首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of the peptidoglycan cell wall is carefully regulated in time and space. In nature, this essential process occurs in cells that live in fluctuating environments. Here we show that the spatial distributions of specific cell wall proteins in Caulobacter crescentus are sensitive to small external osmotic upshifts. The penicillin-binding protein PBP2, which is commonly branded as an essential cell elongation-specific transpeptidase, switches its localization from a dispersed, patchy pattern to an accumulation at the FtsZ ring location in response to osmotic upshifts as low as 40 mosmol/kg. This osmolality-dependent relocation to the division apparatus is initiated within less than a minute, while restoration to the patchy localization pattern is dependent on cell growth and takes 1 to 2 generations. Cell wall morphogenetic protein RodA and penicillin-binding protein PBP1a also change their spatial distribution by accumulating at the division site in response to external osmotic upshifts. Consistent with its ecological distribution, C. crescentus displays a narrow range of osmotolerance, with an upper limit of 225 mosmol/kg in minimal medium. Collectively, our findings reveal an unsuspected level of environmental regulation of cell wall protein behavior that is likely linked to an ecological adaptation.  相似文献   

2.
Methicillin-resistant Staphylococcus aureus (MRSA) is a global scourge, and treatment options are becoming limited. The MRSA phenotype reverts to that of beta-lactam-sensitive S. aureus when bacteria are grown at pH 5.0 in broth and, more importantly from a medical perspective (protracted, relapsing infections), after phagocytosis by macrophages, where the bacteria thrive in the acidic environment of phagolysosomes. The central factor for the MRSA phenotype is the function of the penicillin-binding protein (PBP) 2a, which maintains transpeptidase activity while being poorly inhibited by beta-lactams because of a closed conformation of its active site. We document herein by binding, acylation/deacylation kinetics, and circular dichroism spectroscopy with purified PBP 2a that at acidic pH (i) beta-lactams interact with PBP 2a more avidly; (ii) the non-covalent pre-acylation complex exhibits a lower dissociation constant and an increased rate of acyl-enzyme formation (first-order rate constant) without change in hydrolytic deacylation rate; and (iii) PBP 2a undergoes a conformational change in the presence of the antibiotic consistent with the opening of the active site from the closed conformation. These observations argue that PBP 2a most likely evolved for its physiological function at pH 7 or higher by adopting a closed conformation, which is not maintained at acidic pH. Although at the organism level the effect of acidic pH on other biological processes in MRSA could not be discounted, our report should provide the impetus for closer examination of the properties of PBP 2a at low pH and thereby identifying novel points of intervention in combating this problematic organism.  相似文献   

3.
Ceftizoxime, a beta-lactam antibiotic with high selective affinity for penicillin-binding protein 2 (PBP2) of Staphylococcus aureus, was used to select a spontaneous resistant mutant of S. aureus strain 27s. The stable resistant mutant ZOX3 had an increased ceftizoxime MIC and a decreased affinity of its PBP2 for ceftizoxime and produced peptidoglycan in which the proportion of highly cross-linked muropeptides was reduced. The pbpB gene of ZOX3 carried a single C-to-T nucleotide substitution at nucleotide 1373, causing replacement of a proline with a leucine at amino acid residue 458 of the transpeptidase domain of the protein, close to the SFN conserved motif. Experimental proof that this point mutation was responsible for the drug-resistant phenotype, and also for the decreased PBP2 affinity and reduced cell wall cross-linking, was provided by allelic replacement experiments and site-directed mutagenesis. Disruption of pbpD, the structural gene of PBP4, in either the parental strain or the mutant caused a large decrease in the highly cross-linked muropeptide components of the cell wall and in the mutant caused a massive accumulation of muropeptide monomers as well. Disruption of pbpD also caused increased sensitivity to ceftizoxime in both the parental cells and the ZOX3 mutant, while introduction of the plasmid-borne mecA gene, the genetic determinant of the beta-lactam resistance protein PBP2A, had the opposite effects. The findings provide evidence for the cooperative functioning of two native S. aureus transpeptidases (PBP2 and PBP4) and an acquired transpeptidase (PBP2A) in staphylococcal cell wall biosynthesis and susceptibility to antimicrobial agents.  相似文献   

