首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The T cell response to complex protein Ag typically focuses on a few, and frequently a single, immunodominant epitope. Several groups have proposed that the mechanism of immunodominance is determined by the steps of Ag processing and presentation including protein unfolding, the sites of proteolytic cleavage, and the affinity of binding to MHC molecules. Also, the failure of the TCR repertoire to recognize MHC-bound peptides, termed a hole in the repertoire, can prevent recognition of a potentially dominant processed peptide. In the present study, we demonstrate that immunodominance can be determined by intermolecular competition for binding to MHC class II molecules between covalently linked T cell epitopes. In addition, we have analyzed the factors controlling T cell recognition of the covalently linked epitopes. In our system, T cell recognition of the dominant epitope is not altered by Ag processing, and is not simply a function of MHC-binding affinity. We propose that adjacent sequences can subtly alter the conformation of an epitope, creating significant changes in T cell recognition. These observations are discussed in terms of the mechanisms of immunodominance and in terms of the development of synthetic peptide vaccines.  相似文献   

2.
Cytotoxic CD8+ T lymphocytes are activated upon the engagement of their Ag-specific receptors by MHC class I molecules loaded with peptides 8-11 amino acids long. T cell responses triggered by certain antigenic peptides are restricted to a limited number of TCR V beta elements. The precise role of the peptide in causing this restricted TCR V beta expansion in vivo remains unclear. To address this issue, we immunized C57BL/6 mice with the immunodominant peptide of the vesicular stomatitis virus (VSV) and several peptide variants carrying single substitutions at TCR-contact residues. We observed the expansion of a limited set of TCR V beta elements responding to each peptide variant. To focus our analysis solely on the TCR beta-chain, we created a transgenic mouse expressing exclusively the TCR alpha-chain from a VSV peptide-specific CD8+ T cell clone. These mice showed an even more restricted TCR V beta usage consequent to peptide immunization. However, in both C57BL/6 and TCR alpha transgenic mice, single amino acid replacements in TCR-contact residues of the VSV peptide could alter the TCR V beta usage of the responding CD8+ T lymphocytes. These results provide in vivo evidence for an interaction between the antigenic peptide and the germline-encoded complementarity-determining region-beta loops that can influence the selection of the responding TCR repertoire. Furthermore, only replacements at residues near the C terminus of the peptide were able to alter the TCR V beta usage, which is consistent with the notion that the TCR beta-chain interacts in vivo preferentially with this region of the MHC/peptide complex.  相似文献   

3.
Following antigenic challenge, MHC-restricted T cell responses are directed against a few dominant antigenic epitopes. Here, evidence is provided demonstrating the importance of APC in modulating the hierarchy of MHC class II-restricted T cell responses. Biochemical analysis of class II:peptide complexes in B cells revealed the presentation of a hierarchy of peptides derived from the Ig self Ag. Functional studies of kappa peptide:class II complexes from these cells indicated that nearly 20-fold more of an immunodominant epitope derived from kappa L chains was bound to class II DR4 compared with a subdominant epitope from this same Ag. In vivo, T cell responses were preferentially directed against the dominant kappa epitope as shown using Ig-primed DR4 transgenic mice. The bias in kappa epitope presentation was not linked to differences in class II:kappa peptide-binding affinity or epitope editing by HLA-DM. Rather, changes in native Ag structure were found to disrupt presentation of the immunodominant but not the subdominant kappa epitope; Ag refolding restored kappa epitope presentation. Thus, Ag tertiary conformation along with processing reactions within APC contribute to the selective presentation of a hierarchy of epitopes by MHC class II molecules.  相似文献   

4.
Nine independent pigeon cytochrome c-specific T cell clones were analyzed by using a panel of antigenic peptide analogs presented in association with three allelic IE-encoded MHC glycoproteins. Eight of the T cell clones expressed a TCR composed of a unique alpha- and beta-chain amino acid sequence, and concordantly, each of these T cell clones exhibited a unique Ag specificity. This was true for several clones which differed only in TCR V-J junctional regions. Interestingly, for a given clone, the response to some of the peptide analogs depended to a large extent on the allelic form of the presenting MHC molecule. A simple interpretation of these data would suggest that certain positions of the peptide Ag are most important for Ag-MHC molecule interactions, and that these specific interactions can influence the antigenic epitope recognized by the TCR. We suggest that an antigenic peptide binds to an MHC glycoprotein in a distinct way, but may retain a measure of flexibility.  相似文献   

