首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The segregation of several isozyme marker genes has been studied in F2 inbred families from hybrids between self-sterile and five self-fertile inbred lines (nos. 2, 3, 4, 5, and 8) as well as from interline hybrids. Self-pollination of F1 hybrids between self-sterile forms and lines 5 and 8 gave an F2 segregation ratio of 1 heterozygote:1 homozygote for the gene Prx7 (chromosome 1R) against the allele from the line. This is interpreted as a result of tight linkage of the Prx7 gene with the S1 gene in chromosome 1R (recombination at a level of 0–1%). The self-pollination of such hybrids with lines 2,3 and 4 gave normal segregation for the Prx7 gene (1:2:1). This means that these lines carry a self-fertility allele which is not on chromosome 1R. Interline hybrids 5×2, 5×3 and 5×4 had self-fertility alleles for the two S genes and in inbred F2 progenies gave the expected deviating segregation for the Prx7 gene in a ratio of 2:3:1. The segregation of interline hybrid 5×8 was normal, 1:2:1, as expected. Highly-deviating segregation in an inbred F2 family of a hybrid with line 5 has also been obtained for another gene from chromosome 1R — Pgi2 (recombination with the S1 locus of 16.7%). By using the same method it has been estimated that line 4 has a self-fertility allele of the S2 locus from chromosome 2R and that the genes -Glu and Est4/11 are linked with it (recombination 16.7% and 17.5–20% respectively). Lines 2 and 3 have a self-fertility allele of the S5 locus from chromosome 5R which is linked with the Est5-7 gene complex (recombination at a level of 28.8–36.0%).  相似文献   

2.
Bi-directional selective genotyping (BSG) carried out on two opposite groups of F9(541 × Ot1-3) recombinant inbred lines (RILs) with extremely low and extremely high alpha-amylase activities in mature (dry) grain of rye, followed by molecular mapping, revealed a complex system of selection-responsive loci. Three classes of loci controlling alpha-amylase activity were discerned, including four major AAD loci on chromosomes 3R (three loci) and 6RL (one locus) responding to both directions of the disruptive selection, 20 AAR loci on chromosomes 2RL (three loci), 3R (three loci), 4RS (two loci), 5RL (three loci), 6R (two loci) and 7R (seven loci) responding to selection for low alpha-amylase activity and 17 AAE loci on chromosomes 1RL (seven loci), 2RS (two loci), 3R (two loci), 5R (two loci) and 6RL (four loci) affected by selection for high alpha-amylase activity. The majority of the discerned AA loci also showed responsiveness to selection for preharvest sprouting (PHS). Two AAD loci on chromosome arm 3RL coincided with PHSD loci. The AAD locus on chromosome arm 3RS was independent from PHS, whereas that on chromosome 6RL belonged to the PHSR class. AAR-PHSR loci were found on chromosomes 4RS (one locus) and 5R (two loci) and AAE-PHSE loci were identified on chromosomes 1RL (one locus) and 5RL (one locus). Some PHSD loci represented the AAE (chromosomes 1RL, 3RS and 3RL) or AAR classes (chromosome 5RL). AAR and AAE loci not related to PHS were found on chromosomes 1RL, 2R, 3RS, 4R, 6RL and 7RL. On the other hand, several PHS loci (1RL, 3RS, 5RL, 6RS and 7RS) had no effect on alpha-amylase activity. Allele originating from the parental line 541 mapped in six AA loci on chromosomes 2R (two loci), 5R (three loci) and 7R (one locus) exerted opposite effects on PHS and alpha-amylase activity. Differences between the AA and PHS systems of loci may explain the weak correlation between these two traits observed among recombinant inbred lines. Strategies for the breeding of sprouting-resistant varieties with low alpha-amylase and high PHS resistance are discussed.  相似文献   