4.
5.
We have characterized the role of the penicillin-binding protein PBP 2B in cell division of Bacillus subtilis. We have shown that depletion of the protein results in an arrest in division, but that this arrest is slow, probably because the protein is relatively stable. PBP 2B-depleted filaments contained, at about their mid-points, structures resembling partially formed septa, into which most, if not all, of the division proteins had assembled. Although clearly deficient in wall material, membrane invagination seemed to continue, indicating that membrane and wall ingrowth can be uncoupled. At other potential division sites along the filaments, no visible ingrowths were observed, although FtsZ rings assembled at regular intervals. Thus, PBP 2B is apparently required for both the initiation of division and continued septal ingrowth. Immunofluorescence microscopy showed that the protein is recruited to the division site. The pattern of localization suggested that this recruitment occurs continually during septal ingrowth. During sporulation, PBP 2B was present transiently in the asymmetrical septum of sporulating cells, and its availability may play a role in the regulation of sporulation septation.  相似文献   

6.
Penicillin-binding protein 2a (PBP2a) of Staphylococcus aureus is refractory to inhibition by available beta-lactam antibiotics, resulting in resistance to these antibiotics. The strains of S. aureus that have acquired the mecA gene for PBP2a are designated as methicillin-resistant S. aureus (MRSA). The mecA gene was cloned and expressed in Escherichia coli, and PBP2a was purified to homogeneity. The kinetic parameters for interactions of several beta-lactam antibiotics (penicillins, cephalosporins, and a carbapenem) and PBP2a were evaluated. The enzyme manifests resistance to covalent modification by beta-lactam antibiotics at the active site serine residue in two ways. First, the microscopic rate constant for acylation (k2) is attenuated by 3 to 4 orders of magnitude over the corresponding determinations for penicillin-sensitive penicillin-binding proteins. Second, the enzyme shows elevated dissociation constants (Kd) for the non-covalent pre-acylation complexes with the antibiotics, the formation of which ultimately would lead to enzyme acylation. The two factors working in concert effectively prevent enzyme acylation by the antibiotics in vivo, giving rise to drug resistance. Given the opportunity to form the acyl enzyme species in in vitro experiments, circular dichroism measurements revealed that the enzyme undergoes substantial conformational changes in the course of the process that would lead to enzyme acylation. The observed conformational changes are likely to be a hallmark for how this enzyme carries out its catalytic function in cross-linking the bacterial cell wall.  相似文献   

7.
We report the heterologous overexpression and purification of Staphylococcus aureus PBP2 and demonstrate efficient glycan polymerization from lipid II in vitro. S. aureus PBP2 is the first purified gram-positive class A penicillin-binding protein to show good transglycosylase activity. This enables further studies on this important class of enzymes.  相似文献   

8.
The effects of fosfomycin on penicillin-binding proteins (PBPs) were studied on the methicillin-resistant Staphylococcus aureus strain CIP (Collection de l'Institut Pasteur, Paris, France) 65-25 and on a methicillin-susceptible S. aureus strain CIP 65-6. The combinations of fosfomycin and oxacillin were synergistic, additive or antagonistic, depending on antibiotic concentrations. Fosfomycin induced modifications of the PBP profile of the two strains studied. In particular, it increased the expression of PBP2. This suggested that this protein is inducible; the only PBP not affected by fosfomycin was PBP3.  相似文献   

9.
K Graves-Woodward  R F Pratt 《Biochemistry》1999,38(32):10533-10542
Kinetics studies in homogeneous aqueous solution showed that solubilized penicillin-binding protein 2a (sPBP2a) of methicillin-resistant Staphylococcus aureus (a bacterial DD-peptidase) was inhibited by the amphiphilic glycolipid antibiotic moenomycin. Inhibition at the peptidase site was determined by competition experiments between moenomycin and the chromophoric beta-lactam nitrocefin. Under conditions of high salt concentration (1 M NaCl), pseudo-first-order rate constants for the reaction of moenomycin with sPBP2a leading to inhibition of acylation by nitrocefin varied with moenomycin concentration in a biphasic fashion. At low moenomycin concentration (<20 microM) little inhibition occurred, but at higher concentrations a linear increase in rate constant with moenomycin concentration was observed, yielding a second-order rate constant of inhibition of 120 s(-)(1) M(-)(1). Since the cmc of moenomycin under these conditions was shown to be ca. 20 microM, the inhibition was concluded to arise from reaction of sPBP2a with a moenomycin micelle. Protein fluorescence studies showed a pseudo-first-order decrease in fluorescence on reaction of the protein with moenomycin. The variation of this rate constant with moenomycin concentration was consistent with reaction of a moenomycin monomer with the protein with a second-order rate constant of 650 s(-)(1) M(-)(1). This monomer reaction did not occur at the DD-peptidase site since its rate was unaffected by prior acylation of the enzyme by benzylpenicillin; nor did it inhibit reaction at that site by beta-lactams. Under low salt conditions (0.175 M NaCl) where reaction could be studied over a greater range of monomer concentrations since the cmc was ca. 120 microM, similar reactions were involved. Under these circumstances, inhibition was concerted with the reaction of moenomycin monomers, although fast premicellar aggregation of moenomycin with the protein also occurred. All moenomycin interactions with sPBP2a were reversible, as revealed by detergent-extraction chromatography. Lower limits to moenomycin off-rates and equilibrium dissociation constants were 7.7 x 10(-)(4) s(-)(1) and 1.2 microM, respectively. Other amphiphiles did not react in exactly the same manner as moenomycin, indicating some degree of specificity in reactions of the latter. sPBP2a did not have detectable affinity for lipid surfaces (Triton X-114 and phosphatidylglycerol vesicles). A general scheme for reaction of moenomycin with sPBP2a is proposed.  相似文献   

