首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of mercury compounds on the spontaneous and potassium-evoked release of [3H]dopamine from mouse striatal slices have been examined. All mercury compounds examined produced concentration-dependent increases in the spontaneous release of [3H]dopamine, with an order of potency of methylmercury greater than mercuric (Hg2+) mercury greater than p-choloromercuribenzene sulfonic acid. Methylmercury had no effect on the 25 mM potassium evoked release of [3H]dopamine in the presence of 1.3 mM calcium. However, in calcium-free conditions, methylmercury significantly increased the potassium-evoked release of [3H]dopamine. Mercuric mercury significantly reduced the 25 mM potassium evoked release of [3H]dopamine in the presence of 1.3 mM calcium, and this response was not reversible with brief washing of the tissue. In calcium-free conditions, mercuric mercury significantly elevated the evoked release of [3H]dopamine, similar to the result obtained with methylmercury. It is suggested that mercury compounds alter dopaminergic synaptic function, possibly by disrupting calcium homeostasis or calcium-dependent processes, and that methylmercury and mercuric mercury can have differential effects to alter dopaminergic neurotransmission.  相似文献   

2.
The effect of serotonin agonists on the depolarization (K+)-induced, calcium-dependent, release of [3H]dopamine (DA) from rat nucleus accumbens and striatal slices was investigated. Serotonin enhanced basal3H overflow and reduced K+-induced release of [3H]DA from nucleus accumbens slices. The effect of serotonin on basal3H overflow was not altered by the serotonin antagonist, methysergide, or the serotonin re-uptake blocker, chlorimipramine, but was reversed by the DA re-uptake carrier inhibitors nomifensine and benztropine. With the effect on basal overflow blocked, serotonin did not modulate K+-induced release of [3H]DA in the nucleus accumbens or striatum. The serotonin agonists, quipazine (in the presence of nomifensine) and 5-methoxytryptamine, did not significantly affect K+-induced release of [3H]DA in the nucleus accumbens. This study does not support suggestions that serotonin receptors inhibit the depolarization-induced release of dopamine in the nucleus accumbens or striatum of the rat brain. The present results do not preclude the possibility that serotonin may affect the mesolimbic reward system at a site which is post-synaptic to dopaminergic terminals in the nucleus accumbens.  相似文献   

3.
4.
Electrical stimulation has certain advantages over chemical stimulation methods for the study of neurotransmitter release in brain slices. However, measuring detectable quantities of electrically evoked release of endogenous or radiolabeled markers of excitatory amino acid neurotransmitters has required current intensities or frequencies much higher than those usually required to study other transmitter systems. We demonstrate here that [3H]-D-aspartate (D-ASP) release can be detected from hippocampal slices at lower stimulation intensities in the presence of a glutamate reuptake inhibitor. Subsequently, we optimized the electrical stimulus parameters for characterizing electrically evoked D-ASP release. Under the experimental conditions described, greater than 90% of electrically evoked D-ASP release is calcium-dependent. Evoked D-ASP release is markedly reduced by pre-treating slices with the synaptic vesicle toxin bafilomycin A1 (BAF A1) or in the presence of 10-mM magnesium. Evoked D-ASP release is also reduced to variable degrees by N- and P/Q type voltage-sensitive calcium channel antagonists. Neither spontaneous efflux nor evoked D-ASP release were affected by NMDA, AMPA or group I metabotropic glutamate receptor (mGluR) antagonists. Evoked D-ASP release was reduced in the presence of an adenosine A1 receptor agonist and potentiated by treatment with a group I mGluR5 agonist. Evoked [3H]-D-ASP release was similar in magnitude to evoked [3H]-L-glutamate (L-GLU) release. Finally, in separate experiments using the same electrical stimulus parameters, more than 90% of electrically evoked endogenous L-GLU release was calcium dependent, a pattern similar to that observed for evoked [3H]-D-ASP release. Taken together, these results indicate that electrically evoked [3H]-D-ASP release mimics evoked glutamate release in brain slices under the experimental conditions employed in these studies.  相似文献   

