首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Snails of the genus Biomphalaria from Venezuela were subjected to morphological assessment as well as polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) analysis. Morphological identification was carried out by comparison of characters of the shell and the male and female reproductive apparatus. The PCR-RFLP involved amplification of the internal spacer region ITS1 and ITS2 of the RNA ribosomal gene and subsequent digestion of this fragment by the restriction enzymes DdeI, MnlI, HaeIII and MspI. The planorbids were compared with snails of the same species and others reported from Venezuela and present in Brazil, Cuba and Mexico. All the enzymes showed a specific profile for each species, that of DdeI being the clearest. The snails were identified as B. glabrata, B. prona and B. kuhniana.  相似文献   

2.
The correct identification of Biomphalaria oligoza, B. orbignyi and B. peregrina species is difficult due to the morphological similarities among them. B. peregrina is widely distributed in South America and is considered a potential intermediate host of Schistosoma mansoni. We have reported the use of the polymerase chain reaction and restriction fragment length polymorphism analysis of the internal transcribed spacer region of the ribosomal DNA for the molecular identification of these snails. The snails were obtained from different localities of Argentina, Brazil and Uruguay. The restriction patterns obtained with MvaI enzyme presented the best profile to identify the three species. The profiles obtained with all enzymes were used to estimate genetic similarities among B. oligoza, B. peregrina and B. orbignyi. This is also the first report of B. orbignyi in Uruguay.  相似文献   

3.
Within the last two decades, substantial progress has been made in understanding seed-bank dynamics and the contribution of the soil seed bank to a postdisturbance plant community. There has been relatively little progress, however, in understanding perennial bud-bank dynamics and the contribution of the soil bud bank to secondary succession. This lack of information is due primarily to the inability to reliably identify roots, rhizomes and lignotubers that lie dormant beneath the soil surface. This investigation addressed the issue of identification of below-ground woody structures. The first objective was to develop a method that used molecular tools to identify woody plant species from subsoil tissue samples. The second objective was to develop a key in which molecular markers served as criteria for the identification and differentiation of selected tree and shrub species common to the mountains of northeast Oregon and southeast Washington. Application of restriction fragment length polymorphism (RFLP) analysis of polymerase chain reaction (PCR)-amplified rbcL appears to be a reliable method to identify and differentiate 15 plants to the genus level. Two restriction enzymes, Dpn II and Hha I, provided restriction site polymorphisms in the PCR product. The fragment number and length were used to develop an identification key. However, plants not analysed in this 'exploratory key' might share the same banding patterns, resulting in a false identification of unknowns.  相似文献   

4.
P64k protein from Neisseria meningitidis is well recognised in sera from individuals convalescent from meningococcal disease or vaccinated with the Cuban antimeningococcal vaccine VA-MENGOC-BC. The presence of the protein in more than 80 meningococcal strains has also been verified. It is immunogenic in animal models and the antibodies elicited show bactericidal activity against meningococci. To further investigate at the molecular level whether lpdA, the gene coding for P64k protein, is conserved among different N. meningitidis strains, a total of 20 strains isolated from different geographic areas were differentiated on the basis of restriction fragment length polymorphism (RFLP) patterns after polymerase chain reaction (PCR) amplification of the lpdA gene and restriction endonuclease digestion with HpaII. Although a total of five different PCR-RFLP patterns were present, nucleotide sequence determination showed that identity levels were as high as 93-99% among the N. meningitidis strains analysed.  相似文献   

5.
Abstract. Restriction fragment length polymorphisms in polymerase chain reaction amplified fragments (PCR-RFLP) of mitochondrial DNA were used to differentiate species of New World screwworms (Diptera: Calliphoridae). Twenty-seven restriction enzymes were screened on five regions of mtDNA. Eleven restriction fragment length patterns differentiated New World screwworm, Cochliomyia hominivorax (Coquerel), from secondary screwworm, Cochliomyia macellaria (R). Five restriction fragment length patterns were polymorphic in C. hominivorax while all fragment patterns were fixed in C. macellaria. Diagnostic restriction fragment length patterns were used for species diagnosis, whereas intraspecific variable patterns were used to characterize field samples and laboratory strains. The PCR-RFLP technique is flexible with regard to developmental stage of the sample and method of preservation. We were able to characterize specimens of all life stages from egg to adult including larvae preserved in alcohol and pinned adults. PCR-RFLP is rapid and inexpensive, enabling specimens to be characterized within 24 h for less than 2.50.  相似文献   