10.
The additional penicillin-binding protein (PBP 2') that is important in determining intrinsic resistance in methicillin-resistant strains of Staphylococcus aureus (MRSA) has been detected immunologically in strains from a variety of world-wide locations. This additional protein has also been definitively identified both immunologically and as a PBP in methicillin-resistant strains of S. epidermidis (MRSE). The assay described is rapid, specific and sensitive and has been used to detect PBP 2' in S. haemolyticus but not in beta-lactam resistant Streptococci.  相似文献   

11.
We found that tau, one of the major microtubule-associated proteins, is a good substrate for protein kinase C. The phosphorylation occurred mainly on serine residues and the sites phosphorylated by protein kinase C were largely different from those phosphorylated by cAMP-dependent protein kinase as analyzed by phosphopeptide mapping. The protein kinase C-mediated phosphorylation of tau reduced its abilities to promote tubulin polymerization and to cross-link actin filaments. The reduction in its abilities was in proportion to the number of phosphates incorporated into tau.  相似文献   

12.
FtsI, also known as penicillin-binding protein 3, is a transpeptidase required for the synthesis of peptidoglycan in the division septum of the bacterium, Escherichia coli . FtsI has been estimated to be present at about 100 molecules per cell, well below the detection limit of immunoelectron microscopy. Here, we confirm the low abundance of FtsI and use immunofluorescence microscopy, a highly sensitive technique, to show that FtsI is localized to the division site during the later stages of cell growth. FtsI was also sometimes observed at the cell pole; polar localization was not anticipated and its significance is not known. We conclude (i) that immunofluorescence microscopy can be used to localize proteins whose abundance is as low as approximately 100 molecules per cell; and (ii) that spatial and temporal regulation of FtsI activity in septum formation is achieved, at least in part, by timed localization of the protein to the division site.  相似文献   

13.
Abstract Antisera raised against penicillin-binding protein (PBP) 1a of Streptococcus pneumoniae reacted with PBP 2 in certain strains of Streptococcus pyogenes . Cross-reactivity could be demonstrated on immunoblots as well as by immunoprecipitation of native solubilised proteins, indicating a similar structural arrangement also in the native form of the two PBPs.  相似文献   

14.
The additional penicillin-binding protein (PBP) 2' that is important in determining intrinsic resistance in methicillin-resistant strains of Staphylococcus aureus (MRSA) has been purified by affinity chromatography using monoclonal antibodies. Monoclonal antibody 1/423.10.351 reacted in ELISA with detergent extracts of membranes from resistant organisms, but not in immunoblots with PBP 2' separated by SDS-PAGE. Immunoprecipitation experiments showed that antibody 1/423.10.351 reacted with PBP 2' in detergent extracts. The latter antibody, covalently coupled to protein A-Sepharose through the Fc region, served as an affinity matrix to purify PBP 2'. The PBP was detected in immunoblots using a second monoclonal antibody, 2/401.43. Conjugation of this antibody with alkaline phosphatase afforded more rapid detection of PBP 2' for the immunological detection of PBP 2' both in affinity-purified fractions and in resistant strains.  相似文献   

