首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the elucidation of the isotope effect on cell functionsof deuterium (D) incorporated into cell constituents, alterationsin the heat response of D-exchanged Chlorella ellipsoidea (D-Chlorella)were investigated. D-Chlorella cells obtained by culture inmedium that contained 60 mol% D2O were assayed for their responseto heat in H2O medium to rule out the solvent isotope effectof D2O. Upon heating at 41–45?C, the heat sensitivityof D-Chlorella was greater than that of ordinary (H-Chlorella)cells; at 43?C, the heat sensitivity of D-Chlorella was 1.5–1.6times higher than that of H-Chlorella. For the induction ofresistance to heating, preheating of the cells at a lower temperaturethan that used for heat treatment was effective in the caseof both D- and H-Chlorella. However, the optimum temperaturefor preheating of D-Chlorella (34?C) was lower than for H-Chlorella(36–37?C). With preheating at 34?C, heat-shock proteins(HSPs), in particular proteins of 62 and 79 kDa, were inducedsimilarly in both types of cell. However, the gel-electrophoreticpatterns of HSPs induced at 37?C were differed somewhat betweenD- and H-Chlorella. These results suggest that the responseof cells to heat, in particular the induction of resistanceto heating and the synthesis of HSPs, was altered by deuterationof cell constituents. (Received June 11, 1990; Accepted November 24, 1990)  相似文献   

2.
The effects of deuterium (D) on Chlorella ellipsoidea C-27 wereinvestigated. Cells grown in a medium prepared with deuteriumoxide (D2O) showed pronounced delays in cell growth and division;the length of a cell cycle in medium with 100 mol% D2O was morethan 5 times longer than that in medium prepared in H2O Thedelay caused by D2O was not overcome by either indoleaceticacid or kinetin. The biological and ultrastractural characteristicsof deuterated .Chlorella (D-Chlorella) cells were examined.The responses of D-Chlorella to cell wall-digesting enzymesdid not differ from those of normal (H-Chlorella) cells. D-Chlorellacells were enlarged, and cellular components, such as proteins,nucleic acids, lipids and ATP, were present in larger quantitiesthan those in H-cells. The chloroplast of D-Chlorella was enlarged,but the levels of component photosynthetic pigments were significantlyreduced. By contrast, mitochondria of D-Chlorella were smallerthan those of H-cells. These changes in levels of cellular componentsand in the sizes of organelles seem to be unique to deuteration. (Received May 13, 1992; Accepted July 28, 1992)  相似文献   

3.
The photosynthetic metabolism of carbon in fully deuteratedcells of Chlorella ellipsoidea C-27 (D-Chlorella), obtainedby culture in medium prepared with 100 mol% D2O, was characterizedby examining the activities of several enzymes and the levelsof metabolic regulators in a comparison with those of ordinarycells (H-Chlorella). The cellular content of starch in D-Chlorellawas more than twice that in H-Chlorella, whereas those of sucroseand glucose were significantly lower in D-Chlorella. Deuterationof Chlorella caused marked alterations in the activities ofenzymes involved in starch metabolism. There was a significantdecrease in the activity of phosphorylase, a catabolic enzyme,and a significant increase in the activity of starch synthase,an anabolic enzyme. These alterations are probably responsiblefor the increase in the amount of starch in cells. By contrast,no marked changes were observed in the activities of enzymesand the levels of metabolic inhibitors that are involved inthe synthesis of sucrose. It seems likely, therefore, that thedecrease in the amount of sucrose in D-Chlorella was causedmainly by a deficiency in sources of carbon in the cytoplasm,as a consequence of an increase in levels of starch in chloroplasts. (Received May 13, 1992; Accepted December 1, 1992)  相似文献   

4.
Deuterated Chlorella (D-Chlorella) cells were obtained by cultivationin a medium that contained D2O. The modification of cell componentsby deuterium (D) increased the heat sensitivity of cells, whichdepended on the extent of deuteration. To elucidate the mechanismof the D-induced increase in the heat sensitivity, the effectof incorporation of D on the denaturation of proteins was investigated.Proteins obtained from D-Chlorella cells, when preheated at37°C, were aggregated to a greater extent than those fromH-Chlorella against the heating at 45°C. The rate of synthesisof heat-shock proteins (hsps) in D-Chlorella was consistentlylower than that in Hcells. Furthermore, an experiment in vitroindicated that deuterated proteins denatured more rapidly thannormal proteins upon heating at 60°C. (Received August 12, 1993; Accepted November 30, 1993)  相似文献   