6.
7.
The genus Carnobacterium is currently divided into the following eight species: Carnobacterium piscicola, C. divergens, C. gallinarum, C. mobile, C. funditum, C. alterfunditum, C. inhibens, and C. viridans. An identification tool for the rapid differentiation of these eight Carnobacterium species was developed, based on the 16S-23S ribosomal DNA (rDNA) intergenic spacer region (ISR). PCR-restriction fragment length polymorphism (PCR-RFLP) analysis of this 16S-23S rDNA ISR was performed in order to obtain restriction profiles for all of the species. Three PCR amplicons, which were designated small ISR (S-ISR), medium ISR (M-ISR), and large ISR (L-ISR), were obtained for all Carnobacterium species. The L-ISR sequence revealed the presence of two tRNA genes, tRNA(Ala) and tRNA(Ile), which were separated by a spacer region that varied from 24 to 38 bp long. This region was variable among the species, allowing the design of species-specific primers. These primers were tested and proved to be species specific. The identification method based on the 16S-23S rDNA ISR, using PCR-RFLP and specific primers, is very suitable for the rapid low-cost identification and discrimination of all of the Carnobacterium species from other phylogenetically related lactic acid bacteria.  相似文献   

8.
In Colombia, five Biomphalaria planorbid species are known: B. kuhniana, B. straminea, B. peregrina, B. canonica and B. oligoza(var. B. philippiana). Among them, B. straminea is intermediate host of Schistosoma mansoni and B. peregrina has been found to be experimentally susceptible to this parasite. B. straminea is commonly confused with B. kuhniana and they have been clustered together with B. intermedia in the complex named B. straminea. The difficulties involved in the specific identification, based on morphological data, have motivated the use of new techniques as auxiliary tools in cases of inconclusive morphological identification of such planorbid. In the present study, five Biomphalaria populations from the Colombian Amazon region and from Interandian Valleys were morphologically identified and characterized by polymerase chain reaction-restriction fragment lenght polymorphism directed at the internal transcribed spacer region of the rRNA gene, followed by digestion of the generated fragment with restriction enzymes (DdeI, AluI, RsaI, MvaI and HaeIII). Known profiles of the Brazilian species B. straminea, B. peregrina, B. kuhniana, B. intermedia and B. amazonica, besides B. kuhniana from Colombia, were used for comparison. The five populations under study were morphologically and molecularly identified as B. kuhniana and B. amazonica.  相似文献   

9.
10.
Because of the accumulating evidence that suggests that numerous unhealthy conditions in the indoor environment are the result of abnormal growth of the filamentous fungi (mold) in and on building surfaces, it is necessary to accurately reflect the organisms responsible for these maladies and to identify them in precise and timely manner. To this end, we have developed a method that is cost effective, easy to perform, and accurate. We performed a simple polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) analysis on multiple members of species known to negatively influence the indoor environment. The genera analyzed were Stachybotrys, Penicillium, Aspergillus, and Cladosporium. Each organism underwent PCR with universal primers that amplified ribosomal sequences generating products from 550 to 600 bp followed by enzymatic digestion with EcoRI, HaeIII, MspI, and HinfI. Our results show that using this combination of restriction enzymes enables the identification of these fungal organisms at the species level.  相似文献   

11.
Using labelled, gamma-32P rRNA of mycobacteria as a probe restriction fragment length polymorphism (RFLP) of rRNA genes of strains belonging to the Mycobacterium fortuitum-chelonei complex was analysed. Each DNA sample was cleaved with EcoRI restriction endonuclease, the fragments were separated by agarose gel electrophoresis and transferred to nitrocellulose membrane. Fragments of DNA containing rRNA genes were identified by hybridization with gamma-32P-labelled rRNA. Patterns were found to be species specific and both the species were distinguishable from each other. Results indicate that this approach can be used for rapid genomic characterization of the Mycobacterium fortuitum-chelonei complex.  相似文献   

