首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
L-精氨酸与精胺延缓大麦离体叶片衰老效应的比较   总被引:1,自引:0,他引:1  
L-精氨酸和精胺均具有延缓大麦离体叶片叶绿素、蛋白质和核酸含量下降的作用。L-精氨酸具有良好的渗透性和移动性。但其最适浓度高于精胺100倍,作用时间也滞后于精胺。L-精氨酸可使叶片内多胺含量增加,多胺合成抑制剂ABA则削弱L-精氨酸延缓叶片衰老的作用。L-精氨酸转变成具有强烈生理活性的多胺可能是其作用机理之一。  相似文献   

2.
以西伯利亚白刺试管苗为材料,研究其在0、50和200 mmol·L-1NaCl胁迫及外源环己胺调控下,生物量和体内多胺含量的改变,以探讨多胺对盐生植物白刺在盐胁迫下的生理调节功能.结果显示:50 mmol·L-1NaCl更有利于西伯利亚白刺的生长,处理后30 d白刺根系和地上部干重分别比对照增加75%和95%,处理15 d生根率比对照提高44.42%.而0(对照)和200 mmol·L-1NaCl都显著抑制白刺试管苗的生根与生长;200 mmol·L-1NaCl处理45 d时地上部干重比对照显著降低11.71%.白刺叶片中的多胺(精胺和亚精胺)含量随着盐浓度的增加呈降低趋势,茎和根中的多胺含量在200 mmol·L-1NaCl处理后才显著受到抑制;同时施环己胺和200 mmol·L-1NaCl处理使白刺叶片中的亚精胺含量显著低于200 mmol·L-1NaCl处理组,且叶绿素合成减少,细胞质膜透性增高.研究表明,西伯利亚白刺叶片内保持合适的多胺含量可能是其适应盐渍环境的重要机制之一.  相似文献   

3.
花生叶片衰老过程中,多胺代谢酶精氨酸脱羧酶(ADC)、鸟氨酸脱羧酶(ODC)和多胺氧化酶(PAO)活性逐渐下降,而腐胺(Put)含量迅速上升,精胺(SPm)、亚精胶(Spd)含量下降,致使衰老期间Put/(Spd+Spm)迅速上升。  相似文献   

4.
多胺与香蕉抗寒性的关系的研究   总被引:17,自引:0,他引:17  
人工气候箱中模拟寒潮对香蕉苗造成低温伤害,低温胁迫前用1 mmol·L-1多胺(PAs)和D-精氨酸(D-Arg)喷洒香蕉叶片。结果表明,低温胁迫后香蕉叶片内源腐胺(Put)含量下降,亚精胺(Spd)含量明显增多,精胺(Spm)比较稳定;D-Arg处理的内源多胺总量明显降低。外源Spd和Spm可以提高受冷胁迫的香蕉叶片中过氧化物酶(POD)活性、降低电解质渗漏率、增加可溶性糖和脯氨酸的含量,有助于提高香蕉的抗寒力;Put对香蕉抗寒力没有明显影响;D-Arg则有不利作用。  相似文献   

5.
NaCl胁迫对茄子嫁接苗叶片多胺代谢和ABA含量的影响   总被引:2,自引:0,他引:2  
以日本引进的茄子设施栽培专用耐盐品种'Torvum Vigor'为砧木,栽培品种'苏崎茄'为接穗,研究了80 mmol·L-1 NaCl胁迫下茄子嫁接苗和自根苗生长、多胺代谢和ABA含量的变化.结果表明,在NaCl胁迫下,茄子嫁接苗的生长量、3种不同形态多胺(游离态、结合态和束缚态)和ABA含量均显著高于自根苗.NaCl胁迫显著增加了叶片精胺和ABA含量;腐胺和亚精胺含量在胁迫前期上升,后期下降.嫁接苗的腐胺和亚精胺含量降低幅度低于自根苗,而精胺和ABA含量上升幅度则高于自根苗.嫁接苗生长和多胺代谢受NaCl胁迫的影响小于自根苗,NaCl胁迫下ABA的快速积累和保持相对高的多胺含量与嫁接苗耐盐性有关.  相似文献   

6.
月季切花衰老过程中多胺与膜脂过氧化的关系   总被引:7,自引:0,他引:7  
以月季切花为材料,研究了月季切花瓶插过程中多胺含量的变化,外源多胺处理对月季药花体内多胺含量的影响以及多胺与膜脂过氧化的关系。结果表明,月季切花瓶插衰老过程中腐胺在前2d略有增加,亚精胺和精胺均呈下降趋势;外源亚精胺和精胺处理均能增加切花体内多胺含量,并能延缓切花衰老和改善切花品质;且亚精胺和精胺处理降低了MDA含量的积累和膜相对透性的上升趋势。  相似文献   

