首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA becomes methylated in vivo through the action of a specific group of enzymes known as methyltransferases or methylases. Plants are known to possess the methyltransferases (Met), chromo methyltransferases (CMT), and domainrearranged methyltransferases (DRM) methylase families, which affect cytosine methylation within different contexts. DNA methylation has been proposed to play a role in secondary plant metabolism, but there is a lack of valid data connecting these two processes. In this study, we treated control and transformed with rolB gene from Agrobacterium rhizogenes cell cultures of Vitis amurensis with the demethylation agent 5-azacytidine (azaC). The purpose of the current investigation was to study effects of induced DNA demethylation on methyltransferase gene expression in connection to resveratrol production, a naturally occurring polyphenol that has a wide range of intriguing biological properties. Using semi-quantitative and real-time PCR, we showed that rolB gene transformation of V. amurensis cells decreased Met and CMT expression, but significantly increased DRM expression. AzaC treatment of the control and the rolB-transgenic calli significantly increased expression of all methylases (excluding Met). Following 3 months of azaC treatment, we detected significantly elevated levels of rolB gene expression in the transgenic calli. In current paper, we discuss how methylase expression may influence resveratrol biosynthesis and rolB transgene expression. Effects of azaC application are discussed.  相似文献   

2.
Resveratrol, a naturally occurring polyphenol, has been reported to exhibit a wide range of valuable biological and pharmacological properties. In the present investigation, we show that transformation of Vitis amurensis Rupr. with the oncogene rolC of Agrobacterium rhizogenes increased resveratrol production in the two transformed callus cultures 3.7 and 11.9 times. The rolC-transformed calli were capable of producing 0.099% and 0.144% dry weight of resveratrol. We characterized phenylalanine ammonia-lyase (PAL) and stilbene synthase (STS) gene expression in the two rolC transgenic callus cultures of V. amurensis. In the rolC transgenic culture with higher resveratrol content, expression of VaPAL3, VaSTS3, VaSTS4, VaSTS5, VaSTS6, VaSTS8, VaSTS9, and VaSTS10 was increased; while in the rolC culture with lower resveratrol content, expression of VaPAL3 and VaSTS9 was increased. We suggest that transformation of V. amurensis calli with the rolС gene induced resveratrol accumulation via selective enhancement of expression of individual PAL and STS genes involved in resveratrol biosynthesis. We compared the data on PAL and STS gene expression in rolC transgenic calli with the previously obtained results for rolB transgenic calli of V. amurensis. We propose that the transformation of V. amurensis with the rolC and rolB genes of A. rhizogenes increased resveratrol accumulation through different regulatory pathways.  相似文献   

3.
Minibayeva  F.  Polygalova  O.  Alyabyev  A.  Gordon  L. 《Plant and Soil》2000,219(1-2):169-175
The shifts of Ca2+, K+ and proton homeostasis of wheat (Triticum aestivum L. M. cv Ljuba) root cells induced by the Ca2+-ionophore A23187 caused different responses, depending on the time of exposure to the ionophore. Oxygen consumption and heat production by roots were increased when the Ca2+-specific effect of A23187 was expressed. Ultrastructural re-organization of cell organelles was found to follow the ion shifts. The endoplasmic reticulum, Golgi apparatus and mitochondria rearranged their membranes following treatment. The increased ion permeability of root cell membranes is proposed to cause an excessive energy expenditure for the restoration of ion homeostasis.  相似文献   