12.
We investigated bacterial diversity in different aquatic environments (including marine and lagoon sediments, coastal seawater, and groundwater), and we compared two fingerprinting techniques (terminal restriction fragment length polymorphism [T-RFLP] and automated ribosomal intergenic spacer analysis [ARISA]) which are currently utilized for estimating richness and community composition. Bacterial diversity ranged from 27 to 99 phylotypes (on average, 56) using the T-RFLP approach and from 62 to 101 genotypes (on average, 81) when the same samples were analyzed using ARISA. The total diversity encountered in all matrices analyzed was 144 phylotypes for T-RFLP and 200 genotypes for ARISA. Although the two techniques provided similar results in the analysis of community structure, bacterial richness and diversity estimates were significantly higher using ARISA. These findings suggest that ARISA is more effective than T-RFLP in detecting the presence of bacterial taxa accounting for <5% of total amplified product. ARISA enabled also distinction among aquatic bacterial isolates of Pseudomonas spp. which were indistinguishable using T-RFLP analysis. Overall, the results of this study show that ARISA is more accurate than T-RFLP analysis on the 16S rRNA gene for estimating the biodiversity of aquatic bacterial assemblages.  相似文献   

13.
For restriction fragment length polymorphism (RFLP) analysis of 16S rRNA genes, the rDNA fragments of 1.5 kb were amplified by polymerase chain reaction (PCR) from crude cell lysates of various methanogenic species which were prepared by a combined technique of ultrasonic treatment and protease digestion. The PCR products were purified by the polyethylene glycol precipitation method and treated with various restriction enzymes. The 16S rDNA fragments digested with HaeIII or HhaI gave species-specific RFLP profiles on simplified agarose gel electrophoresis. 16S rDNA gragments of 0.4 kb from the bulk DNA extracted from mixed populations of anaerobic sludge were also amplified by PCR with a pair of methanogen-specific primers and cloned directly by the T-A cloning technique. The cloned 16S rDNAs from recombinants were reamplified by PCR, and RFLP pattern analysis was performed following digestion with HhaI. The PCR-RFLP analysis of 16S rDNA with the present protocol can be completed within one day, provided that sufficient amounts of test cells are available, and has great promise as a simple and rapid technique for identification of methanogens. A combined method consisting of PCR amplification, direc cloning with T vectors, and RFLP analysis of 16S rDNA is also useful for rapid estimation of the mixed population structure of methanogens without the need for cultivation and isolation.  相似文献   

14.
The nucleotide changes that result in two restriction endonuclease polymorphisms that differentiate wild-type varicella-zoster virus (VZV) from the vaccine strain were determined. Oligonucleotide primers that flank these sites were used to amplify the intervening sequences with the polymerase chain reaction to identify VZV DNA in clinical isolates. Restriction enzyme digestion of the amplification products distinguished vaccine and wild-type genomes from one another. This study confirms the feasibility of amplifying VZV sequences so that they may be detected in clinical specimens and provides a molecular epidemiological approach to strain identification of VZV in vesicular lesions.  相似文献   

15.
In the present report, a total of thirty-one isolates of Gibberella fujikuroi (Sawada) Wollenw. species complex of Fusarium (section Liseola) morphologically classified as F. moniliforme according to the taxonomy of Nelson, Toussoun and Marasas (1983) were analyzed for their ability to produce fumonisin B1 and fumonisin B2 by an optimized liquid chromatographic method. They were isolated from three hosts (Zea mays, Musa sapientum and Pinus pinea). The results indicate that M. sapientum is a preferential host for G. fujikuroi isolates with low or null capacity for producing fumonisins, while isolates from Z. mays and P. pinea are generally high fumonisin producers.