5.
A concentration of 0.05 M bicarbonate and over exerted an increasinglyinhibitory effect on the growth of Chlorella vulgaris, whereasa concentration lower than 0.1 M decreased the growth rate ofSpirulina platensis. In a medium containing 0.15 M bicarbonateand 0.05 M NaCl, in which the growth of Chlorella was curtailed,it was possible to maintain a mixed, continuous culture of Chlorellaand Spirulina at steady state. Carbon dioxide also exerted adecisive influence on the outcome of the competition betweenthe two algae. In a mixed culture at steady state, an immediateand sharp decline in the population of Chlorella was evidentas soon as CO2 bubbling was withheld. Prevention of the risein pH did not prevent the fast increase in the number of Chlorellacells. When the supply of CO2 was resumed just before Chlorellawas washed out, a complete recovery of the population of Chlorellatook place. The growth of Chlorella in above 0.1 M bicarbonatewas only possible when gaseous CO2 was passed through the medium.High bicarbonate content and low concentrations of gaseous CO2were identified as the major factors that prevented the contaminationof Spirulina cultures by Chlorella. (Received December 25, 1981; Accepted October 15, 1982)  相似文献   

6.
Isotope effects of deuterium on photosynthetic metabolism ofcarbon in Chlorella ellipsoidea were investigated. Photosyntheticfixation of 14C in D2O was about a half of that in H2O. Eachstep in the photosynthetic metabolism of carbon was affecteddifferently by D2O in the medium and constitutive D. (Received June 15, 1989; Accepted October 23, 1989)  相似文献   

7.
The effects of deuterium oxide (D2O) on light-induced lipidperoxidation and carbonylcyanide m-chlorophenylhydrazone (CCCP)-inducedcarotenoid photobleaching were examined in isolated chloroplastfragments. D2O stimulated the lipid peroxidation in the presenceof CCCP or methyl viologen as well as in their absence. Carotenoidphotobleaching was also enhanced by D2O. These results led tothe conclusion that the lipid peroxidation and part of the carotenoidphotobleaching were induced by the singlet molecular oxygenbecause D2O prolongs its lifetime. (Received June 23, 1978; )  相似文献   

8.
Trends in several photosynthetic parameters and their responseto changed growth light were followed for 15 d in leaves ofyoung birch saplings using a rapid-response gas exchange measuringequipment. These in vivo measurements were compared to biochemicalassays that were made from the same leaves after the gas exchangestudies. The measurements were made on leaves that were selectedprior to the study and were at that time of similar age. Forthe first 7 d the photosynthetic parameters were followed fromthe growth conditions of moderate light (200 µmol m–2s–1; referred to as controls later in the text). On day7 some of the saplings were transferred to grow either underhigh (450 µmol m–2 s–1; referred to as highlight plants) or low (75 µmol m–2 s–1; referredto as low light plants) light and the capability of the preselectedleaves for acclimation was followed for 6 d. For comparison,at the end of the experiment the measurements were made on bothcontrols and on young leaves that had developed under high andlow light. Generally the in vivo measured rate of CO2 uptake (gross photosynthesis)both at 310 ppm CO2 and 2000 ppm CO2 corresponded very wellto the biochemically determined CO2 fixation capacity in vitroafter rapid extraction (measured as the initial and total activityof Rubisco, respectively). However, if the flux of CO2 intothe chloroplasts was limited by the closure of the stomata,as was the case of the high light plants, then the in vitromeasured Rubisco activity was greater than the in vivo measuredCO2 uptake. Vmax, calculated from the mesophyll conductanceat 1% O2, exceeded the initial activity of Rubisco (assayedat saturating RuBP and CO2) constantly by 60%. The catalyticactivity of Rubisco in birch leaves was overall very low, evenwhen calculated from the total activity of Rubisco (Kcat 0.63–1.18 s–1), when compared to herbaceous C3 species. Signs of light acclimation were not observed in most of thephotosynthetic parameters and in chloroplast structure whenmature birch leaves were subjected to changes in growth lightfor 6 d. However, the change of the growth light either to highor low light caused day-to-day fluctuations in most of the measuredphotosynthetic parameters and in the case of the high lightplants signs of photoinhibition and photodestruction were alsoobserved (decrease in the amount of chlorophyll and increasein chlorophyll a/b ratio). As a result of these fluctuationsthese plants achieved a new and lower steady-state conditionbetween the light and dark reactions, as judged from the molarratio of RuBP to Rubisco binding site. Key words: Acclimation, photosynthesis, light, Rubisco, birch  相似文献   

