首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gerald Mayr 《Ibis》2013,155(2):384-396
A new fossil stem group representative of Coliiformes (mousebirds) with a remarkable skull morphology is described from the late Oligocene of Germany. Oligocolius psittacocephalon sp. nov. for the first time preserves the skull of a post‐Eocene fossil mousebird. This exhibits a combination of skull features unknown from any other bird and converges on the skull of parrots in that the beak is separated from the cranium by a marked nasofrontal hinge and in that the interorbital part of the frontal bones is very wide. In addition, the mandible of the new species exhibits long retroarticular processes, which are unexpected because unlike in other coliiform birds exhibiting this feature, the short beak was probably not used for probing in substrate. It is hypothesized that the retroarticular processes of O. psittacocephalon instead served for a particular wide and forceful opening of the beak. Eight large fruit stones are situated in the area of the digestive tract of the new species. Preservation of most of these in a well‐delimited cluster in the region of the upper oesophagus suggests that, unlike in modern mousebirds, O. psittacocephalon had a crop. The new fossil shows that late Oligocene European stem group Coliiformes significantly differed from their extant relatives in morphology and probably also in feeding ecology.  相似文献   

2.
The skull of the platyrrhine primate Saimiri sciureus is distinguished by a large interorbital fenestra. Juvenile skulls still show a bony interorbital septum with some small gaps. A morphogenetic study was undertaken to better understand the structures of the interorbital region, which represents a linkage between the base of the braincase and the nasal skeleton. Already in early ontogenetic stages a reduction of the posterior portion of the nasal capsule and of the cartilaginous interorbital septum are observed, resulting in the formation of a primary interorbital fenestra. A bony interorbital septum is mainly formed in perinatal age stages by ossification of the presphenoid and by medial fusion of the frontals; the primary interorbital fenestra is retained as a small opening. It only occurs in late juvenile stages when the definitive interorbital fenestra develops by by secondary transformation of bone into a membrane of dense connective tissue; this process is most probably caused by mechanical friction of the very closely approximated eyes of both sides.  相似文献   

3.
Anthropoids and tarsiers are the only vertebrates possessing a postorbital septum. This septum, formed by the frontal, alisphenoid, and zygomatic bones, separates the orbital contents from the temporal muscles. Three hypotheses suggest that the postorbital septum evolved to resist stresses acting on the skull during mastication or incision. The facial-torsion hypothesis posits that the septum resists twisting of the face about a rostrocaudal axis during unilateral mastication; the transverse-bending hypothesis argues that the septum resists caudally directed forces acting at the lateral orbital margin during mastication or incision; and the tension hypothesis suggests that the septum resists ventrally directed components of masseter muscle force during mastication and incision. This study evaluates these hypotheses using in vitro and in vivo bone strain data recorded from the circumorbital region of owl monkeys. Incisor loading of an owl monkey skull in vitro bends the face upward in the sagittal plane, compressing the interorbital region rostrocaudally and “buckling” the lateral orbital walls. Unilateral loading of the toothrow in vitro also bends the face in the sagittal plane, compressing the interorbital region rostrocaudally and buckling the working side lateral orbital wall. When the lateral orbital wall is partially cut, so as to reduce the width of its attachment to the braincase, the following changes in circumorbital bone strain patterns occur. During loading of the incisors, lower bone strain magnitudes are recorded in the interorbital region and lateral orbital walls. In contrast, during unilateral loading of the P3, higher bone strain magnitudes are observed in the interorbital region, and generally lower bone strain magnitudes are observed in the lateral orbital walls. During unilateral loading of the M2, higher bone strain magnitudes are observed in both the interorbital region and in the lateral orbital wall ipsilateral to the loaded molar. Comparisons of the in vitro results with data gathered in vivo suggest that, during incision and unilateral mastication, the face is subjected to upward bending in the sagittal plane resulting in rostrocaudal compression of the interorbital region. Modeling the lateral orbital walls as curved plates suggests that during mastication the working side wall is buckled due to the dorsally directed component of the maxillary force which causes upward bending of the face in the sagittal plane. The balancing side lateral orbital wall may also be buckled due to upward bending of the face in the sagittal plane as well as being twisted by the caudoventrally directed components of the superficial masseter muscle force. The in vivo data do not exclude the possibility that the postorbital septum functions to improve the structural integrity of the postorbital bar during mastication. However, there is no reason to believe that a more robust postorbital bar could not also perform this function. Hypotheses stating that the postorbital septum originally evolved to reinforce the skull against routine masticatory loads must explain why, rather than evolving a postorbital septum, the stem anthropoids did not simply enlarge their postorbital bars. © 1996 Wiley-Liss, Inc.  相似文献   

