首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ornithine decarboxylase (ODC) is the rate-limiting enzyme involved in the biosynthesis of polyamines essential for cell growth and differentiation. Aberrant upregulation of ODC, however, is widely believed to be a contributing factor in tumorigenesis. Antizyme is a major regulator of ODC, inhibiting ODC activity through the formation of complexes and facilitating degradation of ODC by the 26S proteasome. Moreover, the antizyme inhibitor (AZI) serves as another factor in regulating ODC, by binding to antizyme and releasing ODC from ODC-antizyme complexes. In our previous report, we observed elevated AZI expression in tumor specimens. Therefore, to evaluate the role of AZI in regulating ODC activity in tumors, we successfully down-regulated AZI expression using RNA interference technology in A549 lung cancer cells expressing high levels of AZI. Two AZI siRNAs, which were capable to generate a hairpin dsRNA loop targeting AZI, could successively decrease the expression of AZI. Using biological assays, antizyme activity increased in AZI-siRNA-transfected cells, and ODC levels and activity were reduced as well. Moreover, silencing AZI expression decreased intracellular polyamine levels, reduced cell proliferation, and prolonged population doubling time. Our results directly demonstrate that downregulation of AZI regulates ODC activity, intracellular polyamine levels, and cell growth through regulating antizyme activity. This study also suggests that highly expressed AZI may be partly responsible for increased ODC activity and cellular transformation.  相似文献   

2.
Polyamine sensing during antizyme mRNA programmed frameshifting   总被引:8,自引:0,他引:8  
A key regulator of cellular polyamine levels from yeasts to mammals is the protein antizyme. The antizyme gene consists of two overlapping reading frames with ORF2 in the +1 frame relative to ORF1. A programmed +1 ribosomal frameshift occurs at the last codon of ORF1 and results in the production of full-length antizyme protein. The efficiency of frameshifting is proportional to the concentration of polyamines, thus creating an autoregulatory circuit for controlling polyamine levels. The mRNA recoding signals for frameshifting include an element 5' and a pseudoknot 3' of the shift site. The present work illustrates that the ORF1 stop codon and the 5' element are critical for polyamine sensing, whereas the 3' pseudoknot acts to stimulate frameshifting in a polyamine independent manner. We also demonstrate that polyamines are required to stimulate stop codon readthrough at the MuLV redefinition site required for normal expression of the GagPol precursor protein.  相似文献   

3.
Numerous studies have correlated elevated polyamine levels with abnormal or rapid cell growth. One therapeutic strategy to treat diseases with increased cellular proliferation rates, most obviously cancer, has been to identify compounds which lower cellular polyamine levels. An ideal target for this strategy is the protein antizyme-a negative regulator of polyamine biosynthesis and import, and a positive regulator of polyamine export. In this study, we have optimized two tissue-culture assays in 96-well format, to allow the rapid screening of a 750-member polyamine analog library for compounds which induce antizyme frameshifting and fail to substitute for the natural polyamines in growth. Five analogs (MQTPA1-5) containing xylene (1,4-dimethyl benzene) were found to be equal to or better than spermidine at stimulating antizyme frameshifting and were inefficient at rescuing cell growth following polyamine depletion. These compounds were further characterized for effects on natural polyamine levels and enzymes involved in polyamine metabolism. Finally, direct measurements of antizyme induction in cells treated with two of the lead compounds revealed an 8- to 15-fold increase in antizyme protein over untreated cells. The impact of the xylene moiety and the distance between the positively charged amino groups on antizyme frameshifting and cell growth are discussed.  相似文献   

