首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied insulin-dependent regulation of macrophage alpha(2)-macroglobulin signaling receptors (alpha(2)MSR) and low density lipoprotein receptor-related protein/alpha(2)M receptors (LRP/alpha(2)MR) employing cell binding of (125)I-alpha(2)M*, inhibition of binding by receptor-associated protein (RAP) or Ni(2+), LRP/alpha(2)MR mRNA levels, and generation of second messengers. Insulin treatment increased the number of alpha(2)M* high (alpha(2)MSR) and low (LRP/alpha(2)MR) affinity binding sites from 1, 600 and 67,000 to 2,900 and 115,200 sites per cell, respectively. Neither RAP nor Ni(2+) blocked the binding of (125)I-alpha(2)M* to alpha(2)MSR on insulin- or buffer-treated cells, but they both blocked binding to LRP/alpha(2)MR. Insulin significantly increased LRP/alpha(2)MR mRNA levels in a dose- and time-dependent manner. Insulin-augmented (125)I-alpha(2)M* binding to macrophages was severely reduced by wortmannin, LY294002, PD98059, SB203580, or rapamycin. The increase in alpha(2)MSR receptor synthesis was reflected by augmented generation of IP(3) and increased [Ca(2+)](i) levels upon receptor ligation. Incubation of macrophages with wortmannin, LY294002, PD98059, SB203580, rapamycin, or antibodies against insulin receptors before insulin treatment and alpha(2)M* stimulation significantly reduced the insulin-augmented increase in IP(3) and [Ca(2+)](i) levels. Pretreatment of cells with actinomycin D or cycloheximide blocked the synthesis of new alpha(2)MSR. In conclusion, we show here that insulin coordinately regulates macrophage alpha(2)MSR and LRP/alpha(2)MR, utilizing both the PI 3-kinase and Ras signaling pathways to induce new synthesis of these receptors.  相似文献   

2.
Cellular binding of receptor-recognized forms of alpha2-macroglobulin (alpha2M*) is mediated by the low-density lipoprotein receptor related protein (LRP) and the alpha2M signaling receptor (alpha2MSR). In nonmalignant cells, ligation of alpha2MSR promotes DNA synthesis and cellular proliferation. Here, we report that insulin treatment of highly metastatic 1-LN human prostate carcinoma selectively increases alpha2MSR expression and binding of alpha2M* to 1-LN cells. alpha2M* induces transient increases in intracellular calcium and inositol 1,4,5-trisphosphate in insulin-treated 1-LN cells, consistent with activation of alpha2MSR. Inhibition of signaling cascades activated by insulin blocks upregulation of alpha2MSR. By contrast, alpha2M* does not bind to nor induce intracellular signaling in PC-3 cells, even though 1-LN cells were subcloned from PC-3 cells. We suggest that alpha2M* behaves like a growth factor in these highly malignant cells. The 1-LN metastatic phenotype may result, in part, from aberrant expression of alpha2MSR, indicating the possible involvement of alpha2M* in tumor progression.  相似文献   

3.
The activated proteinase inhibitor alpha2-macroglobulin (alpha2M*) binds to two receptors, the low density lipoprotein receptor-related protein (LRP-1) and the alpha2M* signalling receptor (alpha2MSR). Silencing LRP-1 gene expression in macrophages by RNA interference does not block alpha2M* activation of signalling cascades. We now demonstrate that transfection of macrophages with a double-stranded RNA homologous in sequence to the Grp78 gene markedly decreased induction of inositol 1,4,5-trisphosphate (IP3) and subsequent IP3-dependent elevation of [Ca2+]i induced by alpha2M*. Concomitantly, alpha2M*-induced increase in [3H]thymidine uptake was abolished in these transfected cells. Insulin treatment significantly upregulates alpha2MSR and it also caused a marked increase in Grp78 expression which could be blocked by RNA interference. alpha2M* treatment of cells activates the Ras- and PI 3-kinase-dependent signalling pathways. Suppressing Grp78 expression leads to the loss of these activation events in transfected macrophages. We thus conclude that Grp78 is the alpha2M* signalling receptor.  相似文献   

