首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cells in culture reveal high levels of protein tyrosine phosphorylation in their focal adhesions, the regions where cells adhere to the underlying substratum. We have examined the tyrosine phosphorylation of proteins in response to plating cells on extracellular matrix substrata. Rat embryo fibroblasts, mouse Balb/c 3T3, and NIH 3T3 cells plated on fibronectin-coated surfaces revealed elevated phosphotyrosine levels in a cluster of proteins between 115 and 130 kD. This increase in tyrosine phosphorylation was also seen when rat embryo fibroblasts were plated on laminin or vitronectin, but not on polylysine or on uncoated plastic. Integrin mediation of this effect was suggested by finding the same pattern of elevated tyrosine phosphorylation in cells plated on the cell-binding fragment of fibronectin and in cells plated on a synthetic polymer containing multiple RGD sequences. We have identified one of the proteins of the 115-130-kD cluster as pp125FAK, a tyrosine kinase recently localized in focal adhesions (Schaller, M. D., C. A. Borgman, B. S. Cobb, R. R. Vines, A. B. Reynolds, and J. T. Parsons. 1992. Proc. Natl. Acad. Sci. USA. 89:5192). A second protein that becomes tyrosine phosphorylated in response to extracellular matrix adhesion is identified as paxillin, a 70-kD protein previously localized to focal adhesions. Treatment of cells with the tyrosine kinase inhibitor herbimycin A diminished the adhesion-induced tyrosine phosphorylation of these proteins and inhibited the formation of focal adhesions and stress fibers. These results suggest a role for integrin-mediated tyrosine phosphorylation in the organization of the cytoskeleton as cells adhere to the extracellular matrix.  相似文献   

2.
p36, a major in vivo substrate of protein-tyrosine kinases, is shown to be phosphorylated at serine 25, a site very close to the major site of tyrosine phosphorylation by pp60v-src, tyrosine 23 (J. R. Glenney, Jr., and B. F. Tack, Proc. Natl. Acad. Sci. USA 82:7884-7888, 1985). We present evidence suggesting that protein kinase C mediates phosphorylation of serine 25.  相似文献   

3.
One of the prominent effects of the Src kinase is to reduce cell adhesion. The small GTPase, R-Ras, affects cell adhesion by maintaining integrin activity, and the ability of R-Ras to do so can be regulated by phosphorylation of a tyrosine residue located in its effector domain by an Eph receptor kinase (Zou, J. X., Wang, B., Kalo, M. S., Zisch, A. H., Pasquale, E. B., and Ruoslahti, E. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 13813-13818). Here we show that Src regulates cell adhesion through R-Ras and integrins. Reduced substrate attachment of 293T cells transfected with the cDNA for an activated form of Src (v-Src) was accompanied by phosphorylation of endogenous R-Ras. v-Src also phosphorylated R-Ras in vitro. An activated form of Src similar to one that has been found in human cancers, Src527, shared with v-Src the ability to phosphorylate R-Ras. Stronger R-Ras phosphorylation was seen in Madin-Darby canine kidney cells cells transformed with temperature-sensitive v-Src at the permissive temperature than at the non-permissive temperature, and R-Ras and Src co-immunoprecipitated at the permissive temperature. Mutation analysis showed that the Src phosphorylation site in R-Ras was tyrosine 66, the position critical to the ability of R-Ras to support integrin activity. Finally, activated R-Ras in which tyrosine 66 is mutated to phenylalanine rendered cells partially resistant to the effects of Src on cell adhesion. Regulation of cell adhesion by Src through R-Ras may be at least partially responsible for the reduced adhesion and the resulting increased invasiveness of Src-transformed cells.  相似文献   