4.
Olsen RR  Chung I  Zetter BR 《Amino acids》2012,42(2-3):549-558
The endogenous protein antizyme inhibitor (AZI) is a potential oncogene which promotes cell growth by both inhibiting antizyme (AZ) activity and releasing ornithine decarboxylase (ODC) from AZ-mediated degradation. High levels of ODC and polyamines are associated with numerous types of neoplastic transformation, and the genomic region including AZI is frequently amplified in tumors of the ovary and prostate. To determine whether AZI functionally promotes prostate tumor growth, we made PC3M-LN4 (human) and AT6.1 (rat) cancer cell lines stably expressing shRNA to knockdown antizyme inhibitor 1 (AZI). AZI knockdown was confirmed by western blot, quantitative real-time PCR, and immunofluorescence. To examine the ability of these cells to form tumors in vivo, 1 × 10(6) cells were injected subcutaneously into nude mice either with (PC3M-LN4) or without (AT6.1) Matrigel. Tumor growth was measured two times per week by caliper. We found that cells in which AZI levels had been knocked down by shRNA formed significantly smaller tumors in vivo in both human and rat prostate cancer cell lines. These results suggest that not only does AZI promote tumor growth, but also that AZI may be a valid therapeutic target for cancer treatment.  相似文献   

5.
Sharpe JG  Seidel ER 《Amino acids》2005,29(3):245-253
Summary. Due to the similarity in transport characteristics of polyamines and the y+ basic amino acid system, we hypothesized that both substrates could be moving through a common carrier site. Competitive and cross inhibition experiments in intestinal epithelial cells revealed the possibility of a common transport site. N-ethylmalemide (NEM) inhibited both lysine and putrescine transport, confirming that both were carried by a y+ transporter. Overexpressing the y+ transporter CAT-1 in a polyamine transport-deficient cell line, CHO-MG, did not reconstitute polyamine-transport. Thus, polyamines are not traveling through CAT-1. To determine if lysine is carried by a polyamine transport site, an antizyme-overexpressing cell line was used. Antizyme overexpression decreased polyamine uptake by 50%; in contrast, lysine transport was unaffected. Therefore, lysine is not traveling through a polyamine transport site. It appears that polyamines and lysine are likely traveling through a common unknown y+ transport site.  相似文献   

6.
7.
Wallace HM  Niiranen K 《Amino acids》2007,33(2):261-265
Summary. The polyamines are growth factors in both normal and cancer cells. As the intracellular polyamine content correlates positively with the growth potential of that cell, the idea that depletion of polyamine content will result in inhibition of cell growth and, particularly tumour cell growth, has been developed over the last 15 years. The polyamine pathway is therefore a target for development of rationally designed, antiproliferative agents. Following the lessons from the single enzyme inhibitors (α-difluoromethylornithine DFMO), three generations of polyamine analogues have been synthesised and tested in vitro and in vivo. The analogues are multi-site inhibitors affecting multiple reactions in the pathway and thus prevent the up-regulation of compensatory reactions that have been the downfall of DFMO in anticancer chemotherapy. Although the initial concept was that the analogues may provide novel anticancer drugs, it now seems likely that the analogues will have wider applications in diseases involving hyperplasia.  相似文献   

8.
The prostate has the highest level of polyamines among all tissues, and it is the only tissue in which polyamines are purposely synthesized for export. It has been suggested that the high local polyamine concentrations suppress cell growth of primary prostatic carcinomas and that this growth control is lost when cancer cells metastasize. It has also been shown that the sensitivity to polyamine-induced growth arrest correlates with antizyme induction in prostate carcinoma cell lines. In this study, we evaluated the sensitivity of poorly metastatic (LNCaP) and highly metastatic (DU145) prostate cancer cell lines to conditional antizyme 1 over-expression. Antizyme 1 induction resulted in a marked loss of ODC activity and polyamine uptake in both cell lines. However, the proliferation of LNCaP cells was repressed by antizyme 1 induction, whereas the proliferation of DU 145 cells was not affected. Neither cell line showed any reduction in polyamine pools after manipulation nor did polyamine addition into the medium save the LNCaP cells from the growth retardation. The growth inhibition of LNCaP cells was accompanied by accumulation of cells in the G1 phase and depletion of cyclin E1 protein. These results confirm that different prostate cancer cell lines show diverse sensitivities to antizyme 1 which may not be directly polyamine related. The high gene transfer capacity of the used lentiviral vector makes the present approach a useful tool to study the therapeutic potential of antizyme 1 both in cell cultures and experimental animals.  相似文献   