3.
Plants have developed several external and internal aluminium (Al) tolerance mechanisms. The external mechanism best characterised is the exudation of organic acids induced by Al. Rye (Secale cereale L.), one of the most Al‐tolerant cereal crops, secretes both citrate and malate from its roots in response to Al. However, the role of malate dehydrogenase (MDH) genes in Al‐induced stress has not been studied in rye. We have isolated the ScMDH1 and ScMDH2 genes, encoding two different mitochondrial MDH isozymes, in three Al‐tolerant rye cultivars (Ailés, Imperial and Petkus) and one sensitive inbred rye line (Riodeva). These genes, which have seven exons and six introns, were located on the 1R (ScMDH1) and 3RL (ScMDH2) chromosomes. Exon 1 of ScMDH1 and exon 7 of ScMDH2 were the most variable among the different ryes. The hypothetical proteins encoded by these genes were classified as putative mitochondrial MDH isoforms. The phylogenetic relationships obtained using both cDNA and protein sequences indicated that the ScMDH1 and ScMDH2 proteins are orthologous to mitochondrial MDH1 and MDH2 proteins of different Poaceae species. The expression studies of the ScMDH1 and ScMDH2 genes indicate that it is more intense in roots than in leaves. Moreover, the amount of their corresponding mRNAs in roots from plants treated and not treated with Al was higher in the tolerant cultivar Petkus than in the sensitive inbred line Riodeva. In addition, ScMDH1 and ScMDH2 mRNA levels decreased in response to Al stress (repressive behaviour) in the roots of both the tolerant Petkus and the sensitive line Riodeva.  相似文献   

4.
A 4B/5R wheat-rye translocation line derived from the Danish wheat variety Viking was revealed to be highly copper efficient. The chromosomal exchange includes a very small terminal segment of chromosome arm 5RL of rye which was physically mapped by genomic DNA: DNA in situ hybridization and chromosome analysis. The gene for Cu efficiency (Ce) is linked to a dominant hairy neck character from rye (Ha1) and to two rye-specific leaf esterase loci (Est6, Est7), all of which are postulated to map to the distal part of 5RL. Genes coding for mugineic acid synthetase and 3-hydroxymugineic acid synthetase also on chromosome 5R are not included in the 4B/5R translocation and hence map outside the terminal 5R region. These genetic and molecular markers can be useful tools for large-scale screening in wheat breeding programmes.  相似文献   

5.
Mitotic analyses, directed at the problem of detection of chromosomal alterations in the somatic karyotype, were performed using six reciprocal interchanges of Zea mays L., all involving chromosome 9S. In addition, two normal stocks, a homozygous inbred and a commercial hybrid were examined. The minimum chromosome alteration in 9S detected in somatic metaphase was a decrement measured as 50% of the pachytene chromosome; an increment to 9S measured as 40% of the pachytene chromosome was not detected. However, a 10% meiotic increment to 5L was observed. Ascertainment in mitotic metaphase of chromosomal alterations in maize, of the type that change chromosome length and/or centromere position, appears to be dependent upon centromere position (metacentric, aerocentric) in addition to the nature of the alteration (increment or decrement). Relatively short alterations may be detected in metacentric, but not in the submetacentric or acrocentric chromosomes. A decrement rather than an addition segment in a non-metacentric chromosome appears more readily detectable in somatic metaphase.  相似文献   

6.
Summary The spontaneous interchange polymorphism of rye cultivar Ailés is composed, as can be deduced from the chromosomal identification of the interchanges analyzed, of several different reciprocal translocations in which the chromosomes of its haploid complement are involved with a similar frequency, except for chromosomes 4R and 6R. Several features of chromosome behavior at metaphase I, such as configuration and orientation of quadrivalents and frequency of chiasmata, were analyzed in structural heterozygotes for different interchanges. The two main factors affecting the orientation of quadrivalents at metaphase I proved to be the morphology of these chromosome associations at metaphase I and, in particular, the frequency of bound chromosome arms that they showed. A genotypic control of alternate orientation of quadrivalents independent of chiasmata frequency was not detected. In addition, the frequency of alternate orientation shows no relation to the fitness. Possible evolutionary implications of the results obtained are discussed.  相似文献   

