首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel strategy of amperometric assay for drug-dsDNA interactions was developed based on an inhibitory effect of antimararial drug (quinacrine) on an electrocatalytic activity of DNA-Cu(II) complex. In this method, a DNA-Cu(II) complex immobilized DNA/polyallylamine(PAA) polyion complex membrane was used as a sensing element. The electrocatalytic activity of a DNA-Cu(II) complex for hydrogen peroxide reduction was reversibly inhibited by electron blocking effect of quinacrine-dsDNA interaction and this inhibitory effect was amplified by the hydrogen peroxide reduction. This phenomenon was utilized for development of a novel amperometric biosensor for DNA-binding drug. From the amperometric current-time curves, the response time of the sensor to 20 μM quinacrine was obtained about 20s, and the detection limit of the quinacrine was found to be 10 μM estimated to a signal-to-noise ratio of 3.0. Based on the change of steady-state catalytic current, the kinetic analysis of drug-dsDNA interaction can be done in a similar manner of enzyme inhibition, and the binding constant of the quinacrine with DNA can be calculated. This measurement method would be useful for screening of wide variety of DNA-binding drugs and highly toxic pollutants.  相似文献   

2.
The fluorescent intercalation complex of ethidium bromide with DNA was used as a probe to demonstrate damage in the base-pair region of DNA, due to the action of superoxide radicals. The O.2- radical itself, generated by gamma-radiolysis of oxygenated aqueous Na-formate solutions, is rather ineffective with respect to impairment of DNA. Copper(II) ions, known to interact with DNA by coordinate binding at purines, enhance the damaging effect of O.2-. Addition of H2O2 to the DNA/Cu(II) system gives rise to further enhancement, so that DNA impairment by O.2- becomes comparable to that initiated by .OH radicals. These results suggest that the modified, Cu(II)-catalysed, Haber-Weiss process transforms O.2- into .OH radicals directly at the target molecule, DNA-Cu2+ + O.2-----DNA-Cu+ + O2 DNA-Cu+ + H2O2----DNA...OH + Cu2+ + OH- in a "site-specific" mechanism as proposed for other systems (Samuni et al. 1981; Aronovitch et al. 1984). Slow DNA decomposition also occurs without gamma-irradiation by autocatalysis of DNA/Cu(II)/H2O2 systems. In this context we observed that Cu(II) in the DNA-Cu2+ complex (unlike free Cu2+) is capable of oxidizing Fe(II) to Fe(III), thus the redox potential of the Cu2+/Cu+ couple appears to be higher than that of the Fe3+/Fe2+ couple when the ions are complexed with DNA. Metal-catalysed DNA damage by O.2- also occurs with Fe(III), but not with Ag(I) or Cd(II) ions. It was also observed that Cu(II) ions (but neither Ag(I) nor Cd(II] efficiently quench the fluorescence of the intercalation complex of ethidium bromide with DNA.  相似文献   

3.
The binuclear zinc(II) complex, [Zn2(HPTP)(CH3COO)]2+ was found highly active to cleave DNA (double-strand super-coiled DNA, pBR322 and phix174) in the presence of hydrogen peroxide. However, no TBARS (2-thiobarbituric acid reactive substance) formation was detected in a solution containing 2-deoxyribose (or 2'-deoxyguanosine, etc); where (HPTP) represents N,N,N'-N'-tetrakis(2-pyridylmethyl)-1,3-diamino-2-propanol. These facts imply that DNA cleavage reaction by the binuclear Zn(II)/H2O2 system should be due to a hydrolytic mechanism, which may be attributed to the enhanced nucleophilicity but depressed electrophilicity of the peroxide ion coordinated to the zinc(II) ion. DFT (density-functional theory) calculations on the peroxide adduct of monomeric zinc(II) have supported the above consideration. Similar DFT calculations on the peroxide adducts of the Al(III) and La(III) compounds have revealed that electrophilicity of the peroxide ion in these compounds is strongly reduced. This gives an important information to elucidate the fact that La3+ can enhance the growth of plants under certain conditions.  相似文献   