9.
Polyamines, spermidine, spermine and their precursor putrescine, are ubiquitous cell components essential for normal cell growth. Increased polyamine levels and enhanced biosynthesis have been associated with malignant transformation and tumor formation, and thus, the polyamines have been considered to be a meaningful target to cancer therapies. However, clinical cancer treatment trials using inhibitors of polyamine synthesis have been unsuccessful probably due to compensatory uptake of polyamines from extracellular sources. The antizyme proteins regulate both polyamine biosynthesis and transport, and thus, the antizymes could provide an efficient approach to control cellular proliferation compared to the mere inhibition of biosynthesis. To define the role of antizymes in proliferative processes associated with the whole animal, we have generated transgenic mice overexpressing mouse antizyme 1 gene under its own regulatory sequences. Antizyme 1 protein was abundantly expressed in various organs and the expressed antizyme protein was functional as ornithine decarboxylase activity was significantly reduced in all tissues analyzed. However, antizyme 1 overexpression caused only minor changes in tissue polyamine levels demonstrating the challenges in using the “antizyme approach” to deplete polyamines in a living animal. Neither were there any changes in cellular proliferation in the proliferative tissues of transgenic animals. Interestingly though, there was occurrence of abnormally high level of apoptosis in the non-proliferating part of the colon epithelia. Otherwise, the transgenic founder mice appeared healthy and out of seven founders six were fertile. However, none of the founders could transmit the transgene suggesting that the antizyme 1 overexpression may be deleterious to transgenic gametes.  相似文献   

10.
Polyamines are small cationic molecules required for cellular proliferation. Agmatine is a biogenic amine unique in its capacity to arrest proliferation in cell lines by depleting intracellular polyamine levels. We previously demonstrated that agmatine enters mammalian cells via the polyamine transport system. As polyamine transport is positively correlated with the rate of cellular proliferation, the current study examines the antiproliferative effects of agmatine on cells with varying proliferative kinetics. Herein, we evaluate agmatine transport, intracellular accumulation, and its effects on antizyme expression and cellular proliferation in nontransformed cell lines and their transformed variants. H-ras- and Src-transformed murine NIH/3T3 cells (Ras/3T3 and Src/3T3, respectively) that were exposed to exogenous agmatine exhibit increased uptake and intracellular accumulation relative to the parental NIH/3T3 cell line. Similar increases were obtained for human primary foreskin fibroblasts relative to a human fibrosarcoma cell line, HT1080. Agmatine increases expression of antizyme, a protein that inhibits polyamine biosynthesis and transport. Ras/3T3 and Src/3T3 cells demonstrated augmented increases in antizyme protein expression relative to NIH/3T3 in response to agmatine. All transformed cell lines were significantly more sensitive to the antiproliferative effects of agmatine than nontransformed lines. These effects were attenuated in the presence of exogenous polyamines or inhibitors of polyamine transport. In conclusion, the antiproliferative effects of agmatine preferentially target transformed cell lines due to the increased agmatine uptake exhibited by cells with short cycling times. polyamines; antizyme; ornithine decarboxylase; polyamine transport  相似文献   