7.
The segregation of the 75K gamma secalin locus (Sec-2) in combination with five interchanges (reciprocal translocations) and two marker genes was analyzed. The translocations involved chromosome arms 1RL, 1RS, 2RL, 2RS, 4RL, 5RL, 5RS, 6RL and 6RS. The gene loci were both on 2R, but the arm was not known. Although the Sec-2 locus was expected to be on chromosome 2RS, no linkage between Sec-2 and any of the markers was found. This is concluded to be the result of exceptionally frequent recombination between Sec-2 and the break point of one of the translocations, which is the only marker in 2RS.  相似文献   

8.
《Genomics》1995,29(3)
The humanCBFA2T1(also known asMTG8) gene, on chromosome 8, has been identified through its involvement in the t(8;21) chromosomal translocation, frequently found in acute myeloid leukemia. We report here the isolation and characterization of the mouse homologue of theCBFA2T1gene,Cbfa2t1h.Nucleotide sequence analysis ofCbfa2t1hcDNA clones revealed an open reading frame encoding a protein of 577 amino acids with an extremely high degree of amino acid identity (99.3%) to the human protein. The nucleotide sequence is also highly conserved between mouse and human in the 5′- and 3′-untranslated regions (87.0, 92.0, and 93.7% identities for 5′-untranslated, coding, 3′-untranslated regions, respectively). The 3′-untranslated region ofCbfa2t1hcontains a (CA)ndinucleotide repeat, and the polymerase chain reaction amplification of the (CA)nrepeat region revealed fragment length polymorphism among mouse strains. Using this polymorphism, we have mappedCbfa2t1hto mouse chromosome 4 close to the centromere using SMXA recombinant inbred strains and 106 intersubspecific backcross progenies of the (DBA/2 × Mae) × Mae cross. The chromosomal location was also confirmed by fluorescencein situhybridization.  相似文献   

9.
Rye (Secale cereale L.) is considered to be the most aluminum (Al)-tolerant species among the Triticeae. It has been suggested that aluminum tolerance in rye is controlled by three major genes (Alt genes) located on rye chromosome arms 3RL, 4RL, and 6RS, respectively. Screening of an F6 rye recombinant inbred line (RIL) population derived from the cross between an Al-tolerant rye (M39A-1–6) and an Al-sensitive rye (M77A-1) showed that a single gene controls aluminum tolerance in the population analyzed. In order to identify molecular markers tightly linked to the gene, we used a combination of amplified fragment length polymorphism (AFLP) and bulked segregant analysis techniques to evaluate the F6 rye RIL population. We analyzed approximately 22,500 selectively amplified DNA fragments using 204 primer combinations and identified three AFLP markers tightly linked to the Alt gene. Two of these markers flanked the Alt locus at distance of 0.4 and 0.7 cM. Chromosomal localization using cloned AFLP and a restriction fragment length polymorphism (RFLP) marker indicated that the gene was on the long arm of rye chromosome 4R. The RFLP marker (BCD1230) co-segregated with the Alt gene. Since the gene is on chromosome 4R, the gene was designated as Alt3. These markers are being used as a starting point in the construction of a high resolution map of the Alt3 region in rye. Received: 29 March 2000 / Accepted: 9 July 2001  相似文献   

10.
Natural resistance of inbred mouse strains to infection withLegionella pneumophilais controlled by the expression of a single dominant gene on chromosome 13, designatedLgn1.The genetic difference atLgn1is phenotypically expressed as the presence or absence of intracellular replication ofL. pneumophilain host macrophages. In our effort to identify theLgn1gene by positional cloning, we have generated a high-resolution linkage map of theLgn1chromosomal region. For this, we have carried out extensive segregation analysis in a total of 1270 (A/J × C57BL/6J) × A/J informative backcross mice segregating the resistance allele of C57BL/6J and the susceptibility allele of A/J. Additional segregation analyses were carried out in three preexisting panels of C57BL/6J ×Mus spretusinterspecific backcross mice. A total of 39 DNA markers were mapped within an interval of approximately 30 cM overlapping theLgn1region. Combined pedigree analyses for the 5.4-cM segment overlappingLgn1indicated the locus order and the interlocus distances (in cM):D13Mit128–(1.4)–D13Mit194–(0.1)–D13Mit147–(0.9)–D13Mit36–(0.9)–D13Mit146–(0.2)–Lgn1/D13Mit37–(1.0)–D13Mit70.Additional genetic linkage studies of markers not informative in the A/J × C57BL/6J cross positionedD13Mit30, -72, -195,and-203, D13Gor4, D13Hun35,andMtap5in the immediate vicinity of theLgn1locus. The marker density and resolution of this genetic linkage map should allow the construction of a physical map of the region and the isolation of YAC clones overlapping the gene.  相似文献   

