共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Changes in alternative splicing patterns can result from both inherited and acquired defects, and they are increasingly recognized as causes of human diseases. Hence, improvements in the understanding of alternative splicing regulation may provide opportunities for restoring productive patterns of splicing. The identification of factors (such as proteins, nucleic acids or small molecules) that modulate the splicing pattern would be facilitated by systems with which many samples can be screened. The absence of reliable systems prompted us to develop an assay system based on dual enzymatic activities. Two distinct signals derived from spliced and unspliced RNA are measured, providing the basis for a robust, rapid and convenient assay for investigating splicing. This protocol describes how to use this system; the time required for lysing the cells and recording enzymatic activity is about 2 hours. 相似文献
6.
7.
Mammalian cells play a dominant role in the industrial production of biopharmaceutical proteins. However, the productivity of producer cells is often hindered by a bottleneck in the saturated secretory pathway, where a sophisticated mechanism of vesicle trafficking is mediated by numerous proteins and their complexes, among which are the cross‐kingdom conserved SNAREs [soluble NSF (N‐ethylmaleimide‐sensitive factor) receptor]. The SNAREs assemble into complexes by means of four interactive α‐helices and, thus, trigger the fusion of transport vesicles with the respective target membranes. We report that the transgenic expression of exocytic SNAREs, which control the fusion of secretory vesicles to the plasma membrane, differentially impacts the secretory capacity of HEK‐293, HeLa, and CHO‐K1 cells. While other exocytic SNAREs have no effect or a negative effect, SNAP‐23 [synaptosome‐associated protein of 23 kDa] and VAMP8 [vesicle‐associated membrane protein 8] specifically increase the production of recombinant proteins when they are ectopically and stably expressed in mammalian cells. The targeted and effective intervention in the secretory capacity of SNARE proteins is a novel engineering strategy, which could lead to the development of new therapies by increasing the production of biopharmaceutical proteins or by boosting the secretion of cell implants in cell therapy initiatives. Biotechnol. Bioeng. 2011; 108:611–620. © 2010 Wiley Periodicals, Inc. 相似文献
8.
9.
10.
mRNA decapping is a crucial step in the regulation of mRNA stability and gene expression. Dcp2 is an mRNA decapping enzyme that has been widely studied. We recently reported the presence of a second mammalian cytoplasmic decapping enzyme, Nudt16. Here we address the differential utilization of the two decapping enzymes in specified mRNA decay processes. Using mouse embryonic fibroblast (MEF) cell lines derived from a hypomorphic knockout of the Dcp2 gene with undetectable levels of Dcp2 or MEF cell lines harboring a Nudt16-directed shRNA to generate reduced levels of Nudt16, we demonstrate the distinct roles for Dcp2 and Nudt16 in nonsense-mediated mRNA decay (NMD), decay of ARE-containing mRNA and miRNA-mediated silencing. Our results indicated that NMD preferentially utilizes Dcp2 rather than Nudt16; Dcp2 and Nudt16 are redundant in miRNA-mediated silencing; and Dcp2 and Nudt16 are differentially utilized for ARE-mRNA decay. These data demonstrate that the two distinct decapping enzymes can uniquely function in specific mRNA decay processes in mammalian cells. 相似文献
11.
J Ross 《Microbiological reviews》1995,59(3):423-450
12.
13.
Regulation of mRNA stability in mammalian cells 总被引:38,自引:0,他引:38
The regulation of mRNA decay is a major control point in gene expression. The stability of a particular mRNA is controlled by specific interactions between its structural elements and RNA-binding proteins that can be general or mRNA-specific. Regulated mRNA stability is achieved through fluctuations in half-lives in response to developmental or environmental stimuli like nutrient levels, cytokines, hormones and temperature shifts as well as environmental stresses like hypoxia, hypocalcemia, viral infection, and tissue injury. Furthermore, in specific disorders like some forms of neoplasia, thalassemia and Alzheimer's disease, deregulated mRNA stability can lead to the aberrant accumulation of mRNAs and the proteins they encode. This review presents a discussion of some recently identified examples of regulated and deregulated mRNA stability in order to illustrate the diversity of genes regulated by alterations in the degradation rates of their mRNAs. 相似文献
14.
Regulation of RNA degradation plays an important role in the control of gene expression. One mechanism of eukaryotic mRNA decay proceeds through an initial deadenylation followed by 5' end decapping and exonucleolytic decay. Dcp2 is currently believed to be the only cytoplasmic decapping enzyme responsible for decapping of all mRNAs. Here we report that Dcp2 protein modestly contributes to bulk mRNA decay and surprisingly is not detectable in a subset of mouse and human tissues. Consistent with these findings, a hypomorphic knockout of Dcp2 had no adverse consequences in mice. In contrast, the previously reported Xenopus nucleolar decapping enzyme, Nudt16, is an ubiquitous cytoplasmic decapping enzyme in mammalian cells. Like Dcp2, Nudt16 also regulates the stability of a subset of mRNAs including a member of the motin family of proteins involved in angiogenesis, Angiomotin-like 2. These data demonstrate mammalian cells possess multiple mRNA decapping enzymes, including Nudt16 to regulate mRNA turnover. 相似文献
15.