9.
Ammonia Induces Starch Degradation in Chlorella Cells   总被引:3,自引:0,他引:3  
When ammonia was added to cells of Chlorella which had fixed14CO2 photo synthetically, 14C which had been incorporated intostarch was greatly decreased. A similar effect was observedwhen potassium nitrate and sodium nitrite were added. The ammonia-induceddecrease in 14C-starch was observed in all species of Chlorellatested. With cells of C. vulgaris 11h, most of the radioactivityin starch was recovered in sucrose, indicating that ammoniainduces the conversion of starch into sucrose. The percent of14C recovered in sucrose differed from species to species andpractically no recovery in sucrose was observed in C. pyrenoidosa.In most species tested, the enhancing effects of blue lightand ammonia on O2 uptake as well as the ammonia effect on starchdegradation were greater in cells which had been starved inphosphate medium in the dark than in non-starved cells. In contrast,the enhancing effect of ammonia on dark CO2 fixation was muchgreater in non-starved cells. C. pyrenoidosa was unique in thatblue light did not show any effect on its O2 uptake. (Received August 15, 1984; Accepted November 16, 1984)  相似文献   

10.
Time courses of photosynthetic 14CO2 fixation and its simulationare presented for Chlorella cells grown under low CO2 concentration(low-CO2 cells) and subsequently exposed to 0.2 mM NaH14CO3or 130 ppm 14CO2 in the presence or absence of carbonic anhydrase(CA) in the suspending medium. It was shown that Chlorella cells utilized only free CO2 whenNaHCO3 was given in the presence or absence of CA, or when CO2was bubbled in the absence of CA. However, the present simulationindicated that both CO3 and HCO3 were utilized when CO2was given in the presence of CA. Based on these results, weconcluded that 1) Chlorella cells absorb only free CO2 and 2)this gas is provided to algal cells in two ways, i.e., by directand indirect CO2 supply. Usually, the dissolved CO2 is directlyutilized by the algal cells (direct supply of CO2). However,when the concentration of dissolved CO2 is extremely low andwhen there is CA, CO2 reconverted from HCO3 is also utilizedby Chlorella cells (indirect supply of CO2). The utilizationof HCO3 indicated by the above simulation was explainedby the indirect supply of CO2. We further assumed that the indirectsupply of CO2 to ribulose 1,5-bisphosphate carboxylase occursmainly in the chloroplasts of low-CO2 cells containing highCA. Thus, under low CO2 concentrations, low-CO2 cells can carryout more efficient CO2 fixation than high-CO2 cells, resultingin the lower apparent Km(CO2). 3Department of Biology, Faculty of Science, Niigata University,Niigata, Japan. (Received April 2, 1980; )  相似文献   

11.
Regulation of transport of dissolved inorganic carbon (DIC)in response to CO2 concentration in the external medium hasbeen compared in two closely-related green algae, Chlorellaellipsoidea and Chlorella saccharophila. C. ellipsoidea, whengrown in high CO2, had reduced activities of both CO2 and transport and DIC transport activitieswere increased after the cells had acclimated to air. However,high CO2-grown C. saccharophila had a comparable level of photosyntheticaffinity for DIC to that of air-grown C. ellipsoidea and thiswas accompanied by a capacity to accumulate high internal concentrationsof DIC. The high photosynthetic affinity and the high intracellularDIC accumulation did not change in cells grown in air exceptthat the occurrence of external carbonic anhydrase (CA) in air-grownC. saccharophila stimulated the intracellular DIC accumulationin the absence of added CA. These data indicate that activeDIC transport is constitutively expressed in C. saccharophila,presumably because this alga is insensitive to the repressiveeffect of high CO2 on DIC transport. This strongly supportsthe existence of a direct sensing mechanism for external CO2in Chlorella species, but also indicates that external CA isregulated independently of DIC transport in Chlorella species. Key words: Carbonic anhydrase, Chlorella, CO2-insensitive, DIC transport, wild type  相似文献   