7.
γ-氨基丁酸对低氧胁迫下甜瓜幼苗多胺代谢的影响   总被引:1,自引:0,他引:1  
以‘西域一号’甜瓜为试验材料,采用营养液水培法,研究了低氧胁迫下外源添加γ-氨基丁酸(GABA)对甜瓜幼苗多胺代谢的影响.结果表明:与通气对照相比,低氧胁迫处理的甜瓜幼苗谷氨酸脱羧酶(GAD)活性和GABA含量显著提高,同时多胺合成酶活性提高诱导多胺含量显著增加,但二胺氧化酶(DAO)和多胺氧化酶(PAO)活性也显著提高;根系精氨酸脱羧酶(ADC)活性提高幅度较大,导致根系游离态腐胺含量较高,而叶片乌氨酸脱羧酶(ODC)和S-腺苷甲硫氨酸脱羧酶(SAMDC)活性提高幅度较大,导致叶片游离态亚精胺(Spd)含量较高;根系游离态DAO和PAO活性显著低于叶片,其细胞壁结合态PAO活性显著高于叶片.与低氧胁迫处理相比,低氧胁迫下外源添加GABA处理的甜瓜幼苗叶片和根系中GABA和谷氨酸含量均显著提高,而GAD活性显著降低;精氨酸、鸟氨酸、甲硫氨酸含量的提高促使多胺合成酶活性显著提高,从而诱导多胺含量显著增加,DAO和PAO活性显著降低.  相似文献   

8.
以‘西域一号’甜瓜为试验材料,采用营养液水培法,研究了低氧胁迫下外源添加γ-氨基丁酸(GABA)对甜瓜幼苗多胺代谢的影响.结果表明:与通气对照相比,低氧胁迫处理的甜瓜幼苗谷氨酸脱羧酶(GAD)活性和GABA含量显著提高,同时多胺合成酶活性提高诱导多胺含量显著增加,但二胺氧化酶(DAO)和多胺氧化酶(PAO)活性也显著提高;根系精氨酸脱羧酶(ADC)活性提高幅度较大,导致根系游离态腐胺含量较高,而叶片鸟氨酸脱羧酶(ODC)和S-腺苷甲硫氨酸脱羧酶(SAMDC)活性提高幅度较大,导致叶片游离态亚精胺(Spd)含量较高;根系游离态DAO和PAO活性显著低于叶片,其细胞壁结合态PAO活性显著高于叶片.与低氧胁迫处理相比,低氧胁迫下外源添加GABA处理的甜瓜幼苗叶片和根系中GABA和谷氨酸含量均显著提高,而GAD活性显著降低;精氨酸、鸟氨酸、甲硫氨酸含量的提高促使多胺合成酶活性显著提高,从而诱导多胺含量显著增加,DAO和PAO活性显著降低.  相似文献   

9.
NaCl胁迫对茄子嫁接苗根系多胺代谢的影响   总被引:1,自引:0,他引:1  
采用高压液相色谱法对80 mmol.L-1NaCl胁迫下营养液栽培茄子嫁接苗和自根苗根系多胺代谢的差异进行了研究。结果表明,胁迫2 d时,嫁接苗根系游离态亚精胺和结合态多胺含量显著高于自根苗,游离态腐胺和束缚态多胺显著低于自根苗,游离态精胺含量两者无显著差异。胁迫10 d时,自根苗3种形态的多胺含量均下降,显著低于对照植株,而嫁接苗根系游离态精胺、结合态腐胺和束缚态多胺含量显著高于对照植株。研究结果表明,NaCl胁迫显著提高了茄子嫁接苗和自根苗根系多胺氧化酶的活性,且自根苗增加幅度显著高于嫁接苗;嫁接苗胁迫初期根系结合态多胺的迅速积累及胁迫后期保持较高的精胺含量有利于其耐盐性的提高。  相似文献   

10.
以‘中农8号’黄瓜品种为实验材料,采用营养液栽培法研究了钙对根际低氧胁迫下黄瓜幼苗体内多胺(PAs)含量及多胺氧化酶(PAO)活性的影响。结果表明:(1)各处理黄瓜幼苗根系和叶片中的PAs含量以及3种形态的腐胺(Put)、亚精胺(Spd)、精胺(Spm)含量均表现为低氧高钙(8 mmol.L-1Ca2 )>低氧常钙(2 mmol.L-1Ca2 )>低氧缺钙(0 mmol.L-1Ca2 )>通气常钙(2 mmol.L-1Ca2 )处理,而PAO活性却表现出相反的趋势(通气常钙>低氧缺钙>低氧常钙>低氧高钙),且处理间大多存在显著差异(P<0.05);根系中的PAs含量明显高于叶片,而PAO活性明显低于叶片。(2)黄瓜幼苗体内3种形态的PAs以游离态含量最高,其次是结合态,最低为束缚态;游离态和结合态PAs在叶片中均以Spd为主,在根系中均以Put为主,束缚态PAs含量在根系和叶片中均为Spd>Put>Spm。研究表明,在低氧胁迫下,营养液加钙引起黄瓜幼苗体内多胺含量的上升和PAO活性下降,钙参与了黄瓜幼苗体内多胺的代谢过程,对缓解低氧胁迫有重要作用。  相似文献   