5.
The HER-2/neu (neu-N)-transgenic mice are a clinically relevant model of breast cancer. They are derived from the parental FVB/N mouse strain and are transgenic for the rat form of the proto-oncogene HER-2/neu (neu). In this study, we report the identification of a MHC class I peptide in the neu protein that is recognized by CD8(+) T cells derived from vaccinated FVB/N mice. This 10-mer was recognized by all tumor-specific FVB/N T cells generated regardless of the TCR Vbeta region expressed by the T cell or the method of vaccination used, establishing it as the immunodominant MHC class I epitope in neu. T cells specific for this epitope were able to cure FVB/N mice of transplanted neu-expressing tumor cells, demonstrating that this is a naturally processed peptide. Altered peptide analogs of the epitope were analyzed for immunogenicity. Vaccination with dendritic cells pulsed with a heteroclitic peptide provided FVB/N and neu-N mice with increased protection against tumor challenge as compared with mice immunized with dendritic cells loaded with either wild-type or irrelevant peptide. Discovery of this epitope allows for better characterization of the CD8(+) T cell responses in the neu-N mouse model in which neu-specific tolerance must be overcome to produce effective antitumor immunity.  相似文献   

6.
In an attempt to provide a global picture of the TCR repertoire diversity of a chronic T cell response against a common Ag, we performed an extensive TCR analysis of cells reactive against a dominant HLA-A2-restricted EBV epitope (hereafter referred to as GLC/A2), obtained after sorting PBL or synovial fluid lymphocytes from EBV-seropositive individuals using MHC/peptide multimers. Although TCR beta-chain diversity of GLC/A2+ T cells was extensive and varied greatly from one donor to another, we identified in most cell lines several recurrent Vbeta subsets (Vbeta2, Vbeta4, and Vbeta16 positive) with highly conserved TCRbeta complementarity-determining region 3 (CDR3) length and junctional motifs, which represented from 11 to 98% (mean, 50%) of GLC/A2-reactive cells. While TCR beta-chains expressed by these subsets showed limited CDR1, CDR2, and CDR3 homology among themselves, their TCR alpha-chains comprised the same TCRAV region, thus suggesting hierarchical contribution of TCR alpha-chain vs TCR beta-chain CDR to recognition of this particular MHC/peptide complex. The common occurrence of T cell clonotypes with public TCR features within GLC/A2-specific T cells allowed their direct detection within unsorted PBL using ad hoc clonotypic primers. These results, which suggest an unexpectedly high contribution of public clonotypes to the TCR repertoire against a dominant epitope, have several implications for the follow-up and modulation of T cell-mediated immunity.  相似文献   

7.
T cell reactivity toward self MHC class II molecules has been recognized in syngeneic MLR in a number of studies, where the T cells are believed to recognize the combination of self/nonself peptide and self MHC molecule. We investigated the stimulation of T cell proliferation by synthetic peptides of sequences corresponding to the first polymorphic amino terminal domain of alpha- and beta-chains of self I-A molecules. Both unprimed and primed T cells responded to a number of peptides of alpha 1 and beta 1 domains of self I-Ad molecules. The response was dependent on the presentation of I-Ad peptides by syngeneic APC and was blocked by anti-class II MHC mAb. Upon further investigation it was observed that I-Ad peptides could inhibit the stimulation of Ag-specific MHC class II-restricted T cell hybridoma due to self presentation of peptides rather than to direct binding of free peptides to the TCR, further supporting their affinity/interaction with intact self MHC class II molecules. The peptide I-A beta d 62-78 showed high affinity toward intact self MHC II molecule as determined by the inhibition of Ag-specific T cell stimulation and yet was nonstimulatory for syngeneic T cells, therefore representing an MHC determinant that may have induced self tolerance. Thus we have shown that strong T cell proliferative responses can be generated in normal mice against the peptides derived from self MHC class II molecules and these cells are part of the normal T cell repertoire. Therefore complete tolerance toward potentially powerful immunodominant but cryptic determinants of self Ag may not be necessary to prevent autoimmune diseases.  相似文献   