5.
1. The neurosteroids are compounds derived from steroid hormones and synthesized in the nervous system. They can modulate different neurotransmitter pathways. In previous work we demonstrated that progesterone modulates dopamine release induced by the glutamatergic agonist N-methyl-D-aspartic acid (NMDA).2. The aim of this work was to evaluate a possible modulatory role of the progesterone metabolite allopregnanolone on NMDA-evoked [3H]dopamine release from corpus striatum slices obtained from cycling and ovariectomized female rats.3. We used a dynamic superfusion method to evaluate the release of [3H]dopamine. Allopregnanolone at 50–600 nM was added to the superfusion buffer (Krebs–Ringer–bicarbonate–glucose, pH 7.4, with constant O2/CO2 gassing). The results are expressed as a percentage over basal [3H]dopamine loaded by the tissue.4. Allopregnanolone (50 and 100 nM) increased the NMDA-evoked[3H]dopamine release from estrus rats. The remaining doses did not show significant changes in the pattern of release. This effect was not observed in diestrus rats. The ovariectomy abolished the facilitatory effect of allopregnanolone on NMDA-evoked 2 [3H]dopamine release.5. Subcutaneous administration of exogenous estrogen (25 mg/rat) and progesterone (1 mg/rat) restored the facilitatory effect on dopaminergic input.6. These results suggest that allopregnanolone is a neurosteroid able to modulate dopamine release in an ovarian-hormone-fluctuation-dependent manner and provide further support for a role of allopregnanolone as a modulator of glutamatergic–dopaminergic interaction in the corpus striatum.  相似文献   

6.
Thyroid peroxidase (TPO), the major enzyme in the thyroid hormone synthesis, multifunctionally catalyzes (1) iodide oxidation, (2) iodination of the precursor protein, and (3) a coupling reaction of iodotyrosyl residues. The present study was carried out to examine the mercurial effects on the iodination, the second step of TPO. Purified porcine thyroglobulin or bovine serum albumin as acceptor protein was iodinated with [125I]NaI and H2O2 by purified porcine TPO. Iodinated protein was separated by acid precipitation on membrane filter or paper chromatography. Both CH3HgCl and HgCl2 dose-dependently inhibited the iodination, but HgCl2 was more potent to inhibit the iodination than CH3HgCl. These mercurial effects on the second step resemble the effects on the third step which were already reported; but are in marked contrast to the effects on the first step, where TPO was inhibited by HgCl2 but never by CH3HgCl.  相似文献   

7.
Ethanol (10–200 mM) transiently increased tritium overflow from superfused rat nucleus accumbens slices previously incubated with [3H]dopamine (DA) and [14C]choline. The effect was greater in striatal tissue and did not appear to be a non-specific membrane effect since [14C]acetylcholine (ACh) release was not affected. Lack of antagonism by picrotoxin suggested that -aminobutyric acid (GABA) receptors were not involved. Calcium was not a requirement and the DA uptake blocker, nomifensine, was without effect. Ethanol appeared to be causing [3H]DA release into the cytoplasm. K+-stimulated release of [3H]DA and [14C]ACh from nucleus accumbens and striatal slices was not affected. Clonidine-mediated inhibition of the K+-evoked release of [3H]DA remained unaltered. Ethanol attenuated the isoproterenol-induced enhancement of [3H]DA release. Ethanol therefore appeared to interact with components of the DA terminal causing a transient increase in the release of neurotransmitter without impairing K+-evoked release but apparently interfering with the isoproterenol-induced effect.  相似文献   