11.
Ornithine decarboxylase antizyme 1 (AZ1) is a major regulatory protein responsible for the regulation and degradation of ornithine decarboxylase (ODC). To better understand the role of AZ1 in polyamine metabolism and in modulating the response to anticancer polyamine analogues, a small interfering RNA strategy was used to create a series of stable clones in human H157 non-small cell lung cancer cells that expressed less than 5-10% of basal AZ1 levels. Antizyme 1 knockdown clones accumulated greater amounts of the polyamine analogue N (1),N (11)-bis(ethyl)norspermine (BENSpm) and were more sensitive to analogue treatment. The possibility of a loss of polyamine uptake regulation in the knockdown clones was confirmed by polyamine uptake analysis. These results are consistent with the hypothesis that AZ1 knockdown leads to dysregulation of polyamine uptake, resulting in increased analogue accumulation and toxicity. Importantly, there appears to be little difference between AZ1 knockdown cells and cells with normal levels of AZ1 with respect to ODC regulation, suggesting that another regulatory protein, potentially AZ2, compensates for the loss of AZ1. The results of these studies are important for the understanding of both the regulation of polyamine homeostasis and in understanding the factors that regulate tumor cell sensitivity to the anti-tumor polyamine analogues.  相似文献   

12.
Summary. In this study, polyamine oxidase from maize (MPAO), which is involved in the terminal catabolism of spermidine and spermine to produce an aminoaldehyde, 1,3-diaminopropane and H2O2, has been conditionally expressed at high levels in the nucleus of MCF-7 human breast cancer cells, with the aim to interfere with polyamine homeostasis and cell proliferation. Recombinant MPAO expression induced accumulation of a high amount of 1,3-diaminopropane, an increase of putrescine levels and no alteration in the cellular content of spermine and spermidine. Furthermore, recombinant MPAO expression did not interfere with cell growth of MCF-7 cells under normal conditions but it did confer higher growth sensitivity to etoposide, a DNA topoisomerase II inhibitor widely used as antineoplastic drug. These data suggest polyamine oxidases as a potential tool to improve the efficiency of antiproliferative agents despite the difficulty to interfere with cellular homeostasis of spermine and spermidine. Authors’ address: Dr. Paraskevi Tavladoraki, Department of Biology, University ‘Roma Tre’, Viale G. Marconi 446, 00146 Rome, Italy  相似文献   

13.
Antizymes are key regulators of cellular polyamine metabolism that negatively regulate cell proliferation and are therefore regarded as tumor suppressors. Although the regulation of antizyme (Az) synthesis by polyamines and the ability of Az to regulate cellular polyamine levels suggest the centrality of polyamine metabolism to its antiproliferative function, recent studies have suggested that antizymes might also regulate cell proliferation by targeting to degradation proteins that do not belong to the cellular polyamine metabolic pathway. Using a co-degradation assay, we show here that, although they efficiently stimulated the degradation of ornithine decarboxylase (ODC), Az1 and Az2 did not affect or had a negligible effect on the degradation of cyclin D1, Aurora-A, and a p73 variant lacking the N-terminal transactivation domain whose degradation was reported recently to be stimulated by Az1. Furthermore, we demonstrate that, although Az1 and Az2 could not be constitutively expressed in transfected cells, they could be stably expressed in cells that express trypanosome ODC, a form of ODC that does not bind Az and therefore maintains a constant level of cellular polyamines. Taken together, our results clearly demonstrate that Az1 and Az2 affect cell proliferation and viability solely by modulating cellular polyamine metabolism.  相似文献   

14.
Summary. The levels of polyamines (putrescine, spermidine and spermine) and polyamine oxidase in plasma of patients with chronic renal failure were determined. The level of putrescine was increased but the level of spermine was decreased in the plasma of these patients. The patients also had increased plasma polyamine oxidase activity leading to increased degradation of spermine. As acrolein was a major toxic compound produced from spermine by polyamine oxidase, the levels of free and protein-conjugated acrolein in plasma were also measured. Acrolein levels were enhanced in plasma of patients with chronic renal failure. The accumulated acrolein found as protein conjugates was equivalent to 170 μM, which was about 5-fold higher than in plasma of normal subjects. It was found that acrolein is mainly produced by spermine oxidase in plasma. An increase in putrescine, spermine oxidase and acrolein in plasma was observed in all cases such as diabetic nephropathy, chronic glomerulonephritis and nephrosclerosis. After patients with chronic renal failure had undergone hemodialysis, their levels of plasma polyamines, spermine oxidase and acrolein returned towards normal. It is likely that acrolein produced from spermine accumulates in the blood due to decreased excretion into urine and may function as a uremic “toxin”.  相似文献   