4.
Parrots are exceptional among birds for their high levels of exploratory behaviour and manipulatory abilities. It has been argued that foraging method is the prime determinant of a bird's visual field configuration. However, here we argue that the topography of visual fields in parrots is related to their playful dexterity, unique anatomy and particularly the tactile information that is gained through their bill tip organ during object manipulation. We measured the visual fields of Senegal parrots Poicephalus senegalus using the ophthalmoscopic reflex technique and also report some preliminary observations on the bill tip organ in this species. We found that the visual fields of Senegal parrots are unlike those described hitherto in any other bird species, with both a relatively broad frontal binocular field and a near comprehensive field of view around the head. The behavioural implications are discussed and we consider how extractive foraging and object exploration, mediated in part by tactile cues from the bill, has led to the absence of visual coverage of the region below the bill in favour of more comprehensive visual coverage above the head.  相似文献   

5.
New crania of the Oligocene anthropoidean Aegyptopithecus provide a test of the hypothesized tarsier-anthropoidean clade. Three cranial characters shared by Tarsius and some modern anthropoideans (apical interorbital septum, postorbital septum, "perbullar" carotid pathway) were examined. 1) An apical interorbital septum is absent in Aegyptopithecus. A septum does occur in Galago senegalensis (Lorisidae) and Microcebus murinus (Cheirogaleidae), so the presence of a septum is not strong evidence favoring a tarsiiform-anthropoidean clade. 2) In Aegyptopithecus and other anthropoideans, the postorbital septum is formed mainly by a periorbital flange of the zygomatic that extends medially from the lateral orbital margin onto or near the braincase. The postorbital plate of Tarsius is formed by frontal and alisphenoid flanges that extend laterally from the braincase to the zygomatic's frontal process, which is not broader than the postorbital bars of other prosimians. Periorbital flanges evolved in Tarsius for support or protection of the enormous eyes, as suggested by the occurrence of maxillary and frontal flanges that cup portions of the eye but do not separate it from temporal muscles. 3) The internal carotid artery of Aegyptopithecus enters the bulla posteriorly and crosses the anteroventral part of the promontorium. The tympanic cavity was probably separated from the anteromedial cavity by a septum stretching from the carotid channel to the ventrolateral bullar wall. In Tarsius, the carotid pathway is prepromontorial, and a septum stretches from the carotid channel to the posteromedial bullar wall. Quantitative analyses indicate that anterior carotid position has evolved because of erect head posture. The cranium of Oligocene anthropoideans thus provides no support for the hypothesized tarsier-anthropoidean clade.  相似文献   

6.
Parrots have developed novel head structures in their evolutionary history. The appearance of two new muscles for strong jaw adduction is especially fascinating in developmental and evolutionary contexts. However, jaw muscle development of parrots has not been described, despite its uniqueness. This report first presents the normal developmental stages of the cockatiel (Nymphicus hollandicus), comparable to that of the chick. Next, the peculiar skeletal myogenesis in the first visceral arch of parrots is described, mainly focusing on the development of two new jaw muscles. One of the parrot-specific muscles, M. ethmomandibularis, was initially detected at Nymphicus Stage 28 (N28) as the rostral budding of M. pterygoideus. After N32, the muscle significantly elongates rostrodorsally toward the interorbital septum, following a course lateral to the palatine bone. Another parrot-specific muscle, M. pseudomasseter, was first recognized at N36. The muscle branches off from the posteromedial M. adductor mandibulae externus and grows in a dorsolateral direction, almost covering the lateral surface of the jugal bar. The upper tip of the muscle is accompanied by condensed mesenchyme, which seems to be derived from cephalic neural crest cells.  相似文献   