8.
The K-stimulated release of [3H]ACh from rat midbrain slices prelabeled by incubation with [3H]choline was dependent on extracellular Ca. Phenobarbital inhibited the K-stimulated [3H]ACh release and the IC50 was equal to that found for K-stimulated endogenous ACh release. These results support the suggestion that barbiturates primarily inhibit the Ca-dependent stimulated release of ACh and affect ACh synthesis only indirectly. K-Stimulated release of [3H]5-HT was also inhibited by removing Ca from the medium or by adding phenobarbital which further supports the effects of barbiturates on the depolarization-induced release process. Fluoxetine, an inhibitor of 5-HT uptake, increased the amount of [3H]5-HT found in the medium but did not fully block the uptake of [3H]5-HT in this slice preparation.  相似文献   

9.
The calcium-dependent release of [3H]dopamine ([3H]DA) elicited by field stimulation or potassium is modulated through activation of stereoselective inhibitory DA autoreceptors of the D-2 subtype that are pharmacologically different from the D-1 DA receptor subtype linked to the stimulation of adenylate cyclase (EC 4.6.1.1). The D-2 DA autoreceptors appear to be endogenously activated by DA because DA receptor antagonists such as S-sulpiride increased the stimulation-evoked release of [3H]DA. Nanomolar concentrations of norepinephrine (NE) and epinephrine (E) inhibited in a concentration-dependent manner the electrical stimulation-evoked release of [3H]DA. The inhibitory effect of these catecholamines was not modified by S-sulpiride, which, on the contrary, selectively antagonized the inhibition of [3H]DA release elicited by exogenous DA. Phentolamine or (+/-)-propranolol did not affect the release of [3H]DA from rabbit retina. The alpha antagonist phentolamine competitively antagonized the inhibitory effect of both NE and E, which suggests that these catecholamines activate alpha receptors in retina. The decrease by catecholamines of the calcium-dependent release of [3H]DA appears not to involve beta adrenoceptors because their inhibitory effect was not modified by propranolol. Under identical experimental conditions (i.e., nomifensine, 30 microM), serotonin did not modify the stimulated release of [3H]DA. In conclusion, in the rabbit retina, DA autoreceptors of the D-2 subtype appear to modulate endogenously released DA whereas inhibitory presynaptic alpha receptors might be of pharmacological importance as sites of action for retinal or blood-borne catecholamines.  相似文献   

10.
The release of [3H]GABA formed from [3H]glutamate in rat hippocampal slices   总被引:1,自引:0,他引:1  
to compare the storage and release of endogenous GABA, of [3H]GABA formed endogenously from glutamate, and of exogenous [14C]GABA, hippocampal slices were incubated with 5 microCi/ml [3,4-3H]1-glutamate and 0.5 microCi/ml [U-14C]GABA and then were superfused in the presence or absence of Ca+ with either 50 mM K+ or 50 microM veratridine. Endogenous GABA was determined by high performance liquid chromatography which separated labeled GABA from its precursors and metabolites. Exogenous [14C]GABA content of the slices declined spontaneously while endogenous GABA and endogenously formed [3H]GABA stayed constant over a 48 min period. In the presence of Ca+ 50 mM K+ and in the presence or absence of Ca2+ veratridine released exogenous [14C]GABA more rapidly than endogenous or endogenously formed [3H]GABA, the release of the latter two occurring always in parallel. The initial specific activity of released exogenous [14C]GABA was three times, while that of endogenously formed [3H]GABA was only 50% higher than that in the slices. There was an excess of endogenous GABA content following superfusion with 50 mM K+ and Ca2+, which did not occur in the absence of Ca2+ or after veratridine. The observation that endogenous GABA and [3H]GABA formed endogenously from glutamate are stored and released in parallel but differently from exogenous labelled GABA, suggests that exogenous [3H] glutamate can enter a glutamate pool that normally serves as precursor of GABA.  相似文献   