8.
The role of epitope-specific TCR repertoire diversity in the control of HIV-1 viremia is unknown. Further analysis at the clonotype level is important for understanding the structural aspects of the HIV-1 specific repertoire that directly relate to CTL function and ability to suppress viral replication. In this study, we performed in-depth analysis of T cell clonotypes directed against a dominantly recognized HLA B57-restricted epitope (KAFSPEVIPMF; KF11) and identified common usage of the TCR beta-chain TRBV7 in eight of nine HLA B57 subjects examined, regardless of HLA B57 subtype. Despite this convergent TCR gene usage, structural and functional assays demonstrated no substantial difference in functional or structural avidity between TRBV7 and non-TRBV7 clonotypes and this epitopic peptide. In a subject where TRBV7-usage did not confer cross-reactivity against the dominant autologous sequence variant, another circulating TCR clonotype was able to preferentially recognize the variant peptide. These data demonstrate that despite selective recruitment of TCR for a conserved epitope over the course of chronic HIV-1 infection, TCR repertoire diversity may benefit the host through the ability to recognize circulating epitope variants.  相似文献   

9.
CD8(+) T lymphocytes (T(CD8)) responding to subdominant epitopes provide alternate targets for the immunotherapy of cancer, particularly when self-tolerance limits the response to immunodominant epitopes. However, the mechanisms that promote T(CD8) subdominance to tumor Ags remain obscure. We investigated the basis for the lack of priming against a subdominant tumor epitope following immunization of C57BL/6 (B6) mice with SV40 large tumor Ag (T Ag)-transformed cells. Immunization of B6 mice with wild-type T Ag-transformed cells primes T(CD8) specific for three immunodominant T Ag epitopes (epitopes I, II/III, and IV) but fails to induce T(CD8) specific for the subdominant T Ag epitope V. Using adoptively transferred T(CD8) from epitope V-specific TCR transgenic mice and immunization with T Ag-transformed cells, we demonstrate that the subdominant epitope V is weakly cross-presented relative to immunodominant epitopes derived from the same protein Ag. Priming of naive epitope V-specific TCR transgenic T(CD8) in B6 mice required cross-presentation by host APC. However, robust expansion of these T(CD8) required additional direct presentation of the subdominant epitope by T Ag-transformed cells and was only significant following immunization with T Ag-expressing cells lacking the immunodominant epitopes. These results indicate that limited cross-presentation coupled with competition by immunodominant epitope-specific T(CD8) contributes to the subdominant nature of a tumor-specific epitope. This finding has implications for vaccination strategies targeting T(CD8) responses to cancer.  相似文献   

10.
It is widely accepted that the repertoire of Melan-A-specific T cells naturally selected in melanoma patients is diverse and mostly nonoverlapping among different individuals. To date, however, no studies have addressed the TCR profile in different tumor sites and the peripheral blood from the same patient. We compared the TCR usage of Melan-A-specific T cells from different compartments of a single melanoma patient to evaluate possible clonotype expansion or preferential homing over a 4-mo follow-up period. Using HLA-A2 peptide tetramers, CD8(+) T cells recognizing the modified Melan-A immunodominant ELAGIGILTV peptide were isolated from four metastatic lesions resected from a single melanoma patient, and their TCR repertoire was studied. A panel of T cell clones was generated by cell cloning of tetramer-positive cells. Analysis of the TCR beta-chain V segment and the complementarity-determining region 3 (CDR3) length and sequence revealed a large diversity in the TCR repertoire, with only some of the clones showing a partial conservation in the CDR3. A similar degree of diversity was found by analyzing a number of T cell clones obtained after sorting a Melan-A-specific population derived from PBLs of the same patient after in vitro culture with the immunodominant epitope. Moreover, clonotypes found at one site were not present in another, suggesting the lack of expansion and circulation of one or more clonotypes. Taken together, these results buttress the notion that the CTLs recognizing the immunodominant Ag of Melan-A comprise a high number of different clonotypic TCR, of which only some exhibit common features in the CDR3.  相似文献   