7.
Among primates, squirrel monkeys uniquely possess an interorbital fenestra, in which the midline bony orbitosphenoid septum is largely absent and the soft tissues of the orbits are separated only by a thin membrane. Neural development may contribute to the approximation of the orbits to the midline in Saimiri, insofar as other platyrrhines with relatively large brains also have relatively narrow interorbital spaces compared to their near relatives. In Saimiri the narrow spacing of the orbits is further exacerbated by intense predation pressure on infants that may select for precocial neonates. The result is a large-headed neonate that is subject to unusual parturition constraints. These parturition constraints apply to the size and dolichocephalic shape of the squirrel monkey head in general, and to the relatively large eyes and approximated orbits in particular. The unique interorbital condition in Saimiri is an example of the effects of life history on skeletal morphology. © 1995 Wiley-Liss, Inc.  相似文献   

8.
To contribute to the knowledge of the cranium of older bird embryos, the chondrocranium and osteocranium of the Black-headed Gull (Larus ridibundus) are described. The chondrocranium of the Black-headed Gull is compared with the chondrocranium of other bird species with special consideration of functional and phylogenetic aspects. As a result a "grundplan" of the bird chondrocranium is reconstructed. Most of the chondrocranial autapomorphies of birds are connected with the enlargement of the eyes, the development of a beak and a prokinetic skull, and the reduction of the olfactory system.  相似文献   

9.
Comparative psychologists interested in the evolution of intelligence have focused their attention on social primates, whereas birds tend to be used as models of associative learning. However, corvids and parrots, which have forebrains relatively the same size as apes, live in complex social groups and have a long developmental period before becoming independent, have demonstrated ape-like intelligence. Although, ornithologists have documented thousands of hours observing birds in their natural habitat, they have focused their attention on avian behaviour and ecology, rather than intelligence. This review discusses recent studies of avian cognition contrasting two different approaches; the anthropocentric approach and the adaptive specialization approach. It is argued that the most productive method is to combine the two approaches. This is discussed with respects to recent investigations of two supposedly unique aspects of human cognition; episodic memory and theory of mind. In reviewing the evidence for avian intelligence, corvids and parrots appear to be cognitively superior to other birds and in many cases even apes. This suggests that complex cognition has evolved in species with very different brains through a process of convergent evolution rather than shared ancestry, although the notion that birds and mammals may share common neural connectivity patterns is discussed.  相似文献   

10.
In many birds, red, orange and yellow feathers are coloured by carotenoid pigments, but parrots are an exception. For over a century, biochemists have known that parrots use an unusual set of pigments to produce their rainbow of plumage colours, but their biochemical identity has remained elusive until recently. Here, we use high-performance liquid chromatography to survey the pigments present in the red feathers of 44 species of parrots representing each of the three psittaciform families. We found that all species used the same suite of five polyenal lipochromes (or psittacofulvins) to colour their plumage red, indicating that this unique system of pigmentation is remarkably conserved evolutionarily in parrots. Species with redder feathers had higher concentrations of psittacofulvins in their plumage, but neither feather colouration nor historical relatedness predicted the ratios in which the different pigments appeared. These polyenes were absent from blood at the time when birds were replacing their colourful feathers, suggesting that parrots do not acquire red plumage pigments from the diet, but instead manufacture them endogenously at growing feathers.  相似文献   

11.
Parrots (order: Psittaciformes) are the most common captive birds and have attracted human fascination since ancient times because of their remarkable intelligence and ability to imitate human speech. However, their genome organization, evolution and genomic relation with other birds are poorly understood. Chromosome painting with DNA probes derived from the flow-sorted macrochromosomes (1-10) of chicken (Gallus gallus, GGA) has been used to identify and distinguish the homoeologous chromosomal segments in three species of parrots, i.e., Agapornis roseicollis (peach-faced lovebird); Nymphicus hollandicus (cockatiel) and Melopsittacus undulatus (budgerigar). The ten GGA macrochromosome paints unequivocally recognize 14 to 16 hybridizing regions delineating the conserved chromosomal segments for the respective chicken macrochromosomes in these representative parrot species. The cross-species chromosome painting results show that, unlike in many other avian karyotypes with high homology to chicken chromosomes, dramatic rearrangements of the macrochromosomes have occurred in parrot lineages. Among the larger GGA macrochromosomes (1-5), chromosomes 1 and 4 are conserved on two chromosomes in all three species. However, the hybridization pattern for GGA 4 in A. roseicollis and M. undulatus is in sharp contrast to the most common pattern known from hybridization of chicken macrochromosome 4 in other avian karyotypes. With the exception of A. roseicollis, chicken chromosomes 2, 3 and 5 hybridized either completely or partially to a single chromosome. In contrast, the smaller GGA macrochromosomes 6, 7 and 8 displayed a complex hybridization pattern: two or three of these macrochromosomes were found to be contiguously arranged on a single chromosome in all three parrot species. Overall, the study shows that translocations and fusions in conjunction with intragenomic rearrangements have played a major role in the karyotype evolution of parrots. Our inter-species chromosome painting results unequivocally illustrate the dynamic reshuffling of ancestral chromosomes among the karyotypes of Psittaciformes.  相似文献   