11.
Summary The R factor R68 readily promotes chromosome transfer in Pseudomonas aeruginosa strain PAT, but shows little such sex factor activity in strain PAO. A variant of this plasmid, R68.45, has been isolated which produces recombinants in PAO plate matings at frequencies of 10-3–10-5 per donor cell for markers in the 0–60 min region of the chromosome. Little or no chromosome transfer was shown in liquid media. The kinetics of chromosome transfer were studied by interrupting matings on solid media with nalidixic acid. Five chromosomal markers, mapping in widely spaced regions of the chromosome all entered 3–5 min after initiation of mating. These results, combined with linkage studies, indicate that R68.45, unlike the Pseudomonas sex factors FP2 and FP39, promotes chromosome transfer from a range of origin sites and can thus be used for mapping the region of the P. aeruginosa chromosome later than 40 min.R68.45 and other similar variants were isolated from rare chromosomal recombinants appearing in crosses between PAO(R68) donors and PAO recipients in which selection for argB + was made. Selection for other chromosomal markers did not result in such variants suggesting that plasmids of the R68.45 type arise by recombination of genetic material between the R68 plasmid and certain regions of the bacterial chromosome.  相似文献   

12.
Using anin vitromodel for cell transformation, the relationship between specific chromosomal aberration and phenotypic changes was studied at different passages of Rat-2 cell line. A marker chromosome resulting from a translocation [t(2;7)] was found to be associated with focus formation in soft agar. Conversely, the loss of this marker chromosome was found to be associated with phenotypic reversion. These results suggest an association of this marker chromosome with phenotypic transformation for the Rat-cell line.  相似文献   

13.
Somatic cell hybrids, recombinant inbred (RI) mouse strains, and backcross breeding experiments were used to locate the gene of transcobalamin II (Tcn-2), the vitamin B12 binding protein in mouse serum. TCN-2 was found to be a useful genetic marker in the somatic cell hybrids. Selected hybrid clones were derived from fusions between GR mouse cells and the Chinese hamster cell line E36. Analysis of mouse specific chromosomal enzyme markers in relationship to TCN-2 secretion, in the hybrid clones, provided provisional evidence for assignment of the Tcn-2 locus to chromosome 11. The strain distribution pattern of the TCN-2 variants S and F in the RI series CXS, constructed from the cross of BALB/cHeA (TCN-2S) with STS/A (TCN-2F), implied a close linkage with the hemoglobin alpha-chain locus (Hba) on chromosome 11. Backcross breeding using inbred strains confirmed these findings and located the Tcn-2 gene closest to the centromere, linked with waved 2 (wa-2) and Hba with recombination frequencies of 6.9 and 19.2% each. The linkage group Tcn-2/wa-2/Hba was established.This work was supported by Swiss National Science Foundation Grants 3.023-0.81 and 3.728-0.80, Fritz Hoffmann-La Roche Stiftung 173, the Prof. Dr. Max Cloëtta Foundation, and the Kantonale Zürcher Liga für krebsbekämpfung, Switzerland. M. Prochazka was supported by the Postgraduate Training Program for Experimental Medicine and Biology of the University of Zürich, Switzerland.  相似文献   