11.
alphabeta TCR can recognize peptides presented by MHC molecules or lipids and glycolipids presented by CD1 proteins. Whereas the structural basis for peptide/MHC recognition is now clearly understood, it is not known how the TCR can interact with such disparate molecules as lipids. Recently, we demonstrated that the alphabeta TCR confers specificity for both the lipid Ag and CD1 isoform restriction, indicating that the TCR is likely to recognize a lipid/CD1 complex. We hypothesized that lipids may bind to CD1 via their hydrophobic alkyl and acyl chains, exposing the hydrophilic sugar, phosphate, and other polar functions for interaction with the TCR complementarity-determining regions (CDRs). To test this model, we mutated the residues in the CDR3 region of the DN1 TCR beta-chain that were predicted to project between the CD1b alpha helices in a model of the TCR/CD1 complex. In addition, we tested the requirement for the negatively charged and polar functions of mycolic acid for Ag recognition. Our findings indicate that the CDR loops of the TCR form the Ag recognition domain of CD1-restricted TCRs and suggest that the hydrophilic domains of a lipid Ag can form a combinatorial epitope recognized by the TCR.  相似文献   

12.
The interaction between TCRs and peptides presented by MHC molecules determines the specificity of the T cell-mediated immune response. To elucidate the biologically important structural features of this interaction, we generated TCR beta-chain transgenic mice using a TCR derived from a T cell clone specific for the immunodominant peptide of vesicular stomatitis virus (RGYVYQGL, VSV8) presented by H-2K(b). We immunized these mice with VSV8 or analogs substituted at TCR contact residues (positions 1, 4, and 6) and analyzed the CDR3alpha sequences of the elicited T cells. In VSV8-specific CTLs, we observed a highly conserved residue at position 93 of CDR3alpha and preferred Jalpha usage, indicating that multiple residues of CDR3alpha are critical for recognition of the peptide. Certain substitutions at peptide position 4 induced changes at position 93 and in Jalpha usage, suggesting a potential interaction between CDR3alpha and position 4. Cross-reactivity data revealed the foremost importance of the Jalpha region in determining Ag specificity. Surprisingly, substitution at position 6 of VSV8 to a negatively charged residue induced a change at position 93 of CDR3alpha to a positively charged residue, suggesting that CDR3alpha may interact with position 6 in certain circumstances. Analogous interactions between the TCR alpha-chain and residues in the C-terminal half of the peptide have not yet been revealed by the limited number of TCR/peptide-MHC crystal structures reported to date. The transgenic mouse approach allows hundreds of TCR/peptide-MHC interactions to be examined comparatively easily, thus permitting a wide-ranging analysis of the possibilities for Ag recognition in vivo.  相似文献   

13.
MHC proteins are polymorphic cell surface glycoproteins involved in the binding of peptide Ag and their presentation to T lymphocytes. The polymorphic amino acids of MHC proteins are primarily located in the N-terminal domains and are thought to influence T cell recognition both by influencing the binding of peptide Ag and by direct contact with the T cell receptor. In order to determine the relative importance of individual polymorphic amino acids in Ag presentation, a number of groups have taken the approach of interchanging polymorphic amino acids between different alleles of MHC protein in an attempt to define which of the polymorphisms influence peptide binding and which influence T cell recognition by direct contact with the TCR. The peptide OVA323-339 has been previously shown to bind to the MHC class II protein Ad and to have a much lower affinity for Ak, whereas the peptide hen egg lysozyme 46-61 binds well to Ak and poorly to Ad. In the present report, we have analyzed the ability of purified wild-type MHC class II proteins as well as the ability of three different hybrid molecules between Ad and Ak to bind and present these peptides. We find that the alpha-chain of the MHC class II protein plays a critical role in the binding of HEL46-61 and confers the specificity for binding OVA323-339, regardless of which beta-chain is present. We also find that the beta-chain region 65-67 does not control the specificity of peptide binding to the MHC protein, but is important in T cell responses to preformed MHC-peptide complexes, suggesting a role for this region in contacting the TCR.  相似文献   