4.
The interaction of Cu(II) ions with native and denatured DNA as a function of ionic strength of the solution was studied by the equilibrium dialysis method. Graphical analysis of binding isotherms confirmed the occurrence of interstrand and intrastrand binding of Cu(II) with DNA and made possible determination of the respective binding constants. To facilitate interpretation of the data, a new molecular model of Cu(II)-DNA binding has been proposed, assuming interstrand intercalation of one Cu(II) ion between two GC pairs both in the successive even and odd groups of GC pairs, and interstrand binding of Cu(II) to the isolated GC pairs, with the exception of T-C-T and T-G-T sequences. In agreement with this model, the DNA-Cu(II) complex is most stable under the equilibrium with free Cu(II) ions at 4 degrees C, pH 6 when the molar ratio of GC pairs to Cu(II) ions bound interstrandially attains GC/Cuinter = 2 +/- 0.1.  相似文献   

5.
Direct electron transfer process of immobilized horseradish peroxidase (HRP) on a conducting polymer film, and its application as a biosensor for H2O2, were investigated by using electrochemical methods. The HRP was immobilized by covalent bonding between amino group of the HRP and carboxylic acid group of 5,2':5',2"-terthiophene-3'-carboxylic acid polymer (TCAP) which is present on a glassy carbon (GC). A pair of redox peaks attributed to the direct redox process of HRP immobilized on the biosensor electrode were observed at the HRPmid R:TCAPmid R:GC electrode in a 10 mM phosphate buffer solution (pH 7.4). The surface coverage of the HRP immobilized on TCAPmid R:GC was about 1.2 x 10(-12) mol cm(-2) and the electron transfer rate (ks) was determined to be 1.03 s(-1). The HRPmid R:TCAPmid R:GC electrode acted as a sensor and displayed an excellent specific electrocatalytic response to the reduction of H2O2 without the aid of an electron transfer mediator. The calibration range of H2O2 was determined from 0.3-1.5 mM with a good linear relation.  相似文献   

6.
A new highly catalytic and intensely sensitive amperometric sensor based on PtM (where M=Pd, Ir) bimetallic nanoparticles (NPs) for the rapid and accurate estimation of hydrogen peroxide (H(2)O(2)) by electrooxidation in physiological conditions is reported. PtPd and PtIr NPs-decorated multiwalled carbon nanotube nanocatalysts (PtM/MWCNTs) were prepared by a modified Watanabe method, and were characterized by XRD, TEM, ICP, and XAS. The sensors were constructed by immobilizing PtM/MWCNTs nanocatalysts in a Nafion film on a glassy carbon electrode. Both PtPd/MWCNTs and PtIr/MWCNTs assemblies catalyzed the electrochemical oxidation of H(2)O(2). Cyclic voltammetry characterization measurements revealed that both the PtM (M=Pd, Ir)/MWCNTs/GCE possessed similar electrochemical surface areas (~0.55 cm(2)), and electron transfer rate constants (~1.23 × 10(-3)cms(-1)); however, the PtPd sensor showed a better performance in H(2)O(2) sensing than did the PtIr counterpart. Explanations were sought from XAS measurements to explain the reasons for differences in sensor activity. When applied to the electrochemical detection of H(2)O(2), the PtPd/MWCNTs/GC electrode exhibited a low detection limit of 1.2 μM with a wide linear range of 2.5-125 μM (R(2)=0.9996). A low working potential (0V (SCE)), fast amperometric response (<5s), and high sensitivity (414.8 μA mM(-1)cm(-2)) were achieved at the PtPd/MWCNTs/GC electrode. In addition, the PtPd/MWCNTs nanocatalyst sensor electrode also exhibited excellent reproducibility and stability. Along with these attractive features, the sensor electrode also displayed very high specificity to H(2)O(2) with complete elimination of interference from UA, AA, AAP and glucose.  相似文献   