4.
The major in vitro substrate for a tyrosine protein kinase in the particulate fraction of the lymphoma cell line LSTRA is a protein of molecular weight of 58,000 (pp58) (Casnellie, J. E. Harrison, M. L., Pike, L. J., Hellstrom, K. E., and Krebs, E. G. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 282-286). In order to determine if this protein was related to pp60src, the transformation-specific protein from Rous sarcoma virus, partial proteolysis maps of in vitro 32P-labeled pp58 and pp60src were prepared using Staphylococcus aureus V8 protease and papain. The maps were clearly different, indicating the pp58 is distinct from pp60src. However characterization of the tryptic fragment containing the single site of in vitro tyrosine phosphorylation in pp58 has revealed that the amino acid sequence around this site is extremely homologous to, if not identical with the sequence around the site of tyrosine phosphorylation in pp60src.  相似文献   

5.
Plasma membranes obtained from different neural regions of the chicken embryo have previously been shown to specifically bind to homotypic cells and prevent cell aggregation (Merrell, R., and Glaser, L. (1973) Proc. Natl. Acad. Sci. U. S. A. 70, 2794-2798). Proteins responsible for the specific inhibition of cell aggregation have been solubilized from the plasma membrane of neural retina and optic tectum by delipidation with acetone followed by extraction with lithium diiodosalicylate. The extracts show the same regional and temporal specificity as previously shown for plasma membrane recognition by the same cells (Gottlieb, D. I., Merrell, R., and Glaser, L. (1974) Proc. Natl. Acad. Sci. U. S. A. 71, 1800-1802). Two micrograms of the most purified protein fraction inhibits the aggregation of 2.5 times 10(-4) cells under standard assay conditions. This represents a 20-fold increase in specific activity compared to whole membranes.  相似文献   

6.
The experiments presented here were designed to examine the contribution of the extracellular signal-regulated mitogen-activated protein kinases (ERKs) to the tyrosine phosphorylation of the focal adhesion proteins p125(Fak), p130(Cas), and paxillin induced by G protein-coupled receptors (GPCRs) and tyrosine kinase receptors in Swiss 3T3 cells. Stimulation of these cells with bombesin, lysophosphatidic acid (LPA), endothelin, and platelet-derived growth factor (PDGF) led to a marked increase in the tyrosine phosphorylation of these focal adhesion proteins and in ERK activation. Exposure of the cells to two structurally unrelated mitogen-activated protein kinase or ERK kinase (MEK) inhibitors, PD98059 and U0126, completely abrogated ERK activation but did not prevent tyrosine phosphorylation of p125(Fak), p130(Cas), and paxillin. Furthermore, different dose-response relationships were obtained for tyrosine phosphorylation of focal adhesion proteins and for ERK activation in response to PDGF. Putative upstream events in the activation of focal adhesion proteins including actin cytoskeletal reorganization and myosin light chain (MLC) phosphorylation were also not prevented by inhibition of ERK activation. Thus, our results demonstrate that the activation of the ERK pathway is not necessary for the increase of the tyrosine phosphorylation of p125(Fak), p130(Cas), and paxillin induced by either GPCRs or tyrosine kinase receptors in Swiss 3T3 cells.  相似文献   

7.
8.
9.
The disassembly of vimentin-containing intermediate filament (IF) networks during mitosis in BHK-21 cells is accompanied by increased phosphorylation of vimentin (Chou, Y.-H., Rosevear, E., and Goldman, R. D. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 1885-1889). We have recently identified p34cdc2 as the catalytic subunit of one of the two endogenous vimentin kinases in mitotic baby hamster kidney cells (Chou, Y.-H., Bischoff, J. R., Beach, D., and Goldman, R. D. (1990) Cell 62, 1063-1071). To begin to characterize the biochemical basis of the p34cdc2-mediated IF disassembly process, we have purified and sequenced the 32P-labeled tryptic peptides derived from in vitro-phosphorylated vimentin. The results demonstrate that Ser-55, in the N-terminal non-alpha-helical domain of vimentin, is the most favored phosphorylation site. This finding supports the idea that the N-terminal domain of type III IF protein plays a crucial role in regulating IF structure and supramolecular organization.  相似文献   