15.
Kim JS  Kim TL  Cho EW  Paik SG  Chung HW  Kim IG 《IUBMB life》2008,60(6):402-409
The mammalian antizyme (AZ) promotes ubiqutin-independent degradation of ornithine decarboxylase, a key enzyme in polyamine biosynthesis. This study shows that AZ suppression in human lung carcinoma A549 cells caused growth defects and death, but made the cells resistant to DNA damaging agents such as gamma-radiation and cisplatin. In these cells, the cellular redox potential (glutathione/glutathione disulfide [GSH/GSSG] ratio) was increased and thus intracellular reactive oxygen species were severely diminished, which might cause growth defects and cell death. The increase of cellular redox potential was mainly caused by dramatic increase of the cytoplasmic nicotinamide adenine dinucleotide phosphate (NADP)(+)-dependent isocitrate dehydrogenase, which generates the reducing equivalents NADPH. In the AZ-suppressed cells, the hypoxia inducible factor 1alpha (HIF-1alpha) was also increased. As in other cases which showed an increment of HIF-1alpha and the cellular redox potential, the AZ-suppressed cells showed resistance to gamma-radiation and anticancer drugs. Therefore, these facts might be considered as important for the use of radio- and chemotherapy on tumor cells which show an unbalance in their polyamine levels.  相似文献   

16.
Vascular smooth muscle cells (SMC) are able to proliferate when cultured on plates, but become differentiated when maintained in three-dimensional type I collagen matrices (honeycombs). SMC grown in honeycombs contained a low level of polyamines due to the presence of antizyme 1 (AZ1), a negative regulator of ornithine decarboxylase (ODC) and of polyamine uptake. To clarify the role of AZ1 in differentiation of SMC in honeycombs, an ODC gene was stably transfected into SMC (ODC-SMC). Although proliferation of ODC-SMC on plates was accelerated together with an increase in phosphorylated focal adhesion kinase (FAK) and a decrease in α-actin and myosin, maker proteins of differentiation, growth of ODC-SMC ceased in honeycombs similarly to normal SMC with a low level of phosphorylated FAK and a high level of α-actin and myosin. AZ1 expression in ODC-SMC on plates was low, but that in honeycombs was high. Antizyme in ODC-SMC in honeycombs not only decreased the level of ODC but also inhibited polyamine uptake activity. These results taken together suggest that low levels of polyamines caused by AZ1 in SMC in honeycombs inhibit phosphorylation of FAK and enhance expression of α-actin and myosin, resulting in differentiation through inhibition of focal adhesions.  相似文献   

17.
Summary. The polyamines spermidine and spermine have been hypothesized to possess different functions in the protection of DNA from reactive oxygen species. The growth and survival of mouse fibroblasts unable to synthesize spermine were compared to their normal counterparts in their native and polyamine-depleted states in response to oxidative stress. The results of these studies suggest that when present at normal or supraphysiological concentrations, either spermidine or spermine can protect cells from reactive oxygen species. However, when polyamine pools are pharmacologically manipulated to produce cells with low levels of predominately spermine or spermidine, spermine appears to be more effective. Importantly, when cells are depleted of both glutathione and endogenous polyamines, they exhibit increased sensitivity to hydrogen peroxide as compared to glutathione depletion alone, suggesting that polyamines not only play a role in protecting cells from oxidative stress but this role is distinct from that played by glutathione.  相似文献   