7.
The electrocatalytic reduction of protons in 1.0 M perchloric acid at glassy carbon electrodes anodically modified with a Co(II)/Pt(II) porphyrin show shifts of 400 mV versus Ag/AgCl when compared to the same electrodes which have not been anodically modified. Anodic cycling of glassy carbon electrodes coated with the Co(II)/Pt(II) porphyrin in this study form stable electroactive films capable of improving both electroreduction of protons to hydrogen and oxygen to both peroxide and water. Electrooxidation of glassy carbon electrodes coated with the free base porphyrin show no improvement in catalytic ability for the reduction of protons in acidic solution or the reduction of molecular oxygen in basic solution. Glassy carbon electrodes coated with the Co(II)/Pt(II) porphyrin indicate, by rotating disk electrochemistry, that the electrocatalysis of oxygen is a two electron process leading to the formation of hydrogen peroxide. Koutecky-Levich plots of the data obtained from the reduction of oxygen at electrode surfaces coated with the Co(II)/Pt(II) porphyrin after oxidation of the surface indicate that 25% of the oxygen is reduced by four electrons directly to water while 75% of the oxygen is reduced by two electrons to hydrogen peroxide.  相似文献   

8.
Time profiles for degradation of DNA via reaction of H2O2 with the DNA-Cu+ complex were analyzed over a wide range of concentrations of the components. The yield of DNA damage per H2O2 molecule is 10 times lower than that obtained with gamma-radiolytically generated .OH radicals. The observations can be explained by a model in which H2O2 reacts, slowly on the one hand with DNA-Cu+ by formation of toxic .OH radicals immediately at the DNA and faster on the other hand with Cu+ in the bulk solution by formation of less toxic Cu(III) intermediates.  相似文献   

9.
A novel electrochemical sensor surface with enhanced sensitivity for the detection of hydrogen peroxide has been developed based on the layer-by-layer assembly of mercapto propionic acid (MPA), cystine-based polymethylene-bridged cyclic bisureas (CBU)/gold nanoparticle (AuNP) and horseradish peroxidase (HRP) on gold electrode. Possibility of a large number of hydrogen bonds, allowed by the chemical and sterical structure of the CBU ensures the proper immobilization of the enzyme in favorable orientation and retention of enzymatic activity. Efficient electron tunneling property of AuNP together with its electrocatalytic activity leads to higher sensitivity in the detection of H(2)O(2). In cyclic voltammetry measurements a cathodic current due to direct electron transfer of HRP is observed which, indicates excellent electrocatalytic activity of the sensor surface. The biosensor surface modified with gold nanoparticle and CBU showed a lower detection limit of 50 nM for hydrogen peroxide. Chronoamperometry is performed at -0.3 V and Michaelis-Menten constant K(M)(app) value is estimated to be 4.5 μM. The newly developed sensor surface showed very high stability, reproducibility and high sensitivity.  相似文献   

10.
Hemoglobin (Hb) was immobilized on glassy carbon (GC) electrode by a kind of synthetic water-soluble polymer, poly-alpha,beta-[N-(2-hydroxyethyl)-L-aspartamide] (PHEA). A pair of well-defined and quasi-reversible cyclic voltammetric peaks was achieved, which reflected the direct electron-transfer of the Fe(III)/Fe(II) couple of Hb. The formal potential (E degrees'), the apparent coverage (Gamma(*)) and the electron-transfer rate constant (k(s)) were calculated by integrating cyclic voltammograms experimental data. Scanning electron microscopy (SEM) demonstrated the morphology of Hb-PHEA film very different from the Hb and PHEA films. Ultraviolet visible (UV-vis) spectroscopy showed Hb in PHEA film remained its secondary structure similar to the native state. In respect that the immobilized protein remained its biocatalytic activity to the reduction of hydrogen peroxide (H(2)O(2)), a kind of mediator-free biosensor for H(2)O(2) could be developed. The apparent Michaelis-Menten constant (K(m)(app)) was estimated to be 18.05 microM. The biosensor exhibited rapid electrochemical response and good stability. Furthermore, uric acid (UA), ascorbic acid (AA) and dopamine (DA) had little interferences with the amperometric signal of H(2)O(2), which provide the perspective of this H(2)O(2) sensor to be used in biological environments.  相似文献   