10.
Treatment of intact Swiss 3T3 cells with calyculin-A, an inhibitor of myosin light chain (MLC) phosphatase, induces tyrosine phosphorylation of p125(Fak) in a sharply concentration- and time-dependent manner. Maximal stimulation was 4.2 +/- 2.1-fold (n = 14). The stimulatory effect of calyculin-A was observed at low nanomolar concentrations (<10 nM); at higher concentrations (>10 nM) tyrosine phosphorylation of p125(Fak) was strikingly decreased. Calyculin-A induced tyrosine phosphorylation of p125(Fak) through a protein kinase C- and Ca(2+)-independent pathway. Exposure to either cytochalasin-D or latrunculin-A, which disrupt actin organization by different mechanisms, abolished tyrosine phosphorylation of p125(Fak) in response to calyculin-A. Treatment with high concentrations of platelet-derived growth factor (20 ng/ml) which also disrupt actin stress fibers, completely inhibited tyrosine phosphorylation of p125(Fak) in response to calyculin-A. This agent also induced tyrosine phosphorylation of the focal adhesion-associated proteins p130(Cas) and paxillin. These tyrosine phosphorylation events were associated with a striking increase in the assembly of focal adhesions. The Rho kinase (ROK) inhibitor HA1077 that blocked focal adhesion formation by bombesin, had no effect on the focal adhesion assembly induced by calyculin-A. Thus, calyculin-A induces transient focal adhesion assembly and tyrosine phosphorylation of p125(Fak), p130(Cas), and paxillin, acting downstream of ROK.  相似文献   

11.
Adhesion of human umbilical endothelial cells to fibronectin resulted in increased tyrosine phosphorylation of a group of proteins with molecular mass ranging from 100 to 130 kDa and of a 70 kDa protein. This pattern of tyrosine phosphorylation was also observed when endothelial cells adhered to vitronectin, collagen IV, collagen I and laminin or to culture dishes coated with antibodies directed to either βl, α3, α5, α6 or β3 integrin subunits. Increased phosphorylation of the 100–130 kDa proteins was detectable as early as 30 sec after adhesion, reached maximal level after 15 min, and remained high as long as the cells adhere to culture dishes. The 70 kDa protein was phosphorylated with a slower kinetics and its phosphorylation increased over a period of 3 h. Using specific monoclonal antibodies, the major component of the 100–130 kDa complex was identified as the focal adhesion tyrosine kinase p125FAK. The phosphorylation of the pl25FAK was also observed by inducing βl integrin clustering in rum adherent HEC, indicating that this is a primary signalling event induced by integrins. Using tyrosine kinase inhibitors, we show a direct correlation between integrin-stimulated tyrosine kinases and assembly of focal adhesions and actin fibres.  相似文献   

12.
Receptors for the hematopoietic growth factors erythropoietin, interleukin 3 (IL-3), and granulocyte-macrophage colony-stimulating factor (GM-CSF) are members of a structurally related receptor superfamily. Interestingly, while none of these receptors encode tyrosine kinase activities, induced tyrosine phosphorylation has been observed in various responsive cells stimulated with each factor. Toward defining possible common transduction pathways which are activated by these three cytokines, we have studied induced protein phosphorylation in murine myeloid FDC-P1 cells stably transfected with an erythropoietin receptor cDNA (FDC-ER cells). FDC-ER cells proliferate in response to erythropoietin (Quelle, D. E., and Wojchowski, D. M. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 4801-4805), and presently are shown to rapidly phosphorylate a M(r) 100,000 cytosolic protein (pp100) at tyrosine residues in response to this factor. Phosphorylation of pp100 also is induced in FDC-P1 and FDC-ER cells in response to IL-3 or GM-CSF. Importantly, quantitative analyses showed identical concentration dependencies for factor-induced pp100 phosphorylation and induced cell proliferation. Moreover, a selective loss of proliferative responsiveness to GM-CSF in FDC-ER cells was associated with a reduced capacity of GM-CSF to induce pp100 phosphorylation. Finally, limited differences in tryptic phosphopeptide maps of pp100 as isolated following exposure to erythropoietin, IL-3, or GM-CSF were observed, suggesting that these factors also may preferentially induce phosphorylation of pp100 at distinct sites. These findings are consistent with a role for pp100 as a common cytosolic transducer in the apparently convergent pathways of erythropoietin-, IL-3-, and GM-CSF-induced proliferation of myeloid progenitor cells.  相似文献   