4.
The low density lipoprotein receptor-related protein (LRP) is a scavenger receptor that binds to many proteins, some of which trigger signal transduction. Receptor-recognized forms of alpha(2)-Macroglobulin (alpha(2)M*) bind to LRP, but the pattern of signal transduction differs significantly from that observed with other LRP ligands. For example, neither Ni(2+) nor the receptor-associated protein, which blocks binding of all known ligands to LRP, block alpha(2)M*-induced signal transduction. In the current study, we employed alpha(2)-macroglobulin (alpha(2)M)-agarose column chromatography to purify cell surface membrane binding proteins from 1-LN human prostate cancer cells and murine macrophages. The predominant binding protein purified from 1-LN prostate cancer cells was Grp 78 with small amounts of LRP, a fact that is consistent with our previous observations that there is little LRP present on the surface of these cells. The ratio of LRP:Grp 78 is much higher in macrophages. Flow cytometry was employed to demonstrate the presence of Grp 78 on the cell surface of 1-LN cells. Purified Grp 78 binds to alpha(2)M* with high affinity (K(d) approximately 150 pm). A monoclonal antibody directed against Grp 78 both abolished alpha(2)M*-induced signal transduction and co-precipitated LRP. Ligand blotting with alpha(2)M* showed binding to both Grp 78 and LRP heavy chains in these preparations. Use of RNA interference to silence LRP expression had no effect on alpha(2)M*-mediated signaling. We conclude that Grp 78 is essential for alpha(2)M*-induced signal transduction and that a "co-receptor" relationship exists with LRP like that seen with several other ligands and receptors such as the uPA/uPAR (urinary type plasminogen activator or urokinase/uPA receptor) system.  相似文献   

5.
Ligation of alpha(2)-macroglobulin receptors by receptor-recognized forms of alpha(2)-macroglobulin (alpha(2)M*) activates various signaling cascades and promotes cell proliferation. It also elevates cAMP in murine peritoneal macrophages. We now report that a significant elevation of cAMP-response element-binding protein (CREB) occurs in alpha(2)M*-stimulated cells, and this effect is potentiated by isobutylmethylxanthine, dibutyryl-cAMP, or forskolin. An alpha(2)M* concentration-dependent rapid increase in phosphorylated CREB at Ser(133) also occurred, a necessary event in its activation. Inhibition of Ca(2+)/calmodulin kinase, protein kinases A and C, tyrosine kinases, ribosomal S6 kinase, farnesyl transferase, extracellular signal-regulated kinases 1/2, phosphatidylinositol 3-kinase, or p38 mitogen-activated protein kinase markedly reduce alpha(2)M*-induced phosphorylation of CREB, indicating a role for the p21(ras)-dependent and phosphatidylinositol 3-kinase signaling pathways in regulating CREB activation by alpha(2)M*. Finally, silencing the CREB gene by transfecting cells with a homologous gene sequence double-stranded RNA drastically reduced the expression of CREB and blocked the ability of alpha(2)M* to promote macrophage cell division. We conclude that cAMP-dependent signal transduction as well as other signaling cascades are essential for alpha(2)M*-induced cell proliferation.  相似文献   

6.
We have examined the expression of inducible inflammatory genes in murine macrophages from different tissues and at different stages of inflammatory activity. Although i.v. administration of IFN-gamma (10,000 U/mouse) strongly induced expression of IP-10 mRNA in the adherent cell population of the spleen, thioglycollate-elicited peritoneal macrophages were essentially unresponsive at the same dose. In contrast, D3 mRNA was expressed in both cell populations. This differential sensitivity of IP-10 mRNA expression was not restricted to stimulation by IFN-gamma as it was also seen when LPS (25 micrograms/mouse) was administered i.v. Expression of JE and KC mRNA, which encode cytokines related to IP-10, were also differentially expressed in elicited peritoneal macrophages from mice injected with LPS. Differential sensitivity was at least partially related to the state of macrophage activation because IP-10 mRNA was highly inducible in resident but not thioglycollate-elicited peritoneal macrophages. The eliciting agent was also an important determinant because proteose-peptone-elicited peritoneal macrophages were nearly as sensitive as splenic macrophages with respect to expression of IP-10 mRNA. IFN-gamma treatment induced IP-10 and D3 mRNA rapidly and transiently with the same time course in the spleen. IP-10 mRNA was not induced by IFN-gamma in TG-elicited macrophages regardless of the time after treatment. This differential expression of IP-10 was a consequence of different concentration requirements for IFN-gamma in the two cell types; thioglycollate-elicited macrophages required five- to 10-fold more IFN-gamma than did resident cells to achieve comparable IP-10 mRNA levels whether the agent was provided in vitro or in vivo. Thus variable sensitivity for induction of IP-10 mRNA was a characteristic of the macrophage itself and was not mediated by other cellular or molecular elements present in the inflammatory peritoneal cavity. The reduced sensitivity to IFN-gamma or LPS for expression of IP-10, JE, and KC mRNA as compared with TNF-alpha or D3 mRNA suggests that this distinct pattern of regulation may be restricted to members of these two related cytokine gene families that exhibit cell-type specific chemoattractant activity.  相似文献   