11.
The role of endogenous polyamines in the control of dark-inducedsenescence of detached rice leaves was investigated by quantitatinglevels of various polyamines by HPLC. Putrescine, spermidineand spermine were all present throughout senescence. Neithercadaverine nor 1,3-diaminopropane was detected. During dark-inducedsenescence, there was a marked decrease in levels of putrescineand an increase in those of spermidine and spermine. The rateof production of ethylene increased markedly upon excision ofleaves. -Difluoromethylarginine (DFMA) and -difluoromethylornithine(DFMO) caused a reduction in levels of putrescine, yet had noeffect on levels of spermidine and spermine. Neither DFMA norDFMO had any effect on senescence or on the production of ethylene.Treatment with dicyclohexylamine (DCH) and methylglyoxal bis-(guanylhydrazone)(MGBG) reduced levels of spermine and increased those of putrescinein detached leaves. After treatment with DCH or MGBG, both senescenceand the production of ethylene were significantly promoted.The current results suggest that endogenous polyamines may notplay a significant role in the control of dark-induced senescenceof rice leaves. This conclusion is supported by the furtherobservations that (a) benzyladenine, which is known to retardsenescence, decreased levels of putrescine but had no effecton those of spermidine and spermine; and (b) ABA, which promotedsenescence, increased levels of putrescine and had no effecton those of spermidine and spermine. (Received March 30, 1991; Accepted June 27, 1991)  相似文献   

12.
Polyamine biosynthesis in senescing leaves of Avena sativa L. was measured by determining the activities of arginine decarboxylase (EC 4.1.1.19), ornithine decarboxylase (EC 4.1.1.17) and S-adenosyl-l-methionine decarboxylase (EC 4.1.1.50). Polyamine content was also estimated by thin layer chromatography and high performance liquid chromatography. Arginine decarboxylase activity decreases progressively in aging attached first leaves and in senescing excised leaves in the dark. Conversely, it increases during light exposure of excised leaves, which retards senescence. Ornithine decarboxylase activity is high and constant in the attached leaf, irrespective of age; it decreases in excised leaves kept in the dark and in the light, irrespective of senescence. S-Adenosyl-l-methionine decarboxylase shows no correlation with age or senescence. Levels of putrescine, diaminopropane, agmatine, and spermidine are high in young leaves and decline with age. The best single indicator of senescence is usually spermidine, which decreases in excised leaves incubated in the dark, but increases in such leaves with time of light exposure. Spermidine generally has a reciprocal relationship with putrescine, indicating that spermidine synthase, which converts putrescine to spermidine, may exert important physiological control. These data support the view that polyamines play an important role in the regulation of plant development.  相似文献   

13.
The polyamines putrescine, spermidine, and spermine prevent the loss of chlorophyll normally associated with senescence of excised leaf tissue maintained in darkness on water (control). Retention of chlorophyll in barley leaf discs was in the range of 90% 4 days after excision and placement on effective polyamine solutions. In contrast, the loss of soluble protein was hastened with 0.5 millimolar spermidine and spermine treatments but it was retarded by 0.5 millimolar putrescine.  相似文献   

14.
The effect of polyamines and related metabolites on several parameters of leaf senescence was followed in detached radish ( Raphanus sativus L. var. radicular cv. "Giant Butter") leaves floated on test solutions in darkness. Leaf senescence was accompanied by a marked loss of chlorophyll, which started at 24–48 h of incubation. The polyamines, spermine and spermidine, and the diamines, putrescine and cadaverine, were highly effective in arresting chlorophyll loss over a period of at least 96 h. l -arginine, and especially l -ornithine, were less active. Polyaminens prevented the marked chlorophyll loss in dark-incubated leaves, but did not compensate for the moderate chlorophyll loss when the leaves were aged in light. Polyamines were also highly effective in retarding earlier events of leaf senescence, prior to chlorophyll loss: both protein degradation and ribonuclease activity were inhibited by spermidine. Chlorophyll and protein loss in dark-or light-incubated suspensions of either "intact" or disrupted chloroplasts was not affected by polyamines. – It is concluded that polyamines are highly effective in preventing chlorophyll loss from detached leaves, possibly by controlling early senescence-linked events which occur in darkness rather than by direct inhibition of chlorophyll degradation.  相似文献   