12.
In non-primates the nasal fossa manifests a posterior intrasphenoidal extension, accommodating the hindermost ethmoturbinals and an accompanying series of paranasal ectoturbinal cavities within the interorbital region. Primitive primates (e.g. Tarsius, Hapale, Saimiri) show phylogenetic loss of these cavities (together with the interorbital region and posterior ethmoturbinals) and the presence of an interorbital septum: a maxillary sinus only is present and the frontal and sphenoid bones are not pneumatized. In some phylogenetically advanced primates (e.g. Lagothrix, Alouatta) trends of cerebral enlargement and resultant separation of the orbits have induced some degree of reappearance of the lost interorbital territory, and an enhanced but variable pattern of peranasal pneumatization, involving the frontal and the sphenoid. Details of this pattern are described for Tarsius, Saimiri, Hapale, Cebus, Lagothrix and Alouatta, distinction being made between homologous and merely analogous paranasal cavities.  相似文献   

13.
Although eating clay at licks (a form of geophagy) has been described, there are few behavioral data on temporal patterns, social interactions, species associations, or reactions to potential predators. We examined the behavior of nine species of macaws, parrots, and parakeets at the Machiguenga Ccolpa, a clay lick on the Rio Manu, Peru in the dry season. Three distinct mixed-species groups used the licks: in the early morning (parrots and small macaws), in mid-morning (large macaws), and in the early afternoon (parakeets), although the latter two groups used the licks at other times of day as well. The first parrots to begin eating at the lick in the early morning were yellow-crowned parrots (Amazona ochrocephala) and dusky-headed parakeets (Aratinga weddellii), followed by blue-headed parrots Pionus sordidus, and then by mealy (Amazona farinosa) and orange-cheeked (Pionopsitta barrabandi) parrots, and chestnut-fronted macaws (Ara severa). Although blue-headed parrots fed in dense groups of over 50, the others rarely exceeded 20 individuals. Scarlet macaws (A. macao) sometimes fed alone or joined the early morning groups, but most associated with a large group of red and green macaws (A. chloroptera) that arrived, often scaring off the smaller birds. On average, about 100 macaws and parrots fed in the early morning, macaw feeding groups averaging just over 40, and the parakeets averaged over 70. Average time at the lick ranged from 28 min for yellow-crowned parrots to 47 min for tui parakeets. Of the early morning group, blue-headed and mealy parrots were the most aggressive and orange-cheeked parrots were the least aggressive. Red and green macaws were more aggressive than scarlet macaws; the parakeets were equally aggressive. All species had more aggressive interactions with conspecifics than with other species. Responses to intruders and predators varied by species of parrot/macaw and type of intruder. In response to intruders or loud calls, responses could be partial (some individuals flew away, circled, and returned), temporary (all individuals flew away but returned within a few minutes), or total (all flew away and abandoned feeding for at least a half hour). The large macaws showed the lowest rate of total abandonment and the parakeets showed the highest. People passing up or down river in boats scared birds from the lick. The local residents (Machiguenga tribespeople in boats) elicited a much greater response than did the researchers. In the recent past, macaws and parrots were hunted for food, feathers, and the pet trade, and the birds response, as well as the presence of parrot and macaw feathers in local villages we visited, suggests some continued exploitation, or a long-term memory in the birds.Communicated by R.F. Oliveira  相似文献   