7.
Macrophage phagocytosis of apoptotic cells, or unopsonized viable CD47(-/-) red blood cells, can be mediated by the interaction between calreticulin (CRT) on the target cell and LDL receptor-related protein-1 (LRP1/CD91/α2-macroglobulin receptor) on the macrophage. Glucocorticoids (GC) are powerful in treatment of a range of inflammatory conditions, and were shown to enhance macrophage uptake of apoptotic cells. Here we investigated if the ability of GC to promote macrophage uptake of apoptotic cells could in part be mediated by an upregulation of macrophage LRP1 expression. Using both resident peritoneal and bone marrow-derived macrophages, we found that the GC dexamethasone could dose- and time-dependently increase macrophage LRP1 expression. The GC receptor-inhibitor RU486 could dose-dependently prevent LRP1 upregulation. Dexamethasone-treated macrophages did also show enhanced phagocytosis of apoptotic thymocytes as well as unopsonized viable CD47(-/-) red blood cells, which was sensitive to inhibition by the LRP1-agonist RAP. In conclusion, these data suggest that GC-stimulated macrophage uptake of apoptotic cells may involve an upregulation of macrophage LRP1 expression and enhanced LRP1-mediated phagocytosis.  相似文献   

8.
Lipoxygenase metabolism of arachidonic acid was compared between peritoneal macrophages from untreated rats and those from rats on day 7 after intraperitoneal injection of thioglycollate broth (TG). Resident macrophages (M phi) from untreated rats produced mainly LTB4 (303 +/- 25 pmol/5 x 10(6) cells) and 5-HETE (431 +/- 56 pmol/5 x 10(6) cells) when stimulated with 5 micrograms/ml calcium ionophore A23187 for 20 min at 37 degrees C. On the other hand, TG-elicited M phi generated less amounts of lipoxygenase metabolites (157 +/- 10 pmol LTB4 and 319 +/- 19 pmol 5-HETE/5 x 10(6) cells) with the same stimulus. Then, leukotriene productivity was examined by using subcellular fractions of each M phi lysate and an unstable epoxide intermediate, leukotriene A4. LTA4 hydrolase activity was mainly contained in soluble fractions from the both groups of M phi. The cytosol fraction from the resident M phi exhibited the following specific and total activity; 2.2 +/- 0.1 nmol LTB4/mg protein/5 min and 12.2 +/- 0.5 nmol LTB4/5 min per 10(8) cells. On the contrary, the cytosol fraction from the TG-elicited M phi showed 1.9 +/- 0.1 nmol LTB4/mg protein/5 min and 9.6 +/- 0.3 nmol LTB4/5 min per 10(8) cells. The resident M phi, however, generated 0.14 +/- 0.04 nmol O2-/min/4 x 10(5) cells whereas the TG-elicited M phi did 0.49 +/- 0.13 nmol O2-/min/4 x 10(5) cells when stimulated with wheat germ lectin. These results suggest that the TG-elicited macrophages show enhanced superoxide production but generate less lipoxygenase metabolites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The expression of the novel b-type cytochrome, which is part of the superoxide anion (O2-)-generating system in phagocytes, has been investigated in population of mouse peritoneal macrophages heterogeneous in their capability to produce O2-). Reduced minus oxidized difference spectra of intact cells showed the appearance of a b-type cytochrome with major peaks in the alpha region at 558 to 559 nm and in the gamma region at 426 to 428 nm. Resident peritoneal macrophages, as well as thioglycollate broth-elicited and Corynebacterium Parvum-activated macrophages and neutrophils expressed about 50 pmol cytochrome b/10(7) cells. In intact macrophages and neutrophils, Na-dithionite reduced greater than 75% of the cytochrome b measurable in disrupted cells. No correlation was found between capability to produce O2-) by different population of macrophages and their content of cytochrome b. When stimulated in strictly anaerobic conditions with phorbol myristic acetate, macrophages activated in vivo by i.p. injection of Corynebacterium Parvum reduced approximately 40% of their total cytochrome b. In resident peritoneal macrophages that produced five times lower amounts of O2-, cytochrome b reduction was instead undetectable. Potentiometric properties of cytochrome b was investigated in macrophage subcellular particles. Both resident and Corynebacterium Parvum-activated macrophages revealed the presence of b chromophores with very low potentials of -255 and -244 mV, respectively, whose content was not different in the two populations. These results show that resident and activated macrophages express the same amount of cytochrome b, but upon stimulation with PMA, activated macrophages recruit a higher number of cytochrome b molecules in parallel with an enhanced production of O2-.  相似文献   