14.
Chromosomal inversion polymorphisms are common in animals and plants, and recent models suggest that alternative arrangements spread by capturing different combinations of alleles acting additively or epistatically to favour local adaptation. It is also thought that inversions typically maintain favoured combinations for a long time by suppressing recombination between alternative chromosomal arrangements. Here, we consider patterns of linkage disequilibrium and genetic divergence in an old inversion polymorphism in Drosophila melanogaster (In(3R)Payne) known to be associated with climate change adaptation and a recent invasion event into Australia. We extracted, karyotyped and sequenced whole chromosomes from two Australian populations, so that changes in the arrangement of the alleles between geographically separated tropical and temperate areas could be compared. Chromosome‐wide linkage disequilibrium (LD) analysis revealed strong LD within the region spanned by In(3R)Payne. This genomic region also showed strong differentiation between the tropical and the temperate populations, but no differentiation between different karyotypes from the same population, after controlling for chromosomal arrangement. Patterns of differentiation across the chromosome arm and in gene ontologies were enhanced by the presence of the inversion. These data support the notion that inversions are strongly selected by bringing together combinations of genes, but it is still not clear if such combinations act additively or epistatically. Our data suggest that climatic adaptation through inversions can be dynamic, reflecting changes in the relative abundance of different forms of an inversion and ongoing evolution of allelic content within an inversion.  相似文献   

15.
The bean pod weevil (Apion godmani Wagner) is a serious insect pest of common beans (Phaseolus vulgaris L.) grown in Mexico and Central America that is best controlled by host-plant resistance available in Durango or Jalisco genotypes such as J-117. Given unreliable infestation by the insect, the use of marker-assisted selection is desirable. In the present study, we developed a set of nine molecular markers for Apion resistance and mapped them to loci on chromosomes 2, 3, 4 and 6 (linkage groups b01, b08, b07and b11, respectively) based on genetic analysis of an F 5:10 susceptible × resistant recombinant inbred line population (Jamapa × J-117) and two reference mapping populations (DOR364 × G19833 and BAT93 × JaloEEP558) for which chromosome and linkage group designations are known. All the markers were derived from randomly amplified polymorphic DNA (RAPD) bands that were identified through bulked segregant analysis and cloned for conversion to sequence tagged site (STS) markers. One of the markers was dominant while four detected polymorphism upon digestion with restriction enzymes. The other markers were mapped as RAPD fragments. Phenotypic data for the population was based on the evaluation of percentage seed damage in replicated trials conducted over four seasons in Mexico. In single point regression analysis, individual markers explained from 3.5 to 22.5% of the variance for the resistance trait with the most significant markers overall being F10-500S, U1-1400R, R20-1200S, W9-1300S and Z4-800S, all markers that mapped to chromosome 2 (b01). Two additional significant markers, B1-1400R and W6-800R, were mapped to chromosome 6 (b11) and explained from 4.3 to 10.2% of variance depending on the season. The latter of these markers was a dominant STS marker that may find immediate utility in marker-assisted selection. The association of these two loci with the Agr and Agm genes is discussed as well as the possibility of additional resistance genes on chromosome 4 (b07) and chromosome 3 (b08). These are among the first specific markers developed for tagging insect resistance in common bean and are expected to be useful for evaluating the mechanism of resistance to A. godmani.  相似文献   