13.
14.
Previous studies have shown that the nuclear envelope of avian erythrocytes contains a 58-kDa integral membrane protein (p58) which serves as a receptor for the karyoskeletal protein lamin B (Worman, J. H., Yuan, J., Blobel, G., and Georgatos, S. D. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 8531-8534). We now demonstrate that p58 is phosphorylated in vivo at serine residues and that its phosphorylation is stimulated by isoproterenol in a dose-dependent fashion. We further show that dephosphorylation of p58 reduces significantly its binding to lamin B. These data suggest that phosphorylation may constitute one of the major mechanisms regulating the lamina-nuclear membrane interactions.  相似文献   

15.
Several years ago, we demonstrated that glucose induced tyrosine phosphorylation of a 125-kDa protein (p125) in pancreatic beta-cells (Konrad, R. J., Dean, R. M., Young, R. A., Bilings, P. C., and Wolf, B. A. (1996) J. Biol. Chem. 271, 24179-24186). Glucose induced p125 tyrosine phosphorylation in beta-TC3 insulinoma cells, beta-HC9 cells, and in freshly isolated rat islets, whereas increased tyrosine phosphorylation was not observed with other fuel secretagogues. Initial efforts to identify p125 were unsuccessful, so a new approach was taken. The protein was purified from betaTC6,F7 cells via an immunodepletion method. After electrophoresis and colloidal Coomassie Blue staining, the area of the gel corresponding to p125 was excised and subjected to tryptic digestion. Afterward, mass spectrometry was performed and the presence of Crk-associated substrate (Cas) was detected. Commercially available antibodies against Cas were obtained and tested directly in beta-cells, confirming glucose-induced tyrosine phosphorylation of Cas. Further experiments demonstrated that in beta-cells the glucose-induced increase in Cas tyrosine phosphorylation occurs immediately and is not accompanied by increased focal adhesion kinase tyrosine phosphorylation. Finally, it is also demonstrated via Western blotting that Cas is present in normal isolated rat islets. Together, these results show that the identity of the previously described p125 beta-cell protein is Cas and that Cas undergoes rapid glucose-induced tyrosine phosphorylation in beta-cells.  相似文献   

16.
The insulin receptor of rat brain is coupled to tyrosine kinase activity   总被引:13,自引:0,他引:13  
Insulin receptors from rat brain were studied for receptor-associated tyrosine kinase activity. In solubilized, lectin-purified receptor preparations, insulin stimulated the phosphorylation of the beta subunit of its receptor as well as of exogenous substrates. Phosphoamino acid analysis of casein phosphorylated by these preparations revealed that 32P incorporation occurred predominantly on tyrosine residues. Receptor and casein phosphorylations were specific for insulin and analogues that also bind to the insulin receptor. The insulin dose response for phosphorylation of brain receptor resembled that reported for the purified insulin receptor from human placenta (Kasuga, M., Fujita-Yamaguchi, Y., Blithe, D.L., and Kahn, C.R. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 2137-2141), suggesting similar insulin sensitivity and coupling of the brain receptor kinase. Four polyclonal antisera to the insulin receptor were able to bind and immunoprecipitate the brain receptor; however, only two antisera activated the receptor-associated kinase. Thus, the brain insulin receptor, like the well studied non-neural receptor, is coupled to tyrosine kinase activity, making regulation of cellular events by insulin in neural tissue possible.  相似文献   