10.
Opioids alter immune function by binding to opioid receptors on cells of the immune system, or indirectly by acting on receptors within the central nervous system. Mu-selective opioid agonists are generally associated with immunosuppression, whereas delta-opioid receptor-selective agonists are commonly associated with immunopotentiation. We have previously shown that intracerebroventricular administration of the nonpeptide delta-opioid receptor agonist (+)-4-((alpha R)-alpha-((2S, 5R)-4-allyl-2, 5-dimethyl-1-piperazinyl)-3-methoxybenzyl)-N, N-diethyl-benzamide (SNC 80) did not alter certain parameters of immunocompetence. In the present study, we studied the in vitro and ex vivo effects of SNC 80 on rat macrophage and lymphocyte functions. We showed that SNC 80 at concentrations of 10(-7) M and 10(-6) M, significantly (P < 0.01) stimulated the in vitro production of tumor necrosis factor-alpha (TNF-alpha) (60-100% increase) and nitric oxide (34-67% increase) by resident and LPS-stimulated peritoneal macrophages. Similarly, intravenous administration of SNC 80 (6.8 mg/kg) significantly (P < 0.01) increased the production of TNF-alpha and nitric oxide (2- and 1.5-fold increases respectively, compared with saline-injected control) by LPS-stimulated splenic macrophages. In addition, intravenous injection of SNC 80 plus Con A potentiated ex vivo LPS-stimulated macrophage functions. SNC 80 could potentially be utilized in various clinical situations where immunosuppression is undesirable.  相似文献   

11.
The low density lipoprotein receptor-related protein (LRP) consists of two subunits, M(r) approximately 515,000 and 85,000. LRP is a receptor for activated alpha2-macrogobulin (alpha2M*), Pseudomonas exotoxin A, and many other proteins. We now report that ubiquitinylation of the LRP heavy chain occurred when either Pseudomonas exotoxin A or alpha2M* bound to LRP on macrophages. Ubiquitinylation was dose-dependent and maximal about 30 min after ligation of the receptor. Addition of the proteosome inhibitor MG-132 sustained the level of ubiquitin-LRP for longer time intervals in macrophages treated with either alpha2M* or Pseudomonas exotoxin A. By contrast, when receptor associated protein (RAP) bound to LRP, ubiquitinylation did not occur. While RAP is not found in the extracellular environment it binds to LRP and is believed to function as an intracellular chaperone. The presence of RAP within the cell may, therefore, contribute to the recycling of intact LRP which has ligated and internalized its ligands.  相似文献   

12.
Previous studies of the plasma proteinase inhibitor alpha2-macroglobulin (alpha2M) demonstrated that alpha2M-proteinase complexes (alpha2M*) modulate immune responses and promotes macrophage locomotion and chemotaxis. Alpha2M* binds to cell surface-associated glucose-regulated protein 78 (GRP78), which activates downstream signaling events. The role of p21-activated protein kinase-1 and -2 (PAK-1 and -2) in promoting cellular motility is well documented. In the current study, we examined the ability of alpha2M* to activate PAK-1 and PAK-2. Upon macrophage stimulation with alpha2M*, PAK-2 is autophosphorylated, resulting in increased kinase activity; however, PAK-1 is negligibly affected. Alpha2M*-stimulated macrophages showed a marked elevation in the levels of Rac x GTP. Receptor tyrosine phosphorylation upon binding of alpha2M* to GRP78, recruits PAK-2 to the plasma membrane via the adaptor protein NCK. Consistent with this hypothesis, silencing of GRP78 gene expression greatly attenuated the levels of membrane-associated PAK-2 and NCK. PAK-2 activity was markedly decreased by inhibition of tyrosine kinases and PI3K before alpha2M* stimulation. We further demonstrate that phosphorylation of Lin-11, Isl-1, Mec-3 (LIM) kinase and cofilin is promoted by treating macrophages with alpha2M*. Thus, alpha2M* regulates activation of the PAK-2-dependent motility mechanism in these cells.  相似文献   