The molecular characterization of isolates was carried out in parallel using an optimized, simple and low-cost method for isolating DNA from filamentous fungi and polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP) of the rDNA intergenic spacer (IGS) region. The haplotypes obtained with Hha I enzyme and combinations of Hha I, EcoR I, Alu I, Pst I and Xho I enzymes provided very characteristic groupings of G. fujikuroi isolates as a function of host type and fumonisin B1 and B2 producing capacity. IGS region restriction patterns showed no relationship to isolate geographical origin. This is the first report on this method's capacity to detect polymorphism permitting discrimination between G. fujikuroi isolates from different hosts and with different toxigenic profiles.  相似文献   


16.
Amplified fragment length polymorphism (AFLP) analysis allows a rapid, relatively simple analysis of a large portion of a microbial genome, providing information about the species and its phylogenetic relationship to other microbes (Vos et al. 1995). The method simply surveys the genome for length and sequence polymorphisms. The AFLP pattern identified can be used for comparison to the genomes of other species. Unlike other methods, it does not rely on analysis of a single genetic locus that may bias the interpretation of results and does not require any prior knowledge of the targeted organism. Moreover, a standard set of reagents can be applied to any species without using species-specific information or molecular probes. We are using AFLP analysis to rapidly identify different bacterial species. A comparison of AFLP profiles generated from a large battery of Bacillus anthracis strains shows very little variability among different isolates (Keim et al. 1997). By contrast, there is a significant difference between AFLP profiles generated for any B. anthracis strain and even the most closely related Bacillus species. Sufficient variability is apparent among all known microbial species to allow phylogenetic analysis based on large numbers of genetically unlinked loci. These striking differences among AFLP profiles allow unambiguous identification of previously identified species and phylogenetic placement of newly characterized isolates relative to known species based on a large number of independent genetic loci. Data generated thus far show that the method provides phylogenetic analyses that are consistent with other widely accepted phylogenetic methods. However, AFLP analysis provides a more detailed analysis of the targets and samples a much larger portion of the genome. Consequently, it provides an inexpensive, rapid means of characterizing microbial isolates to further differentiate among strains and closely related microbial species. Such information cannot be rapidly generated by other means. AFLP sample analysis quickly generates a very large amount of molecular information about microbial genomes. However, this information cannot be analysed rapidly using manual methods. We are developing a large archive of electronic AFLP signatures that is being used to identify isolates collected from medical, veterinary, forensic and environmental samples. We are also developing the computational packages necessary to rapidly and unambiguously analyse the AFLP profiles and conduct a phylogenetic comparison of these data relative to information already in our database. We will use this archive and the associated algorithms to determine the species identity of previously uncharacterized isolates and place them phylogenetically relative to other microbes based on their AFLP signatures. This study provides significant new information about microbes with environmental, veterinary and medical significance. This information can be used in further studies to understand the relationships among these species and the factors that distinguish them from one another. It should also allow the identification of unique factors that contribute to important microbial traits, including pathogenicity and virulence. We are also using AFLP data to identify, isolate and sequence DNA fragments that are unique to particular microbial species and strains. The fragment patterns and sequence information provide insights into the complexity and organization of bacterial genomes relative to one another. They also provide the information necessary for the development of species-specific polymerase chain reaction primers that can be used to interrogate complex samples for the presence of B. anthracis, other microbial pathogens or their remnants.  相似文献   

