that in this mode the bacterium can produce hydrogen or biopolymers. Analysis of the flux model reveled several mutants that can evolve hydrogen with a higher rate than the wild type.  相似文献   

20.
In order to characterize the contributions of respiratory and photosynthetic actions to energy conversions, the mixotrophic cells of Marchantia polymorpha were cultivated in the medium containing 10kg/m(3) glucose as an organic carbon source. The cultures were conducted with the supply of ordinary air (0.03% CO(2)) at constant incident light intensities of 50 and 180W/m(2). From the results of metabolic analysis, it was found that the cell yield based on ATP synthesis was estimated to be 6.3x10(-3)kg-dry cells/mol-ATP in these cultures. Under the examined conditions, energy conversion efficiency through respiration was larger than that through photosynthesis, and efficiency of overall energy conversion to ATP was maximized when the sum of energies from glucose and light captured by the cells was approximately 7.2x10(5)J/(hkg-dry cells). Taking into account the efficiency of overall energy conversion, a batch culture of M. polymorpha in a bioreactor was carried out by regulating incident light intensity ranging from 9 to 58W/m(2). In the culture with light regulation, the cell yield of 6.2x10(-9)kg-dry cells/J was achieved on the basis of energy provided to the system throughout the culture, and this value was 2.3 and 9.3 times as large as those obtained in the cultures under constant incident light intensities of 50 and 180W/m(2), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号