14.
Recumbirostran ‘microsaurs,’ a group of early tetrapods from the Late Carboniferous and Early Permian, are the earliest known example of adaptation to head-first burrowing in the tetrapod fossil record. However, understanding of the diversity of fossorial adaptation within the Recumbirostra has been hindered by poor anatomical knowledge of the more divergent forms within the group. Here we report the results of μCT study of Quasicaecilia texana, a poorly-known recumbirostran with a unique, broad, shovel-like snout. The organization of the skull roof and braincase of Quasicaecilia is found to be more in line with that of other recumbirostrans than previously described, despite differences in overall shape. The braincase is found to be broadly comparable to Carrolla craddocki, with a large presphenoid that encompasses much of the interorbital septum and the columella ethmoidalis, and a single compound ossification encompassing the sphenoid, otic, and occipital regions. The recumbirostran braincase conserves general structure and topology of braincase regions and cranial nerve foramina, but it is highly variable in the number of ossifications and their extent, likely associated with the reliance on braincase ossifications to resist compression during sediment compaction and mechanical manipulation by epaxial and hypaxial musculature. Expansion of the deep ventral neck musculature in Quasicaecilia, autapomorphic among recumbirostrans, may reflect unique biomechanical function, and underscores the importance of future attention to the role of the cervical musculature in contextualizing the origin and evolution of fossoriality in recumbirostrans.  相似文献   

15.
The parrot (Psittaciformes) show many highly distinctive features of head morphology. Jaw and tongue musculature have been investigated in seven other orders, for most of which parrot affinities have been postulated. The functional properties and evolution of various modifications found in parrots are discussed. Several features seen in the Tooth-billed pigeon ( Didunculus strigirostris ) show a significant trend towards conditions in parrots, favouring the view that the Columbiformes are the order mostly closely related to the Psittaciformes. These features also set Didunculus apart from other pigeons, and it is strongly urged that it be given full family rank.  相似文献   

16.
The shift from a diurnal to nocturnal lifestyle in vertebrates is generally associated with either enhanced visual sensitivity or a decreased reliance on vision. Within birds, most studies have focused on differences in the visual system across all birds with respect to nocturnality-diurnality. The critically endangered Kakapo (Strigops habroptilus), a parrot endemic to New Zealand, is an example of a species that has evolved a nocturnal lifestyle in an otherwise diurnal lineage, but nothing is known about its' visual system. Here, we provide a detailed morphological analysis of the orbits, brain, eye, and retina of the Kakapo and comparisons with other birds. Morphometric analyses revealed that the Kakapo's orbits are significantly more convergent than other parrots, suggesting an increased binocular overlap in the visual field. The Kakapo exhibits an eye shape that is consistent with other nocturnal birds, including owls and nightjars, but is also within the range of the diurnal parrots. With respect to the brain, the Kakapo has a significantly smaller optic nerve and tectofugal visual pathway. Specifically, the optic tectum, nucleus rotundus and entopallium were significantly reduced in relative size compared to other parrots. There was no apparent reduction to the thalamofugal visual pathway. Finally, the retinal morphology of the Kakapo is similar to that of both diurnal and nocturnal birds, suggesting a retina that is specialised for a crepuscular niche. Overall, this suggests that the Kakapo has enhanced light sensitivity, poor visual acuity and a larger binocular field than other parrots. We conclude that the Kakapo possesses a visual system unlike that of either strictly nocturnal or diurnal birds and therefore does not adhere to the traditional view of the evolution of nocturnality in birds.  相似文献   

17.
Dietary protein deficiency is considered a major obstacle in the evolution of highly specialized nectarivorous and frugivorous birds. Proposed physiological mechanisms that enable such specialists to subsist on low‐protein diets include minimized endogenous protein losses, which contribute to reduced protein requirements. I compared these traits among nectarivorous red lories (Eos bornea), frugivorous Pesquet's parrots (Psittrichas fulgidus), and granivorous budgerigars (Melopsittacus undulatus). My results suggest that, relative to budgerigars, red lories and Pesquet's parrots have low endogenous protein losses and reduced crude protein (CP) requirements. Based on nitrogen balance analyses, diets containing 1.0%, 3.2%, and 8.2% CP (on a dry matter (DM) basis) would meet the minimal protein requirements for maintenance for red lories, Pesquet's parrots, and budgerigars, respectively. Low endogenous protein losses and reduced protein requirements are effective physiological adaptations that allow birds such as red lories and Pesquet's parrots to specialize on low‐protein foods. Zoo Biol 22:163–177, 2003. © 2003 Wiley‐Liss, Inc.  相似文献   