13.
The i.p. injection of Corynebacterium parvum (CP) into CBA/J mice effected increases in macrophage colony-forming cells (M-CFC) when spleen cells were cultured with L cell culture filtrate as a source of colony-stimulating factor. Significant increases in phagocytic macrophages (M phi) with Fc receptors for IgG2a and IgG2b immune complexes were additionally noted among the spleen cells in these mice. These M phi effectively inhibited Con A-induced lymphocyte proliferation, probably reflecting a 10-fold increase above normal controls in prostaglandin E to 47 ng/3 X 10(6) spleen cells/ml. To determine whether the suppressor M phi are immediate derivatives of splenic M-CFC, we tried to induce suppressor M phi by the injection of CP into mice depleted of bone marrow M-CFC by the earlier administration of the bone-seeking isotope, 89Sr. This procedure reduced M-CFC in the bone marrow to less than 1% of normal for more than 30 days. Monocytes in the blood fell to 5% of normal by day 10 and were 30% on day 30. Levels of resident peritoneal M phi showed relatively little change in this period. By contrast, splenic M-CFC increased to 20-fold higher than the "cold" 88Sr controls. CP-induced suppressor M phi activity, however, was sharply reduced in 89Sr marrow-depleted mice on day 10, despite the striking increase in M-CFC. There was a threefold increase in the number of phagocytic M phi binding IgG2a immune complexes, with no significant increase in IgG2b binding M phi. The kinetics of recovery of suppressor M phi activity showed that on days 20, 30, and 50 after 89Sr injection the activities reached 20%, 30%, and 70% of the "cold" control, respectively, and correlated with the recovery of significant levels of M-CFC in the bone marrow. Taken together, these observations suggest that splenic M-CFC are not an immediate source of PGE-suppressor M phi in vivo. It appears more likely that the CP-inducible suppressor M phi, in particular, originate from radiosensitive bone marrow cells or require for differentiation a microenvironment provided by bone marrow cells. The data also suggest that the expression of the Fc gamma 2b receptor and of suppressor activity by CP-induced splenic M phi are related phenomena.  相似文献   

14.
To understand murine host responses to extracellular protozoa, the capacity of peritoneal macrophages to exhibit cytotoxicity for [3H]thymidine-labeled Giardia lamblia trophozoites was investigated. Resident peritoneal macrophages from C3H/HeN mice expressed spontaneous cytotoxicity for G. lamblia in a manner that was dependent on both time and effector cell number; this cytotoxic activity was increased with cells elicited by an intraperitoneal injection of thio-glycollate. In contrast, spontaneous cytotoxicity for G. lamblia by resident and thioglycollate-elicited peritoneal macrophages from C3H/HeJ mice was markedly reduced. In the presence of anti-G. lamblia serum (ADCC), however, peritoneal macrophages from both C3H/HeN and C3H/HeJ mice exhibited striking augmentation of their cytotoxic activity for G. lamblia to equivalent levels. We conclude that macrophages from C3H/HeJ mice express defective spontaneous cytotoxicity but normal ADCC for the extracellular protozoan parasite, G. lamblia. The dissociation between the expression of these two effector cell functions suggests that macrophage spontaneous cytotoxicity and ADCC for extracellular protozoa are mediated by separate macrophage functions.  相似文献   