4.
The reversibility of hyperactivated motility was tested in caudal epididymal mouse sperm by treating them with 1 microM calcium ionophore A23187 in dimethyl sulfoxide (DMSO), followed 2 min later by the addition of medium containing high levels of bovine serum albumin (BSA) (final concentrations: 0.5 microM A23187, 22 mg/ml BSA). Controls received DMSO alone, followed by BSA. Immediately following treatment with A23187, motility was weak and vibratory. Two minutes after the addition of high levels of BSA, motility was hyperactivated, as determined by videotape analysis of linearity of trajectory and acuteness of flagellar bending. Ten minutes after the addition, the movement pattern returned to that of fresh, uncapacitated epididymal sperm. Control sperm retained the linear swimming pattern of fresh caudal epididymal sperm during the 10 min of observation. Ninety minutes later, however, both control and treated sperm became hyperactivated. The percentage of motile sperm was not affected by treatment or time. Thus, ionophore-induced hyperactivation is reversible and does not interfere with the normal development of hyperactivation during incubation under capacitating conditions in vitro.  相似文献   

5.
The present study was performed to evaluate the effects of calcium ionophore A23187 on adenosine 3',5'-monophosphate (cyclic AMP) and testosterone production in rat interstitial cells. Interstitial cells were incubated in Krebs-Ringer solution with varying amounts of luteinizing hormone, pregnenolone, or A23187. Cyclic AMP and testosterone were measured in the incubation medium after 4 h incubation. A23187 (0.01--10 microgram/ml) caused progressive increases of cyclic AMP formation (from 0.18 +/- 0.02 (S.E.) pmol/10(6) cells for the control of 0.42 +/- 0.02 pmol/10(6) cells, P less than 0.025), while testosterone production remained unaltered. When varying amounts of A23187 were added concomitantly with luteinizing hormone (5 IU/l), A23187 inhibited luteinizing hormone-induced steroidogenesis in a dose-dependent manner, but it had no effect on luteinizing hormone-induced cyclic AMP formation. When pregnenolone (10(-6) M) was added to the cells, testosterone formation increased from 1.50 +/- 0.22 to 8.46 +/- 1.65 ng/10(6) cells. A23187 (1 microgram/ml) had no discernable effect on the conversion of pregnenolone to testosterone. The main effect of increased cytosol calcium on steroidogenesis seems to be at the steps beyond adenylate cyclase-cyclic AMP. These results suggest that calcium is important for the conversion of cholesterol to pregnenolone, while the steps beyond pregnenolone are relatively independent of Ca2+.  相似文献   

6.
Rat isolated intestine incubated in Krebs solution converted exogenous [14C]-arachidonic acid into products that chromatographed with prostaglandins, leukotriene B4 and 5-hydroxy-eicosatetraenoic acid. Accumulation of these products was increased by the laxative ricinoleic acid (0.34 mM) or the calcium ionophore A23187 (7.6 microM). In the presence of the calcium antagonists TMB-8 (0.43 microM) or verapamil (0.2 microM) the mean effects of ricinoleic acid or the calcium ionophore were smaller. Stimulation of arachidonic acid metabolism by ricinoleic acid therefore seems likely to involve a calcium-dependent mechanism.  相似文献   

7.
8.
Rat isolated intestine incubated in Krebs solution converted exogenous [14C]-arachidonic acid into products that chromatographed with prostaglandins, leukotriene B4 and 5-hydroxy-eicosatetraenoic acid. Accumulation of these products was increased by the laxative ricinoleic acid (0.34 mM) or the calcium ionophore A23187 (7.6μM). In the presence of the calcium antagonists TMB-8 (0.43μM). or verapamil (0.2μM) the mean effects of ricinoleic acid or the calcium ionophore were smaller. Stimulation of arachidonic acid metabolism by ricinoleic acid therefore seems likely to involve a calcium-dependent mechanism.  相似文献   