11.
Direct electrochemistry and thermal stability of hemoglobin (Hb) immobilized on a nanometer-sized zirconium dioxide (ZrO2) modified pyrolytic graphite (PG) electrode were studied. The immobilized Hb displayed a couple of stable and well-defined redox peaks with an electron transfer rate constant of (7.90 +/- 0.93)s(-1) and a formal potential of -0.361 V (-0.12 V versus NHE) in 0.1M pH 7.0 PBS. Both nanometer-sized ZrO2 and dimethyl sulfoxide (DMSO) could accelerate the electron transfer between Hb and the electrode. Spectroscopy analysis of the Hb/ZrO2/DMSO film showed that the immobilized Hb could retain its natural structure. This modified electrode showed a high thermal stability up to 74 degrees C and an electrocatalytic activity to the reduction of hydrogen peroxide (H2O2) without the aid of an electron mediator. The electrocatalytic response showed a linear dependence on the H2O2 concentration ranging from 1.5 to 30.2 microM with a detection limit of 0.14 microM at 3sigma. The apparent Michaelis-Menten constant KMapp for H2O2 sensor was estimated to be (0.31 +/- 0.02) mM, showing a high affinity.  相似文献   

12.
Herein, we reported for the first time one step procedure for the preparation of cytochrome c (cyt c)-poly (5-amino-2-napthalenesulfonic acid) (PANS) modified glassy carbon electrode by cyclic voltammetrically (CV). Hereafter, we called the above modified electrode as cyt c-PANS electrode. The presence of cyt c on modified electrode was investigated with electrochemical quartz crystal microbalance (EQCM), CV, and superoxide radicals reaction studies. The reaction between cyt c in the modified electrode and superoxide radicals in solution, was exemplified by cyclic voltammetric measurements. Surface morphology of the modified electrode was investigated by using atomic force microscopy (AFM). The modified electrode showed a pair of well defined redox peak in PBS solution, pH 6.7. The modified electrode utilized for electrocatalytic reduction as well as amperometric determination of hydrogen peroxide (H(2)O(2)). The detection limit and linear range for H(2)O(2) were 5 and 50 microM to 7 mM, respectively.  相似文献   

13.
A convenient and effective strategy for preparation nanohybrid film of multi-wall carbon nanotubes (MWNT) and gold colloidal nanoparticles (GNPs) by using proteins as linker is proposed. In such a strategy, hemoglobin (Hb) was selected as model protein to fabricate third-generation H2O2 biosensor based on MWNT and GNPs. Acid-pretreated, negatively charged MWNT was first modified on the surface of glassy carbon (GC) electrode, then, positively charged Hb was adsorbed onto MWNT films by electrostatic interaction. The {Hb/GNPs}n multilayer films were finally assembled onto Hb/MWNT film through layer-by-layer assembly technique. The assembly of Hb and GNPs was characterized with cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and transmission electron microscopy (TEM). The direct electron transfer of Hb is observed on Hb/GNPs/Hb/MWNT/GC electrode, which exhibits excellent electrocatalytic activity for the reduction of H2O2 to construct a third-generation mediator-free H2O2 biosensor. As compared to those H2O2 biosensors only based on carbon nanotubes, the proposed biosensor modified with MWNT and GNPs displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 2.1x10(-7) to 3.0x10(-3) M with a detection limit of 8.0x10(-8) M at 3sigma. The Michaelies-Menten constant KMapp value is estimated to be 0.26 mM. Moreover, this biosensor displays rapid response to H2O2 and possesses good stability and reproducibility.  相似文献   

14.
Lu H  Li Z  Hu N 《Biophysical chemistry》2003,104(3):623-632
The direct voltammetry and electrocatalytic properties of catalase (Cat) in polyacrylamide (PAM) hydrogel films cast on pyrolytic graphite (PG) electrodes were investigated. Cat-PAM film electrodes showed a pair of well-defined and nearly reversible cyclic voltammetry peaks for Cat Fe(III)/Fe(II) redox couples at approximately -0.46 V vs. SCE in pH 7.0 buffers. The electron transfer between catalase and PG electrodes was greatly facilitated in the microenvironment of PAM films. The apparent heterogeneous electron transfer rate constant (k(s)) and formal potential (E degrees ') were estimated by fitting square wave voltammograms with non-linear regression analysis. The formal potential of Cat Fe(III)/Fe(II) couples in PAM films had a linear relationship with pH between pH 4.0 and 9.0 with a slope of -56 mV pH(-1), suggesting that one proton is coupled with single-electron transfer for each heme group of catalase in the electrode reaction. UV-Vis absorption spectroscopy demonstrated that catalase retained a near native conformation in PAM films at medium pH. The embedded catalase in PAM films showed the electrocatalytic activity toward dioxygen and hydrogen peroxide. Possible mechanism of catalytic reduction of H(2)O(2) at Cat-PAM film electrodes was proposed.  相似文献   