12.
We studied under laboratory conditions the post-embryonic developmentalrates (from nauplii to adult stage) of Mesocyclops thermocyclopoides,commonly found in the eutrophic and hypertrophic local ponds,in relation to different food types. Nauplii hatched from theeggs collected from laboratory-maintained mass cultures werereared at 25l.5C, using the following test diets: bacteria(Klebsiella aerogenes), cyanobacteria (Microcystis aeruginosa,as single cells and in the form of colonies), green algae (Chlorella,Scenedesmus and Chlorogonium), ciliates (Tetrahymena) and rotifers(Brachionus angularis). The developmental rates were fastest,and the proportion of nauplii reaching the copepodid stage andthat of copepodids reaching the adult stage the highest, withChlorogonium, followed by ciliates and rotifers. Developmentwas incomplete with bacteria and Microcys-tis.Ttie algae Chlorellaand Scenedesmus supported complete post-embryonic developmentonly when cultured in media enriched with beef extract, bactotryptoneand yeast extract. With rotifers as the exclusive food, >70%of the nauplii reached the copepodid stage, and >85% of thecopepodids the adult stage. The ratio (Dc/Dn) of copepodid duration(Dc) and naupliar duration (Dn) was significantly differentfrom 1.0, indicating the absence of isochronal development inM.thermocyclopoides. Our results show that post-embryonic developmentin this species is not possible with certain algal diets, probablybecause of nutritional deficiencies, and that the later stagenauplii are capable of capturing rotifers and utilizing themas food to complete their development to the adult stage.  相似文献   

13.
Trichoderma viride can be grown in deuterium oxide (D2O) concentrationsas high as 99.7%. Increasing concentrations of D2O (25–90%)progressively extend the lag phase in growth, but do not greatlyaffect the linear growth rate itself. The minimum age and sizeof colony required for photoinduction of the conidiation processis also increased. In 95% D2O, although growth rates are stillrelatively high, both photomorphogenesis and dark conidiationare completely blocked. This block does not appear to involvethe photoprocess itself, but rather post photoinductive processessuch as differentiation of conidiophores. These observations point to an alternative, or at least additional,hypothesis to the one frequently cited—that D2O acts throughstabilizing or "temperature lowering mechanisms. (Received January 6, 1978; )  相似文献   

14.
NEW ARGININE-CONTAINING PEPTIDES ISOLATED FROM CHLORELLA CELLS   总被引:1,自引:0,他引:1  
Seven kinds of arginine-containing peptides were isolated fromthe cells of Chlorella ellipsoidea, and their structures wereinvestigated. Their amino acid make-ups and quantities presentin randomly grown algal cells were found to be as follows (indecreasing order of contentin moles per dry weight of cells): Arg-Arg, Arg-Arg-Glu, Arg-Arg-Arg, Arg-Glu> Arg-(Arg2, Glu)-Glu>Arg-(Arg3,Glu), Arg-(Glu, Asp) Using synchronously mass-cultured algal cells, the quantitiesof these peptides as they changed during the algal life cyclewere followed. It was found that, except in the case of Arg-Arg-Arg,the contents (in moles per dry weight of cells) of the peptides(i) markedly increased during the stages from Dn to L1, (ii)remained almost constant or more or less appreciably increasedduring the stages from L1 to L3, and (iii) decreased sharplyduring the transformation of L3-cells (via L4) into Dn-cellsin the dark. The content of Arg-Arg-Arg remained almost constantduring the period from Dn to L3, and on transference of L3-cellsin the dark it increased temporarily and then decreased duringthe transformation of L4-cells into Dn-cells. Significance andpossible roles of these peculiar peptides in the life cycleof Chlorella were discussed. (Received May 10, 1965; )  相似文献   