14.
T cell recognition of the type II collagen (CII) 260-270 peptide is a bottleneck for the development of collagen-induced arthritis (CIA), an animal model of rheumatoid arthritis. We have earlier made C3H.Q mice expressing CII with glutamic acid instead of aspartic acid at position 266 (the MMC-C3H.Q mouse), similar to the rat and human CII epitope, which increases binding to MHC class II and leads to effective presentation of the peptide in vivo. These mice show T cell tolerance to CII, but also develop severe arthritis. The present investigation shows that non-MHC genes play a decisive role in determining tolerance and arthritis susceptibility. We bred MMC into B10.Q mice, which display similar susceptibility to CIA induced with rat CII as the C3H.Q mice. In contrast to MMC-C3H.Q mice, MMC-B10.Q mice were completely resistant to arthritis. Nontransgenic (B10.Q x C3H.Q)F(1) mice were more susceptible to CIA than either of the parental strains, but introduction of the MMC transgene leads to CIA resistance, showing that the protection is dominantly inherited from B10.Q. In an attempt to break the B10-mediated CIA protection in MMC-transgenic mice, we introduced a transgenic, CII-specific, TCR beta-chain specific for the CII(260-270) glycopeptide, in the highly CIA-susceptible (B10.Q x DBA/1)F(1) mice. The magnification of the autoreactive CII-specific T cell repertoire led to increased CIA susceptibility, but the disease was less severe than in mice lacking the MMC transgene. This finding is important for understanding CIA and perhaps also rheumatoid arthritis, as in both diseases MHC class II-restricted T cell recognition of the glycosylated CII peptide occurs.  相似文献   

15.
In normal mice, single-positive thymocytes proliferate before being exported into the peripheral T cell pool. We measured the in vivo proliferation rates of mature thymocytes in several TCR transgenic mice. Different monoclonal TCR transgenic single-positive thymocytes proliferated at different rates in a given MHC context. Conversely, mature thymocytes expressing a given TCR, generated in mice of different MHC haplotypes, also showed different rates of proliferation. In p59(fyn)-deficient mice, the proliferation rate of mature thymocytes was diminished. Thus, premigrant thymocyte expansion is TCR mediated and depends on TCR affinity for self peptide/MHC ligands. In addition, we show that mature thymocyte expansion is clonotypic, increases the daily thymic T cell output, and modifies the TCR repertoire of newly produced T cells.  相似文献   

16.
The level of CD8 expression can determine the outcome of thymic selection.   总被引:1,自引:0,他引:1  
E A Robey  F Ramsdell  D Kioussis  W Sha  D Loh  R Axel  B J Fowlkes 《Cell》1992,69(7):1089-1096
During thymic development, thymocytes that can recognize major histocompatability complex (MHC) molecules on thymic epithelial cells are selected to survive and mature (positive selection), whereas thymocytes that recognize MHC on hematopoietic cells are destroyed (negative selection). It is not known how MHC recognition can mediate both death and survival. One model to explain this paradox proposes that thymocytes whose T cell antigen receptors (TCRs) recognize MHC with high affinity are eliminated by negative selection, whereas low affinity TCR-MHC interactions are sufficient to mediate positive selection. Here we report that, while the expression of a 2C TCR transgene leads to positive selection of thymocytes in H-2b mice, expression of both a CD8 transgene and a 2C TCR transgene causes negative selection. This observation indicates that quantitative differences in TCR-MHC recognition are a critical determinant of T cell fate, a finding predicted by the affinity model for thymic selection.  相似文献   

17.
Both the underlying molecular mechanisms and the kinetics of TCR repertoire selection following vaccination against tumor Ags in humans have remained largely unexplored. To gain insight into these questions, we performed a functional and structural longitudinal analysis of the TCR of circulating CD8(+) T cells specific for the HLA-A2-restricted immunodominant epitope from the melanocyte differentiation Ag Melan-A in a melanoma patient who developed a vigorous and sustained Ag-specific T cell response following vaccination with the corresponding synthetic peptide. We observed an increase in functional avidity of Ag recognition and in tumor reactivity in the postimmune Melan-A-specific populations as compared with the preimmune blood sample. Improved Ag recognition correlated with an increase in the t(1/2) of peptide/MHC interaction with the TCR as assessed by kinetic analysis of A2/Melan-A peptide multimer staining decay. Ex vivo analysis of the clonal composition of Melan-A-specific CD8(+) T cells at different time points during vaccination revealed that the response was the result of asynchronous expansion of several distinct T cell clones. Some of these T cell clones were also identified at a metastatic tumor site. Collectively, these data show that tumor peptide-driven immune stimulation leads to the selection of high-avidity T cell clones of increased tumor reactivity that independently evolve within oligoclonal populations.  相似文献   