9.
10.
Cultured fibroblasts treated with divalent cation ionophore A23187 in the presence of extracellular calcium provide a useful model system for studying mechanisms of cell death associated with elevated intracellular calcium concentrations. Cell death induced by A23187 plus calcium can be conveniently monitored as membrane permeabilization to Trypan blue dye. Because lipids are a major component of cell membranes and play an important role in determining membrane permeability, the present study was initiated to identify changes in cell lipid composition that occur during membrane permeabilization induced by calcium plus A23187. The percent label in each of the major structural lipids in biosynthetically labeled NIH3T3 fibroblasts changed < 10% during the time course of membrane permeabilization. During the course of membrane permeabilization there was significantly increased label in lysophosphatidylinositol and lysophosphatidylcholine and reduced label in phosphatidylinositol 4,5-bisphosphate. The time course of these changes corresponded to that of the arachidonic acid release response stimulated by calcium plus A23187, not to the time course of membrane permeabilization, which occurs later. These observations are consistent with lipid metabolism induced by A23187 plus calcium playing only a possible regulatory or intermediatory role in membrane permeabilization, rather than causing direct permeabilization of the lipid phase of the membrane.  相似文献   

11.
Verapamil was administered 30 days to adult male rats in a dose of 2 mg/rat per day and the calcium ionophore A 23187 to another group in a dose of 10 micrograms/rat per day. After verapamil, the bone calcium and phosphorus concentration rose significantly compared with the control group, whereas after ionophore A 23187 the bone calcium concentration fell statistically significantly.  相似文献   

12.
Summary Hyphal elongation, chitin synthesis in vivo, and invertase secretion inPhycomyces blakesleeanus were all inhibited almost instantly by the addition of 5–10 M calcium ionophore A 23187. Protein biosynthesis was inhibited in these conditions by 30–50%. The ionophore did not affect cell respiration for at least 40 min. Effect on chitin biosynthesis was not due to alterations of the chitin synthetase levels or its activity; nor to impairement in GlcNAc metabolism. In drug-treated cells the number of apical vesicles was severely reduced even at very short periods of incubation, and these low numbers remained constant for at least 60 min of incubation with the ionophore. We suggest that the ionophore collapses the cellular calcium gradient and/or interferes with the normal electrical transhyphal current. As a consequence, formation and migration of apical vesicles are inhibited. These results are further evidence of the role of vesicles in fungal tip growth and exhibit the fact that active chitin synthetase is short-lived in vivo demanding its continuous supply by chitosomes to the cell surface.Abbreviations GlcNAc N-acetylglucosamine - TCA trichloroacetic acid - UDPGIcNAc uridine diphosphate-N-acetylglucosamine - DMSO dimethylsulfoxide  相似文献   

13.
We have recently reported that acetylcholinesterase expression was induced during apoptosis in various cell types. In the current study we provide evidence to suggest that the induction of acetylcholinesterase expression during apoptosis is regulated by the mobilization of intracellular Ca(2+). During apoptosis, treatment of HeLa and MDA-MB-435s cells with the calcium ionophore A23187 resulted in a significant increase in acetylcholinesterase mRNA and protein levels. Chelation of intracellular Ca(2+) by BAPTA-AM (1,2-bis-(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester), an intracellular Ca(2+) chelator, inhibited acetylcholinesterase expression. A23187 also enhanced the stability of acetylcholinesterase mRNA and increased the activity of acetylcholinesterase promoter, effects that were blocked by BAPTA-AM. Perturbations of cellular Ca(2+) homeostasis by thapsigargin resulted in the increase of acetylcholinesterase expression as well as acetylcholinesterase promoter activity during thapsigargin induced apoptosis in HeLa and MDA-MB-435s cells, effects that were also inhibited by BAPTA-AM. We further demonstrated that the transactivation of the human acetylcholinesterase promoter by A23187 and thapsigargin was partially mediated by a CCAAT motif within the -1270 to -1248 fragment of the human acetylcholinesterase promoter. This motif was able to bind to CCAAT binding factor (CBF/NF-Y). These results strongly suggest that cytosolic Ca(2+) plays a key role in acetylcholinesterase regulation during apoptosis induced by A23187 and thapsigargin.  相似文献   