17.
Addition of bombesin to quiescent cultures of Swiss 3T3 cells caused a rapid increase in the phosphorylation of an Mr 80,000 cellular protein (designated 80k). The effect was both concentration and time dependent; enhancement in 80k phosphorylation could be detected as early as 10 s after the addition of peptide. Recently, a rapid increase in the phosphorylation of an 80k cellular protein after treatment with phorbol esters or diacylglycerol has been shown to reflect the activation of protein kinase C in intact fibroblasts (Rozengurt, E., A. Rodriguez-Pena, and K. A. Smith, 1983, Proc. Natl. Acad. Sci. USA., 80:7244-7248; Rozengurt, E., A. Rodriguez-Pena, M. Coombs, and J. Sinnett-Smith, 1984, Proc. Natl. Acad. Sci. USA., 81:5748-5752). The 80k phosphoproteins generated in response to bombesin and to phorbol 12,13-dibutyrate were identical as judged by one- and two-dimensional PAGE and by peptide mapping after partial proteolysis with Staphylococcus aureus V8 protease. In addition, prolonged pretreatment of 3T3 cells with phorbol 12,13-dibutyrate, which leads to the disappearance of protein kinase C activity, blocked the ability of bombesin to stimulate 80k. Bombesin also caused a rapid (1 min) inhibition of 125I-labeled epidermal growth factor (125I-EGF) binding to Swiss 3T3 cells. The inhibition was both concentration and temperature dependent and resulted from a marked decrease in the affinity of the EGF receptor for its ligand. Peptides structurally related to bombesin, including gastrin-releasing peptide, also stimulated 80k phosphorylation and inhibited 125I-EGF binding; both effects were selectively blocked by a novel bombesin antagonist. These results strongly suggest that these responses are mediated by specific high-affinity receptors that recognize the peptides of the bombesin family in Swiss 3T3 cells. While an increase in cytosolic Ca2+ concentration does not mediate the bombesin inhibition of 125I-EGF binding, the activation of protein kinase C in intact Swiss 3T3 cells by peptides of the bombesin family may lead to rapid inhibition of the binding of 125I-EGF to its cellular receptor.  相似文献   

18.
NIH 3T3 cells were transfected with plasmids containing Moloney murine leukemia virus long terminal repeats and either chicken c-src or v-src genes. In contrast with the effects observed after transfection with plasmids containing c-src and avian retrovirus or simian virus 40 promoter-enhancers (H. Hanafusa, H. Iba, T. Takeya, and F. R. Cross, p. 1-8, in G. F. Vande Woude, A. J. Levine, W. C. Topp, and J. D. Watson, ed., Cancer Cells, vol. 2, 1984; H. Iba, T. Takeya, F. R. Cross, T. Hanafusa, and H. Hanafusa, Proc. Natl. Acad. Sci. U.S.A. 81:4424-4428, 1984; R. C. Parker, R. Swanstrom, H. E. Varmus, and J. M. Bishop, p. 19-26, in G. F. Vande Woude et al., ed., Cancer Cells, vol. 2, 1984; R. C. Parker, H. E. Varmus, and J. M. Bishop, Cell 37:131-139, 1984; D. Shalloway, P. M. Coussens, and P. Yaciuk, p. 9-17, in G. F. Vande Woude et al., ed., Cancer Cells, vol. 2, 1984; D. Shalloway, P. M. Coussens, and P. Yaciuk, Proc. Natl. Acad. Sci. U.S.A. 81:7071-7075; and K. C. Wilhelmsen, W. G. Tarpley, and H. M. Temin, p. 303-308, in G. F. Vande Woude et al., ed., Cancer Cells, vol. 2, 1984), we found that both types of Moloney murine leukemia virus long terminal repeat-src expression plasmids induced focus formation, although c-src induced only 1% as many foci as v-src. The focus-selected c-src overexpressed cells had altered morphology and limited growth in soft agarose but were not tumorigenic in vivo. Cleveland digests, comparative in vitro kinase assays, secondary transfections, and immunoprecipitations indicated that focus formation was caused by rare transfection events that resulted in very high-level pp60c-src expression rather than by mutations of the transfected c-src genes. These results suggest that pp60v-src induced transformation is not a completely spurious activity which is unrelated to the function of pp60c-src but that it represents a perturbation of already existent molecular control processes involving pp60c-src.  相似文献   