15.
Both polyamines and kinetin could retard the loss of chlorophyll during dark-induced senescence in excised frond of Lernna aequinoctialis 6746. The effect of polyamines on retarding the chlorophyll loss was stronger than that of kinetin. Kinetin remarkably inhibited the loss of soluble proteins and the increase of protease activity, while no similar effects were observed from polyamines. An inhibitor of polyamine biosynthesis, methylglyoxal bis- (guanyl- hydrazone) (MGBG), slightly increased the loss of chlorophyll and soluble proteins. During senescience, both the increase of putrescine (Put) content and the decrease of spermidine (Spd) content were inhibited by kinetin at the concentration of 0.05 mmol/L, but the spermine (Spm) level was not affected by kinetin. The arginine decarboxylase (ADC) activity was dominant in frond of Lemna aequinoctialis 6746. Kinetin slightly increased ADC activity, while it had no marked effect on ornithine decarboxylase (ODC) and s-adenosylmethionine decarboxylase (SAMDC). The possible relationship between polyamines and cytokinins in retarding senescence was also discussed.  相似文献   

16.
Protoplasts obtained from oat leaves floated on buffer for 18hr show high nuclease activity, low rates of incorporation ofamino acids and nucleosides into macromolecules, and high ratesof spontaneous lysis. Addition to the leaf flotation mediumof the senescence retardants cycloheximide or kinetin, of thedibasic amino acids L-lysine or L-arginine, or of the diaminesputrescine or cadaverine reduces the rise in nuclease activityand spontaneous lysis of protoplasts, and increases the rateor extent of presumptive protein and nucleic acid synthesis.The diamines, which also retard chlorophyll degradation in theexcised leaves, appear to act both on the membrane and on systemscontrolling macromolecular synthesis and breakdown. By contrast,the senescence promoter L-serine hastens chlorophyll degradationfrom excised leaves and does not improve protoplasts derivedfrom those leaves. (Received July 4, 1977; )  相似文献   

17.
Separation and quantitation of polyamines from unpollinated pea (Pisum sativum L.) ovaries and young fruits induced by application of gibberellic acid to unpollinated ovaries showed, in both cases, a decrease in putrescine and spermidine levels between anthesis and 4 d later. By contrast, spermine levels increased prior to the onset of senescence of the unpollinated ovaries (3 d post anthesis) and decreased during fruit development. Low levels of putrescine, spermidine and spermine were also observed in young fruits obtained by self-pollination and by treatment of unpollinated ovaries with 2,4-dichlorophenoxyacetic acid. In-vitro culture of ovary explants in a medium containing spermine showed that a reduction of the growth of gibberellic acid-treated unpollinated ovaries was associated with a rise in the level of spermine in the fruits. The results obtained indicate that changes in spermine levels are involved in the control of ovary senescence and of fruit set and development.Abbreviations BA benzyladenine - 2,4-D 2,4-dichlorophen-oxyacetic acid - GA3 gibberellic acid - HPLC high-performance liquid chromatography  相似文献   

18.
多胺与激动素对稀脉浮萍离体叶状体衰老的影响   总被引:12,自引:0,他引:12  
多胺与KT 都可抑制暗诱导衰老的稀脉浮萍(Lem na aequinoctialis)离体叶状体的叶绿素损失,且多胺的作用大于KT。KT 还显著抑制蛋白质的损失与蛋白酶活性的上升,而多胺对此却无大的影响。0.05 m m ol/L的甲基乙二醛二脒基-腙(MGBG)轻微促进叶绿素和蛋白质的损失。0.05 m m ol/L的KT 可抑制衰老过程中腐胺(Put)的上升和亚精胺(Spd)的下降,而对精胺(Spm )无明显影响。在稀脉浮萍中,精氨酸脱羧酶(ADC)活性占优势。KT 可轻微促进ADC 活性,而对鸟氨酸脱羧酶(ODC)和S-腺苷甲硫氨酸脱羧酶(SAMDC)活性无显著影响。讨论了多胺与细胞分裂素在抑制植物叶片衰老过程中作用途径的可能关系  相似文献   

19.
Localized Effect of Polyamines on Chlorophyll Loss   总被引:2,自引:0,他引:2  
The effect of polyamines, spermidine and spermine, on senescenceof detached leaves of rice, wheat and soybean was investigated.The decline of chlorophyll in rice leaf segments was promotedby polyamines during the first three days and in soybean leafdiscs during the first day of incubation. However, the declinein chlorophyll was later retarded by polyamines. Polyamineswere more effective in retarding senescence of detached wheatleaves at a higher concentration (10 mM) or in narrower segments.The retardation of chlorophyll loss by polyamines was mainlylocalized in those areas around the cut edges of detached leavesor near large veins of soybean primary leaves. This suggeststhat polyamines are not readily transported in leaf cells. 1 Supported by research grant to C. H. K. from the NationalScience Council of the Republic of China (NSC 72-0409-B002-18). (Received June 4, 1983; Accepted September 12, 1983)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号