15.
The protein complexes of pea (Pisum sativum L.) etioplasts,etio-chloroplasts and chloroplasts were examined using 2D BlueNative/SDS–PAGE. The most prominent protein complexesin etioplasts were the ATPase and the Clp and FtsH proteasecomplexes which probably have a crucial role in the biogenesisof etioplasts and chloroplasts. Also the cytochrome b6f (Cytb6f) complex was assembled in the etioplast membrane, as wellas Rubisco, at least partially, in the stroma. These complexesare composed of proteins encoded by both the plastid and nucleargenomes, indicating that a functional cross-talk exists betweenpea etioplasts and the nucleus. In contrast, the proteins andprotein complexes that bind chlorophyll, with the PetD subunitand the entire Cyt b6f complex as an exception, did not accumulatein etioplasts. Nevertheless, some PSII core components suchas PsbE and the luminal oxygen-evolvong complex (OEC) proteinsPsbO and PsbP accumulated efficiently in etioplasts. After 6h de-etiolation, a complete PSII core complex appeared with40% of the maximal photochemical efficiency, but a fully functionalPSII was recorded only after 24 h illumination. Similarly, thecore complex of PSI was assembled after 6 h illumination, whereasthe PSI–light-harvesting complex I was stably assembledonly in chloroplasts illuminated for 24 h. Moreover, a batteryof proteins responsible for defense against oxidative stressaccumulated particularly in etioplasts, including the stromaland thylakoidal forms of ascorbate peroxidase, glutathione reductaseand PsbS.  相似文献   

16.
The metabolism of winter rye seedlings (Secale cereale, L. ev.Winter) cultured in 99.8 per cent D2O was investigated. Comparedwith water-grown seedlings, the protein content was much lowerin the D2O-cultured seedlings and the pattern of incorporationof [3H]leucine and [3H]phenylalanine into protein was substantiallydifferent. Seedlings cultured in D2O incorporated [3H]thymidineinto DNA, but did not take up [3H]uridine. The results suggestthat some of the toxic effects of D2O culture on higher plantscan be attributed to a partial block of protein synthesis.  相似文献   

17.
Effects of Nitrogen Nutrition on Photosynthesis in Cd-treated Sunflower Plants   总被引:10,自引:0,他引:10  
Increased nitrogen supply stimulates plant growth and photosynthesis.Since it was shown that heavy metals may cause deficienciesof essential nutrients in plants the potential reversal of cadmiumtoxicity by increased N nutrition was investigated. The effectson photosynthesis of low Cd (0, 0.5, 2 or 5 mmol m-3) combinedwith three N treatments (2, 7.5 or 10 mol m-3) were examinedin young sunflower plants. Chlorophyll fluorescence quenchingparameters were determined at ambient CO2and at 100 or 800 µmolquanta m-2 s-1. The vitality index (Rfd) decreased approx. three-timesin response to 5 mmol m-3Cd, at 2 and 10 mol m-3N. The maximumphotochemical efficiency of PSII reaction centres (Fv/ Fm) wasnot influenced by Cd or N treatment. The highest Cd concentrationdecreased quantum efficiency of PSII electron transport (II)by 30%, at 2 and 10 mol m-3N, mostly due to increased closureof PSII reaction centres (qP). Photosynthetic oxygen evolutionrates at saturating CO2were decreased in plants treated with5 mmol m-3Cd, at all N concentrations. The results indicatethat Cd treatment affected the ribulose-1,5-bisphosphate (RuBP)regeneration capacity of the Calvin cycle more than other processes.At the same time, the amounts of soluble and ribulose-1,5-bisphosphatecarboxylase/oxygenase (Rubisco) protein increased with Cd treatment.Decreased photosynthesis, but substantially increased Rubiscocontent, in sunflower leaves under Cd stress indicate that asignificant amount of Rubisco protein is not active in photosynthesisand could have another function. It is shown that optimal nitrogennutrition decreases the inhibitory effects of Cd in young sunflowerplants. Copyright 2000 Annals of Botany Company Helianthus annuus L., cadmium, nitrogen, photosynthesis, Rubisco, sunflower  相似文献   