11.
The effects of quaternary N-methylated nicotine derivatives were examined on in vitro uptake of [3H]dopamine ([3H]DA) in rat striatal slices. Striatal slices were incubated with a 10 microM concentration of the following compounds: N-methylnicotinium, N-methylnornicotinium, N-methylcotininium, N,N'-dimethylnicotinium and N'-methylnicotinium salts. The results clearly indicated that significant (60%) inhibition of [3H]DA uptake occurred with those compounds possessing a N-methylpyridinium group; whereas, compounds that were methylated at the N'-pyrrolidinium position were less effective or exhibited no inhibition of [3H]DA uptake. The results suggest that high concentrations of quaternary N-methylated nicotine metabolites which are structurally related to the neurotoxin MPP+, and which may be formed in the CNS, may protect against Parkinson's Disease and explain the inverse relationship between smoking and Parkinsonism reported in epidemiologic studies.  相似文献   

12.
The environmental contaminants methylmercury (MeHg) and mercuric chloride (HgCl2) stimulated the spontaneous release of [3H]noradrenaline ([3H]NA) from hippocampal slices in a time- and concentration-dependent manner. Both MeHg and HgCl2 were similarly potent, with an EC50 of 88.4 microM and 75.9 microM, respectively. The releasing effects of MeHg and HgCl2 increased in the presence of desipramine, showing that the mechanism does not involve reversal of the transmitter transporter, and were completely blocked by reserpine preincubation, indicating a vesicular origin of [3H]NA release. The voltage-gated Na+ channel blocker tetrodotoxin (TTX) did not affect the response to mercury compounds. [3H]NA release elicited by MeHg was partially dependent on extracellular Ca2+, since it decreased significantly in a Ca2+-free EGTA-containing medium whereas HgCl2 induced a release of [3H]NA independent of extracellular Ca2+. Neither Ca2+-channels blockers, cobalt chloride (CoCl2) and (omega-conotoxin-GVIA, nor the Na+/Ca2+-exchanger inhibitor benzamil reduced MeHg-evoked [3H]NA release. Moreover, thapsigargin or caffeine, endoplasmic reticulum Ca2+-depletors, did not modify metal-evoked [3H]NA release, whereas ruthenium red, which inhibits the mitochondrial Ca2+ transport, decreased the effect of both MeHg and HgCl2. All these data indicate that, in hippocampal slices, mercury compounds release [3H]NA from the vesicular pool by a mechanism involving Ca2+ mobilization from mitochondrial stores.  相似文献   

13.
The release of l-[3H]cysteine sulfinic acid, l-[3H]glutamatic acid and [3H]GABA from preloaded slices of various rat brain regions in response to either 30 mM K+ or veratrin was investigated. All these aminoacids were released by both depolarizing agents, which did not produce any changes in the spontaneous efflux of [3H]lysine. The K+ stimulated cysteine sulfinate release from superfused slices was found partly Ca2+-dependent in the subiculum, and mainly Ca2+-independent in the hippocampus whereas the K+-elicited glutamate release was partly Ca2+-dependent in both regions. The veratrine-induced release of both cysteine sulfinate and glutamate was blocked by verapamil in a dose-dependent way, although a small verapamil concentration independent release remained. The release pattern of both amino acids was heterogeneous, but roughly correlated among brain regions, except in the subiculum and hypothalamus.These findings demonstrate the releasability of both substances from various brain regions and suggest that those releases occur from different pools, being probably mainly of neuronal origin. They give further evidence that cysteine sulfinate as well as glutamate may serve a neurotransmitter role in the CNS.  相似文献   

14.
Recently, pipecolic acid (PA) has been involved in the functioning of the GABAergic system. In the present work we have studied the effect of PA on GABA uptake and release in cerebral cortex slices. PA (100 M) was able to increase the release of [3H]GABA (90%) stimulated by mild depolarization with 15 mM potassium. If during the labeling of the tissue with [3H]GABA, -alanine was present, PA also enhanced the release (42%). However, when nipecotic acid was present instead -alanine, no stimulation of [3H]GABA release by potassium was observed neither in the control nor in the presence of PA. Spontaneous release was not affected by PA in any of the experimental conditions tested. In uptake experiments, only when -alanine was present in the medium PA significantly diminished the uptake (36%) of [3H]GABA. These results suggest that the effect of PA is mostly at the presynaptic level, inhibiting the neuronal GABA uptake and/or enhancing its release.  相似文献   