18.
Carotenoid pigments are commonly used as colorants of feathers and bare parts by birds. However, parrots (Aves: Psittaciformes) use a novel class of plumage pigments (called psittacofulvins) that, like carotenoids, are lipid-soluble and red, orange, or yellow in color. To begin to understand how and why parrots use these pigments and not carotenoids in their feathers, we must first describe the distribution of these two types of pigments in the diet, tissues, and fluids of these birds. Here, we studied the carotenoid content of blood in five species of parrots with red in their plumage to see if they show the physiological ability to accumulate carotenoids in the body. Although Scarlet (Ara macao) and Greenwing Macaws (Ara chloroptera) and Eclectus (Eclectus roratus), African Gray (Psittacus erithacus) and Blue-fronted Amazon (Amazona aestiva) Parrots all use psittacofulvins to color their feathers red, we found that they also circulated high concentrations of both dietary (lutein, zeaxanthin, beta-cryptoxanthin) and metabolically derived (anhydrolutein, dehydrolutein) carotenoids through blood at the time of feather growth, at levels comparable to those found in many other carotenoid-colored birds. These results suggest that parrots have the potential to use carotenoids for plumage pigmentation, but preferentially avoid depositing them in feathers, which is likely under the control of the maturing feather follicle. As there is no evidence of psittacofulvins in parrot blood at the tune of feather growth, we presume that these pigments are locally synthesized by growing feathers within the follicular tissue.  相似文献   

19.
Parrots (order Psittaciformes) have developed novel cranial morphology. At the same time, they show considerable morphological diversity in the cranial musculoskeletal system, which includes two novel structures: the suborbital arch and the musculus (M.) pseudomasseter. To understand comprehensively the evolutionary pattern and process of novel cranial morphology in parrots, phylogenetic and developmental studies were conducted. Firstly, we undertook phylogenetic analyses based on mitochondrial ribosomal RNA gene sequences to obtain a robust phylogeny among parrots, and secondly we surveyed the cranial morphology of parrots extensively to add new information on the character states. Character mapping onto molecular phylogenies indicated strongly the repeated evolution of both the suborbital arch and the well-developed M. pseudomasseter within parrots. These results also suggested that the direction of evolutionary change is not always identical in the two characters, implying that these characters are relatively independent or decoupled structures behaving as separate modules. Finally, we compared the developmental pattern of jaw muscles among bird species and found a difference in the timing of M. pseudomasseter differentiation between the cockatiel Nymphicus hollandicus (representative of a well-developed condition) and the peach-faced lovebird Agapornis roseicollis (representative of an underdeveloped condition). On the basis of this study, we suggest that in the development of novel traits, modularity and heterochrony facilitate the diversification of parrot cranial morphology.  相似文献   

20.
During cardiogenesis the epicardium, covering the surface of the myocardial tube, has been ascribed several functions essential for normal heart development of vertebrates from lampreys to mammals. We investigated a novel function of the epicardium in ventricular development in species with partial and complete septation. These species include reptiles, birds and mammals. Adult turtles, lizards and snakes have a complex ventricle with three cava, partially separated by the horizontal and vertical septa. The crocodilians, birds and mammals with origins some 100 million years apart, however, have a left and right ventricle that are completely separated, being a clear example of convergent evolution. In specific embryonic stages these species show similarities in development, prompting us to investigate the mechanisms underlying epicardial involvement. The primitive ventricle of early embryos becomes septated by folding and fusion of the anterior ventricular wall, trapping epicardium in its core. This folding septum develops as the horizontal septum in reptiles and the anterior part of the interventricular septum in the other taxa. The mechanism of folding is confirmed using DiI tattoos of the ventricular surface. Trapping of epicardium-derived cells is studied by transplanting embryonic quail pro-epicardial organ into chicken hosts. The effect of decreased epicardium involvement is studied in knock-out mice, and pro-epicardium ablated chicken, resulting in diminished and even absent septum formation. Proper folding followed by diminished ventricular fusion may explain the deep interventricular cleft observed in elephants. The vertical septum, although indistinct in most reptiles except in crocodilians and pythonidsis apparently homologous to the inlet septum. Eventually the various septal components merge to form the completely septated heart. In our attempt to discover homologies between the various septum components we aim to elucidate the evolution and development of this part of the vertebrate heart as well as understand the etiology of septal defects in human congenital heart malformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号