18.
Sunflower plants were grown under controlled environmental conditionswith either 0 or 10 mol m–3 phosphate (Pi). From steady-statemeasurements of gas exchange and chlorophyll fluorescence madeon intact leaves, the in vivo CO2/O2 specificity factor (invivo Ksp) of ribulose 1,5-Aisphosphate carboxylase-oxygenase(Rubisco) was determined following two methods based on modelsof C3 photosynthesis by Brooks and Farquhar (1985) and Peterson(1989). The two methods gave in vivo Ksp values for controlsunflower leaves which were similar to published values forhigher plants. Extreme Pi deficiency decreased in vivo Ksp,in sunflower leaves compared to adequate Pi. This suggests thatPi deficiency affected photorespiration less than photosynthesis.The decrease in in vivo Ksp may be due to a real change in theenzyme kinetics favouring oxygenation more than carboxylationor due to an increase in the number of CO2 molecules releasedper oxygenation; in which case the observed decrease in thein vivo Ksp determined on intact leaves will not agree numericallywith the true Ksp of Rubisco determined in vitro using purifiedenzyme from the same leaf. We discuss the implications of therelatively large photorespiration in Pi-deficient sunflowerleaves with respect to the increased dissipation of photosyntheticelectrons and photorespiratory recycling of Pi in thechloroplaststroma. Although our results on in vivo Ksp suggested a relativelylarger photorespiratory potential in Pi-deficient than controlsunflower leaves, photosynthesis was insensitive to O2 in Pi-deficientleaves; the possible reasons for this phenomenon are discussed.Under extreme Pi deficiency, O2 sensitivity of photosynthesisis not a reflection of the in vivo photorespiratory rates. Determinationof in vivo Ksp of Rubisco is a useful approach to study thephotorespiratory potential of intact leaves. Key words: Chlorophyll fluorescence, phosphate deficiency, photorespiration, photosynthesis, PSII quantum yield, Rubisco specificity factor  相似文献   

19.
A comparative study was made of the inhibition of ribulose-1,5-bisphosphatecarboxylase-oxygenase (Rubisco) amongst six cultivars of Glycinemax L. Merr., associated with synthesis of 2-carboxyarabinitol1-phosphate (CA1P) during darkness. Significantly lower meanvalues of dark inhibition of Rubisco were observed in soybeancv. Davis than in cvs Bragg, Cobb, Hardee, Gordon, and Kirby.The CA1P synthesis/degradation cycle during dark/light transitionsremained operational in cv. Bragg plants grown at low irradiance(40 µmol photons m–2 s–1). However, CA1P synthesisand degradation rates were slower in the dark (t0.5 = 240 versus25 min), and light (t0.5 = 20 versus 3.8 min) respectively,as compared to plants grown at higher irradiance (550 µmolphotons m–2 s–1). In addition, the activation stateof Rubisco in low-light-grown plants showed only a small declineafter a transition to darkness. We conclude that (a) cultivar-dependentvariation occurs amongst soybeans with respect to CAlP regulationof Rubisco, and (b) soybeans acclimated to low irradiance maydepend more on CA1P synthesis/degradation to regulate Rubisco,and less on changes in the enzyme activation state. Key words: Activation state, Glycine max, photosynthesis, Rubisco, 2-carboxyarabinitol 1-phosphate  相似文献   

20.
The effects of elevated atmospheric CO2 concentrations on theecophysiological responses (gas exchange, chlorophyll a fluorescence,Rubisco activity, leaf area development) as well as on the growthand biomass production of two poplar clones (i.e. Populus trichocarpax P. deltoides clone Beaupré and P. x euramericana cloneRobusta) were examined under open top chamber conditions. Theelevated CO2 treatment (ambient + 350 µmol mol-1) stimulatedabove-ground biomass of clones Robusta and Beaupré afterthe first growing season by 55 and 38%, respectively. This increasedbiomass production under elevated CO2 was associated with asignificant increase in plant height, the latter being the resultof enhanced internode elongation rather than an increased productionof leaves or internodes. Both an increased leaf area index (LAI)and a stimulated net photosynthesis per unit leaf contributedto a significantly higher stem biomass per unit leaf area, andthus to the increased above-ground biomass production underthe elevated CO2 concentrations in both clones. The larger LAIwas caused by a larger individual leaf size and leaf growthrate; the number of leaves was not altered by the elevated CO2treatment. The higher net leaf photosynthesis was the resultof an increase in the photochemical (maximal chlorophyll fluorescenceFm and photochemical efficiency Fv/Fm) as well as in the biochemical(increased Rubisco activity) process capacities. No significantdifferences were found in dark respiration rate, neither betweenclones nor between treatments, but specific leaf area significantlydecreased under elevated CO2 conditions.Copyright 1995, 1999Academic Press Biomass, chlorophyll a fluorescence, elevated CO2, growth, Populus, poplar, photosynthesis, respiration, Rubisco  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号