19.
Integrin-mediated cell adhesion stimulates a cascade of signaling pathways that control cell proliferation, migration, and survival, mostly through tyrosine phosphorylation of signaling molecules. p130Cas, originally identified as a major substrate of v-Src, is a scaffold molecule that interacts with several proteins and mediates multiple cellular events after cell adhesion and mitogen treatment. Here, we describe a novel p130Cas-associated protein named p140Cap (Cas-associated protein) as a new tyrosine phosphorylated molecule involved in integrin- and epidermal growth factor (EGF)-dependent signaling. By affinity chromatography of human ECV304 cell extracts on a MBP-p130Cas column followed by mass spectrometry matrix-assisted laser desorption ionization/time of flight analysis, we identified p140Cap as a protein migrating at 140 kDa. We detected its expression in human, mouse, and rat cells and in different mouse tissues. Endogenous and transfected p140Cap proteins coimmunoprecipitate with p130Cas in ECV304 and in human embryonic kidney 293 cells and associate with p130Cas through their carboxy-terminal region. By immunofluorescence analysis, we demonstrated that in ECV304 cells plated on fibronectin, the endogenous p140Cap colocalizes with p130Cas in the perinuclear region as well as in lamellipodia. In addition p140Cap codistributes with cortical actin and actin stress fibers but not with focal adhesions. We also show that p140Cap is tyrosine phosphorylated within 15 min of cell adhesion to integrin ligands. p140Cap tyrosine phosphorylation is also induced in response to EGF through an EGF receptor dependent-mechanism. Interestingly expression of p140Cap in NIH3T3 and in ECV304 cells delays the onset of cell spreading in the early phases of cell adhesion to fibronectin. Therefore, p140Cap is a novel protein associated with p130Cas and actin cytoskeletal structures. Its tyrosine phosphorylation by integrin-mediated adhesion and EGF stimulation and its involvement in cell spreading on matrix proteins suggest that p140Cap plays a role in controlling actin cytoskeleton organization in response to adhesive and growth factor signaling.  相似文献   

20.
Neuropeptide-stimulated tyrosine phosphorylation of specific components in Swiss 3T3 cells was investigated using monoclonal antibodies directed against the src transformation-associated substrates p125 focal adhesion kinase (FAK), a novel type of cytosolic tyrosine kinase, and p130. Treatment of Swiss 3T3 cells with the mitogenic peptides bombesin, vasopressin, and endothelin caused a striking increase in the tyrosine phosphorylation of p125FAK, as judged either by anti-phosphotyrosine (anti-Tyr(P)) Western blots of anti-p125FAK immunoprecipitates, or by anti-p125FAK immunoblots of anti-Tyr(P) immunoprecipitates. Bombesin-stimulated tyrosine phosphorylation of p125FAK was detectable within seconds and concentration-dependent (half-maximum effect of 0.3 nM). Neuropeptides also stimulated the tyrosine phosphorylation of a second component of M(r) 130,000, previously identified as the major p130 phosphotyrosyl protein in src-transformed cells. Bombesin stimulated p130 tyrosine phosphorylation with kinetics and concentration dependence similar to those observed for p125FAK. This is the first report to identify substrates for neuropeptide-stimulated tyrosine phosphorylation; the finding that one of these substrates is a tyrosine kinase suggests the existence of a novel signal transduction pathway in the action of mitogenic neuropeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号