14.
The effect of calcium ionophore A23187 on the release of nonmetabolizable glutamate analogues [3H]D-aspartate and the exocytosis registered by fluorescent dyes in synaptosomes was investigated. It was shown that A23187 is able to induce neurotransmitter release both in calcium-containing and calcium-free medium, the effect in the latter case being more pronounced. Calcium ionophore is able to induce exocytosis registered by acridine orange and FM 2-10. The influence of A23187 on the fluorescence of acridine orange was mainly calcium-independent, whereas the change in the fluorescence of FM 2-10 was calcium-dependent. It was suggested that the calcium-independent increase in acridine orange fluorescence is related to the dissipation of pH gradient in synaptic vesicles. Probably, the calcium-independent release of D-aspartate is also associated with the dissipation of pH gradient and subsequent leakage of neurotransmitters.  相似文献   

15.
Rat eggs treated with the calcium ionophore A23187 and subjected to long-term observation by phase microscopy were found to undergo many developmental changes that are normally associated with fertilization. These included cortical granule exocytosis and the abstriction of the second polar body. In addition, time-lapse video microscopy revealed that, unlike untreated eggs, whose surfaces remained relatively immotile, the ionophore-treated eggs underwent a lengthy period of surface undulatory activity. Since all of these events were remarkably similar in timing and morphology to those seen in fertilized eggs, we conclude that A23187 is capable of activating rat eggs. Using NBD-phallacidin, the distribution of F-actin in ionophore-activated eggs was determined. During most of the postactivation period the eggs possessed an uninterrupted, uniform band of polymerized actin encompassing the entire cortex of the egg. However, during a discrete 1.5-h period after the formation of the second polar body, an area adjacent to the region of polar body abstriction exhibited more intense staining than the rest of the cortex. Cytochalasin B treatment caused a dramatic reduction and/or rearrangement in cortical NBD-phallacidin staining in activated eggs as compared to activated controls not exposed to the drug. We observed that all the developmental changes described above could be produced in the absence of exogenous calcium, suggesting that the rat egg possesses internal stores of calcium sufficient to elicit an activational response. We conclude that the ionophore-induced release of free calcium ions into the cytosol stimulates many of the developmental changes that are normally seen during fertilization. These results indicate that calcium influx and cytoskeletal activity are correlated during the activation of this animal egg.  相似文献   

16.
The mechasism of human basophil histamine release by the calcium ionophore A23187 has been compared to that induced by the interaction of antigen with cell bound IgE antibody. Ionophore induced histamine release (Ion. H.R.) occurs with the leukocytes of both normal and allergic donors. It is completely calcium dependent; LaCl3 inhibits both Ion. H.R. and antigen induced histamine release (Ag. H.R.) at about 10-minus 7 M. The kinetics of Ion. H.R. suggest that this process has no "desensitization" phase as does Ag. H.R. and the ionophore is fully active on antigen-desensitized cells. Pharmacologic studies indicate that dibutyryl cyclic AMP and agents which increase endogenous cyclic AMP levels do not inhibit Ion. H.R. as they inhibit the early stages of Ag. H.R. Of the agents which affect microtubules, colchicine inhibits and D2O enhances Ion. H.R. in a manner which is qualitatively similar but quantitatively less marked than their effects on Ag. H.R. The metabolic antagonist 2-deoxyglucose inhibits both Ion. H.R. and Ag. H.R. in a similar fashion. Based on these data and the observation that cells pretreated with ionophore show a marked (synergistic) enhancement of Ag. H.R. we conclude that Ion. H.R. has a similar or identical mechanism to the later stages if Ag. H.R. but "short circuits" the cyclic AMP-associated events of Ag. H.R.  相似文献   