15.
Fuda C  Suvorov M  Shi Q  Hesek D  Lee M  Mobashery S 《Biochemistry》2007,46(27):8050-8057
The genome of Staphylococcus aureus is constantly in a state of flux, acquiring genes that enable the bacterium to maintain resistance in the face of antibiotic pressure. The acquisition of the mecA gene from an unknown origin imparted S. aureus with broad resistance to beta-lactam antibiotics, with the resultant strain designated as methicillin-resistant S. aureus (MRSA). Epidemiological and genetic evidence suggests that the gene encoding PBP 2a of MRSA might have originated from Staphylococcus sciuri, an animal pathogen, where it exists as a silent gene of unknown function. We synthesized, cloned, and expressed the mecA gene of S. sciuri in Escherichia coli, and the protein product was purified to homogeneity. Biochemical characterization and comparison of the protein to PBP 2a of S. aureus revealed them to be highly similar. These characteristics start with sequence similarity but extend to biochemical behavior in inhibition by beta-lactam antibiotics, to the existence of an allosteric site for binding of bacterial peptidoglycan, to the issues of the sheltered active site, and to the need for conformational change in making the active site accessible to the substrate and the inhibitors. Altogether, the evidence strongly argues that the kinship between the two proteins is deep-rooted on the basis of many biochemical attributes quantified in this study.  相似文献   

16.
We determined the active site of penicillin-binding protein (PBP) 2 of Escherichia coli. A water-soluble form of PBP 2, which was constructed by site-directed mutagenesis, was purified by affinity chromatography, labeled with dansyl-penicillin, and then digested with a combination of proteases. The amino acid composition of the labeled chymotryptic peptide purified by HPLC was identical with that of the amino acid sequence, Ala-Thr-Gln-Gly-Val-Tyr-Pro-Pro-Ala-Ser330-Thr-Val-Lys-Pro (residues 321-334) of PBP 2, which was deduced from the nucleotide sequence of the pbpA gene encoding PBP 2. This amino acid sequence was verified by sequencing the labeled tryptic peptide containing the labeled chymotryptic peptide region. A mutant PBP 2 (thiol-PBP 2), constructed by site-directed mutagenesis to replace Ser330 with Cys, lacked the penicillin-binding activity. These findings provided evidence that Ser330 near the middle of the primary structure of PBP 2 is the penicillin-binding active-site residue, as predicted previously on the basis of the sequence homology. Around this active site, the sequence Ser-Xaa-Xaa-Lys was observed, which is conserved in the active-site regions of all E. coli PBPs so far studied, class A and class C beta-lactamases, and D-Ala carboxypeptidases. The COOH-terminal amino acid of PBP 2 was identified as His633.  相似文献   

17.
18.
19.
Penicillin-binding protein 2x (PBP2x) isolated from clinical beta-lactam-resistant strains of Streptococcus pneumoniae (R-PBP2x) have a reduced affinity for beta-lactam antibiotics. Their transpeptidase domain carries numerous substitutions compared with homologous sequences from beta-lactam-sensitive streptococci (S-PBP2x). Comparison of R-PBP2x sequences suggested that the mutation Gln552 --> Glu is important for resistance development. Mutants selected in the laboratory with cephalosporins frequently contain a mutation Thr550 --> Ala. The high resolution structure of a complex between S-PBP2x* and cefuroxime revealed that Gln552 and Thr550, which belong to strand beta3, are in direct contact with the cephalosporin. We have studied the effect of alterations at positions 552 and 550 in soluble S-PBP2x (S-PBP2x*) expressed in Escherichia coli. Mutation Q552E lowered the acylation efficiency for both penicillin G and cefotaxime when compared with S-PBP2x*. We propose that the introduction of a negative charge in strand beta3 conflicts with the negative charge of the beta-lactam. Mutation T550A lowered the acylation efficiency of the protein for cefotaxime but not for penicillin G. The in vitro data presented here are in agreement with the distinct resistance profiles mediated by these mutations in vivo and underline their role as powerful resistance determinants.  相似文献   

20.
ZipA is an essential cell division protein in Escherichia coli that is recruited to the division site early in the division cycle. As it is anchored to the membrane and interacts with FtsZ, it is a candidate for tethering FtsZ filaments to the membrane during the formation of the Z ring. In this study, we have investigated the requirements for ZipA localization to the division site. ZipA requires FtsZ, but not FtsA or FtsI, to be localized, indicating that it is recruited by FtsZ. Consistent with this, apparently normal Z rings are formed in the absence of ZipA. The interaction between FtsZ and ZipA occurs through their carboxy-terminal domains. Although a MalE-ZipA fusion binds to FtsZ filaments, it does not affect the GTPase activity or dynamics of the filaments. These results are consistent with ZipA acting after Z ring formation, possibly to link the membrane to FtsZ filaments during invagination of the septum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号