15.
Flavin adenine dinucleotide (FAD)-modified zinc oxide self-assembly films were prepared using repeated cyclic voltammetry. The electrochemical reaction of the hemoglobin with the FAD/ZnO self-assembly film-modified electrodes and their electrocatalytic properties were investigated. This paper describes the successful loading of the electrochemically active molecules of hemoglobin and FAD along with ZnO by electrochemical method. In addition to the cyclic voltammetry, an electrochemical quartz crystal microbalance was used to study the growth mechanism and the properties of the films. The FAD/zinc oxide films exhibited a single redox couple, which corresponded to the FAD redox couple. The electrocatalytic properties of the O2, H2O2, trichloroacetic acid and SO(3)2- were studied by the FAD/zinc oxide films in the absence or in the presence of hemoglobin. The electrocatalytic reduction current had been developed from the cathodic peak of the FAD/zinc oxide redox couple. The electrocatalytic process involved an interaction of hemoglobin and FAD/GC film-modified electrode to increase the electrocatalytic reduction current. The electrocatalytic reduction of O2 using the FAD/zinc oxide films was investigated by cyclic voltammetry and rotating ring-disk electrode methods.  相似文献   

16.
Three kinds of polyion complex membranes were prepared on a glassy carbon electrode: polycation (poly-L-lysine)-rich membrane, polyanion (DNA)-rich membrane, and equivalent membrane. The permeation of electroactive species (e.g., hydrogen peroxide, L-ascorbate, urate, dopamine) through the membrane was measured by the oxidation current of species at base electrode. Permeation of the anionic species can be depressed through the anion-rich membrane, and permeation of the cation can also be regulated through the cation-rich membrane. It is obvious that the charge exclusion can be controlled by changing the component ratio of polycation and polyanion during preparation.  相似文献   

17.
The direct electron transfer of immobilized horseradish peroxidase (HRP) on silica-hydroxyapatite (HAp) hybrid film-modified glassy carbon electrode (GCE) and its application as H(2)O(2) biosensors were investigated. On silica/HRP-HAp/GCE, HRP displayed a fast electron transfer process accompanied with one proton participate in. This sensor exhibited an excellent electrocatalytic response to the reduction of H(2)O(2) without the aid of an electron mediator. The proposed biosensor showed good reproducibility and high sensitivity to H(2)O(2) with the detection limit of 0.35 microM. In the range of 1.0-100 microM, the catalytic reduction current of H(2)O(2) was proportional to H(2)O(2) concentration. The apparent Michaelis-Menten constant (k(m)(app)) of the biosensor was calculated to be 21.8 microM, exhibiting a high enzymatic activity and affinity for H(2)O(2).  相似文献   

18.
A simple and sensitive method for the electrocatalytic detection of NADH on a carbon paste electrode modified with a redox-active (NC)(2)C(6)H(3)-NO/(NC)(2)C(6)H(3)-NHOH (NOPH/NHOHPH) electrogenerated in situ from 4-nitrophthalonitrile (4-NPHN) is presented. The electrode modified with 4-NPHN showed an efficient electrocatalytic activity towards the oxidation of NADH with activation overpotential of 0.12V vs. Ag/AgCl. The formation of an intermediate charge transfer complex is proposed for the charge transfer reaction between NADH and the 4-NPHN-resulting system. The second-order rate constant for electrocatalytic oxidation of NADH, kappa(obs), and the apparent Michaelis-Menten constant K(M), at pH 7.0 were evaluated with rotating disk electrode (RDE) experiments, giving 1.0x10(4)mol(-1)Ls(-1) and 2.7x10(-5)molL(-1), respectively. Employing the Koutecky-Levich approach indicated that the NADH oxidation reaction involves two electrons. The sensor provided a linear response range for NADH from 0.8 up to 8.5mumolL(-1) with sensitivity, detection, quantification limits and time response of 0.50muALmumol(-1), 0.25mumolL(-1), 0.82mumolL(-1) and 0.1s, respectively. The repeatability of the measurements with the same sensor and different sensors, evaluated in terms of relative standard deviation, were 4.1 and 5.0%, respectively, for n=10.  相似文献   