While the majority of multiexonic human genes show some evidence of alternative splicing, it is unclear what fraction of observed splice forms is functionally relevant. In this study, we examine the extent of alternative splicing in human cells using deep RNA sequencing and de novo identification of splice junctions. We demonstrate the existence of a large class of low abundance isoforms, encompassing approximately 150,000 previously unannotated splice junctions in our data. Newly-identified splice sites show little evidence of evolutionary conservation, suggesting that the majority are due to erroneous splice site choice. We show that sequence motifs involved in the recognition of exons are enriched in the vicinity of unconserved splice sites. We estimate that the average intron has a splicing error rate of approximately 0.7% and show that introns in highly expressed genes are spliced more accurately, likely due to their shorter length. These results implicate noisy splicing as an important property of genome evolution. 相似文献
16.
The prolonged stimulatory influence of corticotropin (ACTH) on the adrenocortical steroidogenic response to ACTH was studied in guinea-pig adrenocortical cells harvested from control and ACTH-treated animals (ACTH1-24, 50 micrograms s.c. twice daily on the day preceding the in vitro experiment). The maximal capacity to produce cortisol in response to ACTH (by 10(5) cells and 2 h incubation) was increased from 341.8 +/- 36.3 ng (control group) to 663.3 +/- 37.6 ng for cells obtained from guinea-pigs treated in vivo with ACTH. In the presence of trilostane, added to the cells in order to block the conversion of pregnenolone to cortisol, the net maximal output of pregnenolone and 17-hydroxypregnenolone in response to ACTH was significantly increased in adrenocortical cells from ACTH-treated animals (449.5 +/- 35.8 ng pregnenolone and 85.7 +/- 10.5 ng 17-hydroxypregnenolone vs 269.1 +/- 36.3 ng pregnenolone and 43.7 +/- 8.51 ng 17-hydroxypregnenolone for cells from control guinea-pigs). It appeared therefore that the total production of pregnenolone (as estimated by the sum of pregnenolone and 17-hydroxypregnenolone produced by the cells incubated with trilostane) nearly reached the level of the maximal production of cortisol in response to ACTH and was also significantly enhanced for cells from ACTH-treated animals (532.2 +/- 38.4 ng vs 312.8 +/- 40.0 ng for cells from control group). By contrast, no effect was documented on 17 alpha-hydroxylase activity since 17 alpha-hydroxylation index was similar for both types of adrenocortical cells (16.3 +/- 2.05% for ACTH-treated animals and 14.2 +/- 2.83% for control group). It was concluded therefore that the prolonged stimulatory influence of ACTH on pregnenolone production is the main mechanism of the enhancement of cortisol synthesis by guinea-pig adrenocortical cells previously stimulated by ACTH. 相似文献
17.
18.
19.
The Tetrahymena pre-rRNA self-splicing intron is shown to function in the unnatural context of an mRNA transcribed by RNA polymerase II in mammalian cells. Mutational analysis supports the conclusion that splicing in cells occurs by the same RNA-catalyzed mechanism established for splicing in vitro. Insertion of the intron at five positions spanning the luciferase open reading frame revealed 10-fold differences in accumulation of ligated exons and in luciferase activity; thus, the intron self-splices in many exon contexts, but the context can have a significant effect on activity. In addition, even the best self-splicing constructs, which produced half as much mRNA as did an uninterrupted luciferase gene, gave approximately 100-fold less luciferase enzyme activity, revealing an unexpected discontinuity between mRNA production and translation in cells. The finding that production of accurately spliced mRNA in cells does not guarantee a corresponding level of protein production is surprising, and may have implications for the development of trans-splicing ribozymes as therapeutics. 相似文献
20.
Jones J Nivitchanyong T Giblin C Ciccarone V Judd D Gorfien S Krag SS Betenbaugh MJ 《Biotechnology and bioengineering》2005,91(6):722-732
The inducible T-REx system and other inducible expression systems have been developed in order to control the expression levels of recombinant protein in mammalian cells. In order to study the effects of heterologous protein expression on mammalian host behavior, the gene for recombinant Human transferrin (hTf) was integrated into HEK-293 cells and expressed under the control of the T-REx inducible technology (293-TetR-Hyg-hTf) or using a constitutive promoter (293-CMV-hTf). A number of inducible clones with variable expression levels were identified for the T-REx system with levels of hTf for the high expressing clones nearly double those obtained using the constitutive cytomegalovirus (CMV) promoter. The level of transferrin produced was found to increase proportionately with tetracycline concentration between 0 and 1 mug/mL with no significant increases in transferrin production above 1 mug/mL. As a result, the optimal induction time and tetracycline concentrations were determined to be the day of plating and 1 mug/mL, respectively. Interestingly, the cells induced to express transferrin, 293-TetR-Hyg-hTf, exhibited lower viable cell densities and percent viabilities than the uninduced cultures for multiple clonal isolates. In addition, the induction of transferrin expression was found to cause an increase in the expression of the ER-stress gene, BiP, that was not observed in the uninduced cells. However, both uninduced and induced cell lines containing the hTf gene exhibited longer survival in culture than the control cells, possibly as a result of the positive effects of hTf on cell survival. Taken together, these results suggest that the high level expression of complex proteins in mammalian cells can limit the viable cell densities of cells in culture as a result of cellular stresses caused by generating proteins that may be difficult to fold or are otherwise toxic to cells. The application of inducible systems such as the T-REx technology will allow us to optimize protein production while limiting the negative effects that result from these cellular stresses. 相似文献