17.
We analyzed restriction fragment length polymorphism (RFLP) of 16S-23S rDNA intergenic spacer region (ISR) of Aeromonas species. A total of 69 isolates belonging to 18 DNA hybridization groups (HG; equivalent of genomic species) were used in this study. ISRs were amplified by PCR and the products were digested with four restriction endonucleases: Hin6I, Csp6I, TaqI, and TasI. The RFLP patterns obtained after digesting by particular enzymes revealed ISR polymorphism of isolates allocated to individual genomic species. The combined Hin6I, Csp6I, TaqI, and TasI restriction profiles were examined by Dice coefficient (SD) and unweighted pair group method of clustering (UPGMA). The isolates were allocated into 15 groups, three strains were unclustered. The strains belonging to the following genomic species: A. hydrophila, A. bestiarum, A. salmonicida, A. caviae, A. media, A. schubertii, A. allosaccharophila, A. popoffii, and A. culicicola formed distinct clusters. Strains belonging to HG 6, HG 7, HG 11, and HG 16 revealed similar combined RFLP patterns and constituted one group. Similarly, the strains of A. jandaei (HG 9) and the type strain of A. trota were allocated into one cluster. Two isolates of HG 14 formed distinct cluster. We noticed a genetic diversity among A. veronii isolates, the strains were clustered in two groups. Our study showed that combined ISR-RFLP analysis may be used for identification of some species of Aeromonas.  相似文献   

18.
The aim of the present research is to identify rapidly the lactic acid bacteria (LAB) microflora of four natural French sourdoughs (GO, BF, VB and RF), applying a biphasic (restriction length polymorphism (RFLP) and sequencing) approach for bacterial identification. For this purpose, a database with the RFLP patterns of 30 lactobacilli type strains was created. So-developed ISR-RFLP algorithm was further applied for the differentiation and identification of 134 sourdough isolates. The 16S-23S rDNA intergenic spacer region was amplified by primers tAla and 23S/10, and then digested by HindIII, HinfI and α-TaqI enzymes. Nucleotide sequences of the cloned 16S-23S intergenic spacer region (ISR) were determined by the dideoxynucleotide chain termination method. The T7Prom and M13rev primers flanking the multiple cloning site of pCR2.1 DNA were used to sequence both DNA strands. The RFLP profile obtained upon digestion with HindIII, HinfI and α-TaqI enzymes can be used to discriminate Lactobacillus sanfranciscensis (66%), Lactobacillus panis (17%), Lactobacillus nantensis (11%) and Lactobacillus hammesii(6%) in sourdough GO, Lactobacillus sanfranciscensis (80%), Lactobacillus spicheri (14%) and Lactobacillus pontis(6%) in sourdoughs BF. In sourdoughs VB, which differed in the process temperature, we can differentiate Lactobacillus sanfranciscensis (89%) and Leuconostoc mesenteroidessubsp. mesenteroides (11%). Lactobacillus frumenti(47%), Lactobacillus hammesii (8%), and Lactobacillus paralimentarius (45%) were differentiated in sourdough RF.  相似文献   

19.
J S Shin  S Chao  L Corpuz  T Blake 《Génome》1990,33(6):803-810
Nine low copy number genomic DNA clones, a ribosomal sequence, and seven cDNA clones were found to identify polymorphisms in cultivated barley (Hordeum vulgare L.). An F2 population consisting of 100 plants was produced from a cross between a high-yielding two-rowed feed barley cultivar and a genetic marker stock homozygous for nine recessive and one dominant morphological marker genes. Through the use of these 10 well-distributed marker genes, five previously mapped isozyme loci, and two storage-protein loci, the approximate recombinational location for each of 17 restriction fragment length polymorphism loci was estimated. One clone, pMSU21, identified variation that appeared to be the result of a small insertion-deletion event that differentiated two-rowed and six-rowed genotypes. This difference was characterized, and one allele was sequenced. Oligonucleotide primers that flanked the insertion-deletion event were synthesized, and DNA samples from the F2 population were subjected to polymerase chain reaction sequence amplification. The variation identified by this technique was determined to be allelic to the variation identified using pMSU21 in Southern blot analysis. Maps of previously undescribed informative clones are included.  相似文献   

20.
The intermediate hosts of Schistosoma mansoni, in Brazil, Biomphalaria glabrata, B. tenagophila and B. straminea, were identified by restriction fragment length polymorphism analysis of the mitochondrial gene cytochrome oxidase I (COI). We performed digestions with two enzymes (AluI and RsaI), previously selected, based on sequences available in Genbank. The profiles obtained with RsaI showed to be the most informative once they were polymorphic patterns, corroborating with much morphological data. In addition, we performed COI digestion of B. straminea snails from Uruguay and Argentina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号