19.
Direct electrochemical and electrocatalytic behaviors of hemoglobin (Hb) immobilized on carbon paste electrode (CPE) by a silica sol-gel film derived from tetraethylorthosilicate (TEOS) were investigated for the first time. Hb/sol-gel film modified electrodes showed a pair of well-defined and nearly reversible cyclic voltammetric peaks for Hb Fe(III)/Fe(II) redox couple at about -0.312 V (versus Ag/AgCl) in a pH 7.0 phosphate buffer. The formal potential of Hb heme Fe(III)/Fe(II) couple varied linearly with the increase of pH in the range of 5.0-10.0 with a slope of 49.44 mV pH(-1), which suggests that a proton transfer is accompanied with each electron transfer (ET) in the electrochemical reaction. The immobilized Hb displayed the features of peroxidase and gave excellent electrocatalytic performance to the reduction of O2, NO2(-) and H2O2. The calculated apparent Michaelis-Menten constant was 8.98 x 10(-4)M, which indicated that there was a large catalytic activity of Hb immobilized on CPE by sol-gel film toward H2O2. In comparison with other electrodes, the chemically modified electrodes, used in this direct electrochemical study of Hb, are easy to be fabricated and rather inexpensive. Consequently, the Hb/sol-gel film modified electrode provides a convenient approach to perform electrochemical research on this kind of proteins. It also has potential use in the fabrication of the third generation biosensors and bioreactors.  相似文献   

20.
Epidemiological studies have suggested that the use of aspirin is associated with a decreased incidence of human malignancies, particularly colorectal cancer. Since reactive oxygen species (ROS) are critically involved in multistage carcinogenesis, this study was undertaken to examine the ability of aspirin to inhibit ROS-mediated DNA damage. Hydrogen peroxide (H2O2)+Cu(II) and hydroquinone (HQ) + Cu(II) were used to cause oxidative DNA strand breaks in phiX-174 plasmid DNA. We demonstrated that the presence of aspirin at concentrations (0.5-2 mM) compatible with amounts in plasma during chronic anti-inflammatory therapy resulted in a marked inhibition of oxidative DNA damage induced by either H2O2/Cu(II) or HQ/Cu(II). The inhibition of oxidative DNA damage by aspirin was exhibited in a concentration-dependent manner. Moreover, aspirin was found to be much more potent than the hydroxyl radical scavengers, mannitol and dimethyl sulfoxide, in protecting against the H2O2/Cu(II)-mediated DNA strand breaks. Since the reduction of Cu(II) to Cu(I) is crucially involved in both H2O2/Cu(II)- and HQ/Cu(II)-mediated formation of hydroxyl radical or its equivalent, and the subsequent oxidative DNA damage, we examined whether aspirin could inhibit this Cu(II)/Cu(I) redox cycle. It was observed that aspirin at concentrations that showed the inhibitory effect on oxidative DNA damage did not alter the Cu(II)/Cu(I) redox cycle in either H2O2/Cu(II) or HQ/Cu(II) system. In addition, aspirin was not found to significantly scavenge H2O2. This study demonstrates for the first time that aspirin potently inhibits both H2O2/Cu(II)- and HQ/Cu(II)-mediated oxidative DNA strand breaks most likely through scavenging the hydroxyl radical or its equivalent derived from these two systems. The potent inhibition of oxidative DNA damage by aspirin may thus partially contribute to its anticancer activities observed in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号