18.
Summary. Glucocorticoids are potent anti-inflammatory and immunosuppressive agents. As endogenous inhibitors of cytokine synthesis, glucocorticoids suppress immune activation and uncontrolled overproduction of cytokines, preventing tissue injury. Also, polyamine spermine is endogenous inhibitor of cytokine production (inhibiting IL-1, IL-6 and TNF synthesis). The idea of our work was to examine dexamethasone effects on the metabolism of polyamines, spermine, spermidine and putrescine and polyamine oxidase activity in liver and spleen during sensitization of guinea pigs. Sensitization was done by application of bovine serum albumin with addition of complete Freund’s adjuvant. Our results indicate that polyamine amounts and polyamine oxidase activity increase during immunogenesis in liver and spleen. Dexamethasone application to sensitized and unsensitized guinea pigs causes depletion of polyamines in liver and spleen. Dexamethasone decreases polyamine oxidase activity in liver and spleen of sensitized guinea pigs, increasing at the same time PAO activity in tissues of unsensitized animals.  相似文献   

19.
Polyamines are known to be involved in cell growth regulation in breast cancer. To evaluate the efficacy of bis(ethyl)polyamine analogs for breast cancer therapy and to understand their mechanism of action we measured the effects of a series of polyamine analogs on cell growth, activities of enzymes involved in polyamine metabolism, intracellular polyamine levels, and the uptake of putrescine and spermidine using MCF-7 breast cancer cells. The IC50 values for cell growth inhibition of three of the compounds, N1,N12-bis(ethyl)spermine, N1,N11-bis(ethyl)norspermine, and N1,N14-bis(ethyl)homospermine, were in the range of 1-2 microM. Another group of three compounds showed antiproliferative activity at about 5 microM level. These compounds are also capable of suppressing colony formation in soft agar assay and inducing apoptosis of MCF-7 cells. The highly effective growth inhibitory agents altered the activity of polyamine biosynthetic and catabolic enzymes and down-regulated the transport of natural polyamines, although each compound produced a unique pattern of alterations in these parameters. HPLC analysis showed that cellular uptake of bis(ethyl)polyamines was highest for bis(ethyl)spermine. We also analyzed polyamine analog conformations and their binding to DNA minor or major grooves by molecular modelling and molecular dynamics simulations. Results of these analyses indicate that tetramine analogs fit well in the minor groove of DNA whereas, larger compounds extend out of the minor groove. Although major groove binding was also possible for the short tetramine analogs, this interaction led to a predominantly bent conformation. Our studies show growth inhibitory activities of several potentially important analogs on breast cancer cells and indicate that multiple sites are involved in the mechanism of action of these analogs. While the activity of an analog may depend on the sum of these different effects, molecular modelling studies indicate a correlation between antiproliferative activity and stable interactions of the analogs with major or minor grooves of DNA.  相似文献   

20.
Antizymes (AZs) are polyamine‐induced proteins that negatively regulate cellular polyamine synthesis and uptake. Three antizyme isoforms are conserved among mammals. AZ1 and AZ2 have a broad tissue distribution, while AZ3 is testis specific. Both AZ1 and AZ2 inhibit ornithine decarboxylase (ODC) activity by binding to ODC monomer and target it to the 26S proteasome at least in vivo. Both also inhibit extra‐cellular polyamine uptake. Despite their being indistinguishable by these criteria, we show here using enhanced green fluorescent protein (EGFP)‐AZ2 fusion protein that in mammalian cells, the subcellular location of AZ2 is mainly in the nucleus, and is different from that of AZ1. The C‐terminal part of AZ2 is necessary for the nuclear distribution. Within a few hours, a shift in the distribution of EGFP‐AZ2 fusion protein from cytoplasm to the nucleus or from nucleus to cytoplasm is observable in NIH3T3 cells. In addition, we found that in cells a majority of AZ2, but not AZ1, is phosphorylated at Ser‐186, likely by protein kinase CK2. There may be a specific function of AZ2 in the nucleus. J. Cell. Biochem. 108: 1012–1021, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号