18.
Escape from the CD8(+) T cell response through epitope mutations can lead to loss of immune control of HIV replication. Theoretically, escape from CD8(+) T cell recognition is less likely when multiple TCRs target individual MHC/peptide complexes, thereby increasing the chance that amino acid changes in the epitope could be tolerated. We studied the CD8(+) T cell response to six immunodominant epitopes in five HIV-infected subjects using a novel approach combining peptide stimulation, cell surface cytokine capture, flow cytometric sorting, anchored RT-PCR, and real-time quantitative clonotypic TCR tracking. We found marked variability in the number of clonotypes targeting individual epitopes. One subject recognized a single epitope with six clonotypes, most of which were able to recognize and lyse cells expressing a major epitope variant that arose. Additionally, multiple clonotypes remained expanded during the course of infection, irrespective of epitope variant frequency. Thus, CD8(+) T cells comprising multiple TCR clonotypes may expand in vivo in response to individual epitopes, and may increase the ability of the response to recognize virus escape mutants.  相似文献   

19.
HSV type 1 (HSV-1) expresses its genes sequentially as immediate early (α), early (β), leaky late (γ1), and true late (γ2), where viral DNA synthesis is an absolute prerequisite only for γ2 gene expression. The γ1 protein glycoprotein B (gB) contains a strongly immunodominant CD8(+) T cell epitope (gB(498-505)) that is recognized by 50% of both the CD8(+) effector T cells in acutely infected trigeminal ganglia (TG) and the CD8(+) memory T cells in latently infected TG. Of 376 predicted HSV-1 CD8(+) T cell epitopes in C57BL/6 mice, 19 (gB(498-505) and 18 subdominant epitopes) stimulated CD8(+) T cells in the spleens and TG of HSV-1 acutely infected mice. These 19 epitopes identified virtually all CD8(+) T cells in the infected TG that represent all or the vast majority of the HSV-specific CD8(+) TCR repertoire. Only 11 of ~84 HSV-1 proteins are recognized by CD8(+) T cells, and most (~80%) are expressed before viral DNA synthesis. Neither the immunodominance of gB(498-505) nor the dominance hierarchy of the subdominant epitopes is due solely to MHC or TCR affinity. We conclude that the vast majority of CD8(+) T cells in HSV-1 acutely infected TG are HSV specific, that HSV-1 β and γ1 proteins that are expressed before viral DNA synthesis are favored targets of CD8(+) T cells, and that dominance within the TCR repertoire is likely due to the frequency or expansion and survival characteristics of CD8(+) T cell precursors.  相似文献   

20.
The use of recombinant T cell receptors (TCRs) to target therapeutic interventions has been hindered by the naturally low affinity of TCR interactions with peptide major histocompatibility complex ligands. Here, we use multimeric forms of soluble heterodimeric alphabeta TCRs for specific detection of target cells pulsed with cognate peptide, discrimination of quantitative changes in antigen display at the cell surface, identification of virus-infected cells, inhibition of antigen-specific cytotoxic T lymphocyte activation, and identification of cross-reactive peptides. Notably, the A6 TCR specific for the immunodominant HLA A2-restricted human T cell leukemia virus type 1 Tax(11-19) epitope bound to HLA A2-HuD(87-95) (K(D) 120 microm by surface plasmon resonance), an epitope implicated as a causal antigen in the paraneoplastic neurological degenerative disorder anti-Hu syndrome. A mutant A6 TCR that exhibited dramatically increased affinity for cognate antigen (K(D) 2.5 nm) without enhanced cross-reactivity was generated; this TCR demonstrated potent biological activity even as a monomeric molecule. These data provide insights into TCR repertoire selection and delineate a framework for the selective modification of TCRs in vitro that could enable specific therapeutic intervention in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号