15.
The presence of a pinocytosis receptor, specific for mannose-fucose terminated glycoproteins, has been established on murine resident peritoneal macrophages, thioglycollate-elicited peritoneal macrophages, and macrophages derived from bone-marrow in culture. Macrophagelike cell lines (J-774 and P338.D1), a myelomonocytic cell line (427E), lymphocytes, polymorphonuclear leukocytes, and fibroblasts were negative. Binding and uptake of 125I-mannose-BSA and 125I-beta-glucuronidase, respectively, into thioglycollate-induced peritoneal macrophages is saturable (Kd 4 degrees C = 5.4 X 10(-9) M; Kuptake 37 degrees C = 7 X 10(-7) M) and sugar specific. Macrophage-macrophage (rat X mouse) hybrids prepared by fusing rat alveolar macrophages with J-774-B10 (HAT-sensitive macrophagelike cell line) expresses the mannose-fucose receptor. Karyotypes of the hybrids confirmed a 1:1 fusion of rat and mouse cells. The rat/mouse hybrids express a variety of rat and mouse antigens including Fc receptors. Fibroblast-macrophage hybrids and melanoma-macrophage hybrids were negative for mannose-fucose receptor activity. The expression of the mannose-fucose receptor by macrophages appears to be regulated independently of other macrophage markers.  相似文献   

16.
The effect of ligating the alpha2-macroglobulin signaling receptor (alpha2MSR) with receptor-recognized forms of alpha2M (alpha2M*) was studied with respect to phospholipase D (PLD) activity in murine macrophages, their plasma membranes, and nuclei. PLD activity in plasma membranes and nuclei increased linearly up to a ligand concentration of about 100 pM of either alpha2M* or a cloned and expressed receptor binding fragment (RBF). The RBF binding site mutant K1370A, which binds with high affinity to alpha2MSR, also increased nuclear PLD activity comparable to RBF and alpha2M*. Phorbol dibutyrate caused a two- to threefold stimulation of membrane and nuclear PLD activity, whereas PLD activity was nearly abolished by downregulation of protein kinase C; prior treatment with staurosporin, genestein, cyclosporin A, actinomycin D; or chelation of intracellular Ca2+. In permeabilized macrophages, isolated plasma membranes, and nuclei, GTP-gamma-S increased alpha2M*-stimulated PLD activity via a pertussis toxin-insensitive G protein and this effect was abolished on preincubation with GDP-beta-S. Incubation of plasma membranes with polyclonal antibody against sARFII, or the addition of cytosol which was immunoprecipitated with antibody against sARFII, greatly reduced alpha2M*-stimulated PLD activity in the presence of GTP-gamma-S. Preincubation of plasma membranes with GDP-beta-S prior to the addition of GTP-gamma-S and recombinant ARF1 significantly inhibited alpha2M*-stimulation of PLD activity. Nuclear PLD activity was maximally stimulated in the presence of both GTP-gamma-S and rARF1, whereas plasma membrane PLD activity was maximally stimulated in the presence of rARF1, GTP-gamma-S, RhoA, and ATP. In contrast, nuclear PLD activity was not affected by RhoA either alone or in combination with GTP-gamma-S or ATP.  相似文献   

17.
Extracellular nucleotides act as danger signals that orchestrate inflammation by purinergic receptor activation. The expression pattern of different purinergic receptors may correlate with a pro- or anti-inflammatory phenotype. Macrophages function as pro-inflammatory M1 macrophages (M1) or anti-inflammatory M2 macrophages (M2). The present study found that murine bone marrow-derived macrophages express a unique purinergic receptor profile during in vitro polarization. As assessed by real-time polymerase chain reaction (PCR), Gαs-coupled P1 receptors A2A and A2B are upregulated in M1 and M2 compared to M0, but A2A 15 times higher in M1. The ionotropic P2 receptor P2X5 is selectively upregulated in M1- and M2-polarized macrophages. P2X7 is temporarily expressed in M1 macrophages. Metabotropic P2Y receptors showed a distinct expression profile in M1 and M2-polarized macrophages: Gαq coupled P2Y1 and P2Y6 are exclusively upregulated in M2, whereas Gαi P2Y13 and P2Y14 are overexpressed in M1. This consequently leads to functional differences between M1 and M2 in response to adenosine di-phosphate stimulation (ADP): In contrast to M1, M2 showed increased cytoplasmatic calcium after ADP stimulation. In the present study we show that bone marrow-derived macrophages express a unique repertoire of purinergic receptors. We show for the first time that the repertoire of purinergic receptors is highly flexible and quickly adapts upon pro- and anti-inflammatory macrophage differentiation with functional consequences to nucleotide stimulation.  相似文献   