15.
The CB(1) cannabinoid receptor antagonist SR-141716A (Rimonabant) markedly diminishes the behavioral effects of opiates and nicotine and has been an important tool to ascertain the role of cannabinoid receptors in drug addiction. The present goal was to determine the less-explored interaction of SR-141716A and d-amphetamine in neurochemical and behavioral assays. Additionally, the effect of the substituents and substitution patterns on the phenyl ring located at the 5 position of SR-141716A (4-chlorophenyl), and of the CB(1)/CB(2) cannabinoid receptor agonist WIN-55,212-2, was determined. SR-141716A, AM-251 (4-iodophenyl) and NIDA-41020 (4-methoxyphenyl) did not alter amphetamine-evoked [(3)H]overflow from rat striatal slices preloaded with [(3)H]dopamine. MRI-8273-30-1 (4-fluorophenyl; 0.1-10 microM) attenuated amphetamine (3 microM)-evoked [(3)H]overflow, and MRI-8273-59 (3,4-dichlorphenyl; 0.01-10 microM) augmented amphetamine (0.3-3 microM)-evoked [(3)H]overflow. WIN-55,212-2 was without effect. In a locomotor activity experiment, SR-141716A and MRI-8273-30-1 did not alter amphetamine-induced hyperactivity. However, MRI-8273-59 (1-3 mg/kg) dose-dependently attenuated amphetamine (1 mg/kg)-induced hyperactivity. The present results suggest that SR-141716A is less efficacious to alter amphetamine effects than its reported efficacy to diminish the effects of opiates and nicotine. Modification of the 5-phenyl position of SR-141716A affords compounds that do interact with amphetamine in vitro and in vivo.  相似文献   

16.
Previous studies have suggested that the release of dopamine (DA) in the rat brain may be sensitive to modulation by opioid agents, including the endogenous opioid peptides (enkephalins and endorphins). The present study examined the effects of morphine and the enkephalin analogue D-Ala2-Met5-enkephalinamide (DALA) on the release of radiolabeled DA from superfused slices of rat brain regions. The release of preloaded [3H]DA was evoked from slices of the caudate-putamen (CP) by application of potassium (K+), nicotine (NIC), or L-glutamic acid (L-GLU). The release of [3H]DA from slices of the nucleus accumbens (NA), olfactory tubercle (OT), and substantia nigra (SN) was evoked by L-GLU. Both K+ and NIC evoked a concentration-related release of [3H]DA from CP slices. K+-induced release was only partially dependent on calcium (Ca2+), while NIC-evoked release was completely Ca2+ independent. Neither morphine nor DALA influenced the release of [3H]DA evoked by K+ or NIC. L-GLU produced a concentration-dependent release of [3H]DA from slices of CP, NA, OT, and SN. In all four brain regions, this release was (a) Ca2+-dependent, (b) strongly inhibited by low concentrations of magnesium (Mg2+), (c) greater than the release evoked by D-GLU, (d) attenuated by the putative L-GLU receptor antagonist glutamic acid diethylester (GDEE), and (e) insensitive to tetrodotoxin (TTX) except in the SN. Morphine produced a significant inhibition of L-GLU-evoked [3H]DA release from all four regions. Naloxone, which by itself had no significant effect on the L-GLU-evoked release of [3H]DA, blocked the inhibitory effect of morphine on this release in the CP but not in the other regions. Levorphanol and dextrorphan were equipotent in reducing the glutamate-stimulated release of [3H]DA from CP slices. DALA had no effect on L-GLU-induced release in any of the brain regions examined. The results indicate that L-GLU provokes regional release of DA by acting at a Mg2+-sensitive glutamate receptor. This release is selectively modified by morphine through a mechanism which is insensitive to naloxone.  相似文献   