17.
Collagenase is synthesized and secreted by stimulated rabbit fibroblasts as a proenzyme that must be proteolytically cleaved to yield catalytically active species. The calcium ionophore A23187 has provided new insights into the regulation of collagenase activation cascade by living cells. A23187, at concentrations of 10-40 ng/ml, induced expression of collagenase and stromelysin mRNA and the secretion of procollagenase of 57 and 53 kDa and prostromelysin of 51 kDa. Interestingly, it also stimulated activation of procollagenase to active forms of 47 and 43 kDa. The concentrations and treatment times required for induction of gene expression and activation indicated that they were independent events. Active collagenase constituted up to 16% of the total collagenase present in medium conditioned by A23187-treated cells. When grown on a collagen substrate, A23187-treated cells degraded collagen in a spatially localized manner. In cells treated with agents that induce procollagenase only, collagenase was localized in the perinuclear Golgi area; however, in A23187-treated cells, collagenase was located in widely dispersed granules, suggesting different intracellular pathways for collagenase before, during, and after activation. Addition of serine, thiol-, and metalloproteinase inhibitors with A23187 to rabbit fibroblasts inhibited conversion of procollagenase to its active form to varying degrees, suggesting that enzymes in these classes are involved in a cascade of proteolytic events leading to collagenase activation.  相似文献   

18.
Animal cells respond to calcium ionophore (A23187) treatment with the coordinate induction of a set of genes encoding proteins identical to the glucose-regulated proteins (GRPs). By monitoring the intracellular free calcium with the fluorescent indicator fura-2 while employing both intracellular and extracellular calcium buffers, we demonstrated that A23187 can induce the GRP94 and GRP78 genes without an increase in cytoplasmic calcium ([Ca2+]i). Induction of GRP mRNA during glucose starvation was also independent of [Ca2+]i. Instead, gene induction by A23187 was closely correlated with the depletion of intracellular calcium stores. We conclude that perturbations of sequestered calcium ions by A23187 can serve as a stimulus for gene expression.  相似文献   

19.
DNA methylation is known to play an important role in various developmental processes and defense mechanisms in plants and other organisms. However, it is not known whether DNA methylation is implicated in the genetic regulation of plant secondary metabolism, including resveratrol biosynthesis. Resveratrol is a naturally occurring polyphenol that is present in grapes, peanuts, and other plant sources, and it exhibits a wide range of valuable biologically active properties. The transformation of the wild-growing grape Vitis amurensis with the oncogene rolB from Agrobacterium rhizogenes has been demonstrated to considerably increase resveratrol production. To investigate whether DNA methylation regulates resveratrol biosynthesis, we treated both rolB transgenic and empty vector control V. amurensis cell cultures with the DNA demethylation agent 5-azacytosine (azaC). The azaC treatment significantly increased stilbene synthase 10 gene (VaSTS10) expression and resveratrol content in the V. amurensis cell cultures. Using bisulfite sequencing, we examined the methylation status of VaSTS10 in cell cultures under normal conditions and after azaC treatment. Both the promoter and 3′-end of the protein coding region of the VaSTS10 gene were hypermethylated (54–67 %) in the control cell culture. The rolB transgenic cell culture had high levels of resveratrol and lower hypermethylation levels of the VaSTS10 gene (20–47 %). The azaC treatment resulted in reduction in the DNA methylation levels in the promoter and coding regions of the VaSTS10 gene in both cell cultures. These data suggest that the DNA methylation may be involved in the control of resveratrol biosynthesis via the regulation of STS genes expression.  相似文献   

20.
Summary We have measured the effects of the carboxylic Ca++ ionophore A23187 on muscle tension, resting potential and 3-O-methylglucose efflux. The ionophore produces an increase in tension that is dependent on external Ca++ concentration since (a) the contracture was blocked by removing external Ca++ and (b) its size was increased by raising outside Ca++. Neither resting potential nor resting and insulin-stimulated sugar efflux were modified by the ionophore. These data imply that the action of insulin is not mediated by increasing cytoplasmic [Ca++]. Additional support for this conclusion was obtained by testing the effects of caffeine on sugar efflux. This agent, which releases Ca++ from the reticulum, did not increase resting sugar efflux and inhibited the insulin-stimulated efflux. Incubation in solutions containing butyrated derivatives of cyclic AMP or cyclic GMP plus theophylline did not modify the effects of insulin on sugar efflux. Evidence suggesting that our experimental conditions increased the cytoplasmic cyclic AMP activity was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号