18.
Mononuclear phagocytes are known to play a key role in various phlogistic reactions by synthesizing and releasing products that may potentiate or inhibit inflammatory processes. The expression of these products appears to be dependent on the source of the macrophage population as well as the stimulus employed. We have studied superoxide anion (O-2) production as well as the generation of PGE2, PGF2 alpha, and TXB2 from resident, oil-elicited and thioglycollate-induced peritoneal macrophages in mice in the presence and absence of chemotactic peptides. Production of O-2, occurred only in elicited macrophages stimulated with high concentrations of FMLP or C5a; resident cells stimulated with either of the chemotactic peptides were completely unresponsive. Although resident peritoneal macrophages incubated with chemotactic peptides did not generate O-2, these cells did secrete significant levels of PGE2, PGF2 alpha, and TXB2 in response to C5a. FMLP had no stimulatory effect. Elicited macrophages generated increased levels of PGE2 and PGF2 alpha when incubated with C5a. However, production of TXB2 was not stimulated. FMLP was inactive in stimulating PGE2, PGF2 alpha, and TXB2 in all types of macrophages studied. These studies indicate a heterogeneity in the production of inflammatory mediators from various macrophage populations in response to chemotactic factors.  相似文献   

19.
Lymphocytes, activated by lectins or specific antigens, have been shown to enhance macrophage phagocytosis through the elaboration of a heat-labile soluble factor(s). Recent evidence from our laboratory revealed that resident (nonactivated) murine thymocytes and splenic lymphocytes increase peritoneal macrophage glucose metabolism through the elaboration of a heat-stable soluble factor(s). Therefore, we investigated the effect of resident lymphocyte subpopulations on macrophage Fc-dependent phagocytosis. Thioglycollate-elicited and resident peritoneal macrophages from BALB/c mice were cultured in serum-free media with syngeneic resident thymocytes or splenic T lymphocytes. Macrophage Fc-dependent phagocytosis was assayed by measuring the ingestion of 51CrSHEA. After 4 days in vitro, resident thymocytes produced a mean 160 (+/- 31) and 136% (+/- 22) increase in Fc-dependent phagocytosis by thioglycollate-elicited (thio-macrophages) and resident peritoneal macrophages, respectively. Splenic T lymphocytes increased thio-macrophage phagocytosis by 112% (+/- 41) under similar conditions. Macrophage Fc-dependent phagocytosis was increased after 24 hr of co-culture by supernatant derived from resident thymocytes and could be further enhanced by supernatant from Con A-activated thymocytes. Supernatant from guinea pig embryo fibroblasts did not increase macrophage phagocytosis. The soluble factor(s) was produced by resident thymocytes after 24 hr of preculture. This factor was active despite heating at 100 degrees C for 30 min whereas the effect of Con A-activated thymocyte supernatant was heat-labile. The stimulatory effect of resident thymocyte supernatant was not observed when the macrophages and supernatant were cultured in 2% FCS. In contrast to the factor(s) produced by resident thymocytes, the factor(s) in FCS that increased phagocytosis was heat-labile. These data suggest thymocytes and splenic T lymphocytes promote macrophage Fc-dependent phagocytosis in the absence of antigenic or lectin stimulation. This previously unrecognized effect of resident thymocytes is due to a unique heat-stable soluble factor(s) that is concealed in the presence of serum.  相似文献   

20.
Macrophage binding of receptor-recognized forms of alpha2-macrogobulin (alpha2M*) significantly increases cAMP, CREB, and activated CREB. We have now examined the participation of the PI 3-kinase/PDK/Akt/p70s6k signaling cascade in alpha2M*-induced cellular proliferation and also studied the role of CREB in these events. Exposure of cells to alpha2M* caused an approximately 2-fold increase in CREB and its phosphorylation at Ser133, phosphorylation of the regulatory subunit of PI 3-kinase, Akt phosphorylation at Ser473 or Thr308, and phosphorylated 70s6k. Silencing of the CREB gene with dsRNA homologous in sequence to the target gene, markedly reduced the levels of CREB mRNA activation of CREB, PI 3-kinase, Akt, and p70s6k in alpha2M*-stimulated macrophages. We conclude that in murine peritoneal macrophages, alpha2M*-induced increase of cAMP is involved in cellular proliferation and this process is mediated by the PI 3-kinase signaling cascade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号