17.
DSP4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine) treatment (50 mg/kg i.p., 10 days previously) significantly decreased the noradrenaline (NA) content of the rostral part of the nucleus accumbens. The medial and caudal areas were not affected. The nucleus accumbens appears to receive noradrenergic innervation predominantly from subcoeruleus nuclei of the pons-medulla while the locus coeruleus neurons project to the rostral area. The isoproterenol-induced enhancement of the K+-evoked release of [3H]dopamine (DA) was not affected by DSP4 treatment. Noradrenergic denervation does not appear to have been sufficient to cause up-regulation of postsynaptic -adrenoceptors.  相似文献   

18.
The electrically evoked release of radioactivity from mouse vas deferens and rat hypothalamic slices preloaded with [3H]noradrenaline was measured. In addition the release of [3H]acetylcholine from longitudinal muscle strip of guinea-pig ileum was also measured. Neurochemical evidence has been obtained that neuropeptide Y (NPY), although it co-exists and is released with (-)-noradrenaline (NA), it behaves differently as far as its effect on presynaptic modulation of chemical neurotransmission is concerned. It exerts a frequency-dependent presynaptic inhibitory effect on noradrenaline release from mouse vas deferens but has no effect on the electrically evoked release of NA from rat hypothalamus. Unlike NA, NPY does not influence the release of [3H]acetylcholine from the longitudinal muscle strip of guinea-pig ileum and does not potentiate the presynaptic effect of NA. It seems very likely, that the inhibitory effect of NPY is mediated via receptors. Its action is concentration dependent. While exogenous noradrenaline inhibited the release of noradrenaline by 91%, the maximum inhibition reached with NPY was not higher than 60%, indicating that either the intrinsic activity of NPY is lower or much less axon terminals are equipped with NPY receptors. Peptide YY (PYY) also reduced the release of NA from mouse vas deferens.  相似文献   

19.
The release of [3H]-aminobutyric acid (GABA) and its radioactive metabolites from slices of the cerebral cortex, cerebellum, striatum and brain stem of developing and adult mice was studied. The slices were incubated and superfused in the absence and presence of the GABA aminotransferase (GABA-T) inhibitor aminooxyacetic acid (AOAA). Exposure to 100 M AOAA totally inhibited GABA-T and all radioactivity released from slices was in authentic GABA. In studies on developing brain the 10-M concentration was also effective enough, except in cerebellar slices. In the absence of AOAA the major part of radioactivity spontaneously released from slices of adult cerebral cortex and cerebellum was tritiated water and still about one third part in the presence of 10 M AOAA. Potassium stimulation induced only the release of radioactive GABA but not labeled metabolites in both presence and absence of AOAA. AOAA reduced the stimulation-induced release of GABA. It is recommended that the use of GABA-T inhibitors should be discontinued in release experiments. Then labeled GABA must be separated in the effluents from its radioactive breakdown products.  相似文献   

20.
This study was designed to characterize the interaction of CH3HgCl or HgCl2 with thyroid peroxidase (TPO). Two types of experiments were performed. First, the thyroids from rats that were given 5.6 mg/kg/day of either CH3HgCl or HgCl2 for 2 weeks by intubation were subjected to histochemical treatment and then to electron microscopy. TPO activities in all cell compartments were inhibited by HgCl2 but not by CH3HgCl. Morphological observation showed that taller epithelia were induced by HgCl2, whereas flattened epithelia forming large follicles were induced by CH3HgCl. The serum thyrotropin level was substantially lowered by CH3HgCl but was unchanged by HgCl2. Second, the guaiacol oxidation by TPO in isolated and ruptured pig thyroid cells was spectrophotometrically monitored in the presence of either CH3HgCl or HgCl2. The TPO was not inhibited by CH3HgCl but was inhibited by HgCl2. These results indicated that CH3HgCl induced a hypothyroid state without affecting TPO, whereas HgCl2 inhibited TPO and induced a hypertropic state owing to compensation for loss of enzyme activity, and that the lack of inhibitory activity of CH3HgCl was not due to the inability to penetrate the cells. Therefore, there appeared to be a differential interaction of organic and inorganic forms of mercurials with the thyroid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号