16.
Previous work has demonstrated linkage between Ly-6, H-30, and a locus, Ril-1, that affects susceptibility to radiation-induced leukemia. Results of preliminary linkage analyses suggested further that the cluster might be linked to Ly-11 on the proximal portion of mouse chromosome 2. Using molecular probes to examine somatic cell lines and recombinant inbred and congenic strains of mice, we have re-evaluated these linkage relationships. A cloned genomic DNA fragment derived from a retroviral site has been used to define a novel locus, Pol-5, that is tightly linked to both H-30 and Ril-1 as shown by analysis of the B6.C-H-30 c congenic mouse strain. Following the segregation of the Pol-5 mouse-specific DNA fragment in a series of somatic cell hybrids carrying various combinations of mouse chromosomes on a rat or Chinese hamster background mapped Pol-5 to mouse chromosome 15. During the course of these studies, restriction fragment length polymorphisms were defined associated with several loci, including Pol-5, Ly-6, Sis, Ins-3, Krt-1, Int-1, and Gdc-1. Three of these loci, Sis, Int-1, and Gdc-1, have been previously mapped to chromosome 15 by others using somatic cell hybrids or isoenzyme analyses. Following the inheritance of these eight loci in recombinant inbred strains of mice allowed the definition of a linkage group on the chromosome with the order Ly-6-Ril-1--Sis--H-30--Pol-5--Ins-3--Krt-1--Int-1--Gdc-1. Analyses of alleles inherited as passengers in B6.C-H-30 c, C3H.B-Ly-6 b, and C57BL/6By-Eh/+ congenic mouse strains and in situ hybridization experiments support the above gene order and indicate further that the cluster is located on distal chromosome 15, with Ly-6 and Sis near Eh.Abbreviations A agouti - Abl cellular homolog of the Abelson leukemia virus oncogene - Ada adenosine deaminase - Ak-1 adenylate kinase-1 - AXB A/J × C57BL/6J recombinant inbred strain - B2m beta-2 microglobulin - BXA C57BL/6J × A/J recombinant inbred strain - BXD C57BL/6J × DBA/2J recombinant inbred strain - BXH C57BL/6J × C3H/HeJ recombinant inbred strain - CXB BALB/cBy × C57BL/6By recombinant inbred strain - DNA deoxyribonucleic acid - Eh hairy ears - Fpgs folypolyglutamyl synthetase - FXI fractionated x-irradiation - Gdc-1 glycerol phosphate dehydrogenase-1 - Il2r IL-2 receptor - Ins-3 a novel insulinlike gene - Int-1 mammary tumor integration site-1 - Itp inosine triphosphatase - Krt-1 the locus designated here includes a cluster of at least three keratin genes - LTR long terminal repeat - Ly lymphocyte - Lv-6 lymphocyte antigen-6 - Ly-11 lymphocyte antigen-11 - MIH minor histocompatibility - Myc cellular homolog of the Abelson leukemia virus oncogene; pa, pallid; - Pol-5 locus encoding retroviral polymerase-5 - RFLP restriction fragment length polymorphism - RI recombinant inbred mouse strains - Ril-1 radiation-induced leukemia susceptibility-1 locus - SDP strain distribution pattern - Sis cellular homolog of the simian sarcoma virus oncogene - SFFV spleen focus-forming virus - Tpi-1 triosephosphate isomerase-1 - Ve velvet  相似文献   

17.
A gene bank of the phototrophic bacterium Rhodopseudomonas capsulata was constructed using the binary plasmid system pRK290/pRK2013. Fragments of about 20 kb of chromosomal DNA of R. capsulata strain 37b4 were inserted into the cloning vector pRK290. The hybrid plasmids of the gene bank, maintained in Escherichia coli HB101 were transferred by conjugation to R. capsulata strains defective in the photosynthetic apparatus with frequencies of 5×10-4 to 5×10-2. Phototrophically growing transconjugants occurred with frequencies of 5×10-7 to 5×10-6. Recombination between the hybrid plasmids and the R. capsulata chromosome was shown. The hybrid plasmid pRCF1002, carrying a 25 kb insert of R. capsulata wild type DNA, was isolated from one E. coli clone of the gene bank. It reconstituted some bacteriochlorophyll- and photosynthetic negative mutants to phototrophic growth.Abbreviations Bchl Bacteriochlorophyll - RC reaction center - LH light-harvesting complex - Crt carotenoid - pho phototrophic growth - P Bchl precursor excreted, the number behind P indicates the maximum of absorption in ether (nm) - SDS sodium dodecyl sulfate - Tc tetracycline - Km kanamycin - Gm gentamicin - r resistant - kb kilo base pairs Dedicated to Hans-Günter Schlegel on occasion of his 60th birthday  相似文献   

18.
An electrophoretic variant of the enzyme inosine triphosphatase was found by screening inbred strains of mice. Strains with the slower-migrating variant include BALB/cJ, DBA/1J, and PL/J. The Itp locus was mapped between the -2-microglobulin (B2m) and the agouti (a) loci on chromosome 2. The mapping of Itp on chromosome 2 identifies a chromosomal segment that has been conserved since the divergence of lineages leading to mouse and man.This work was supported by Grants GM18684 and CA33093 from the National Institutes of Health. The Jackson Laboratory is fully accredited by the American Association for Accreditation of Laboratory Animal Care.  相似文献   

19.
Electrophoretic and activity variation of the stomach and ocular isozyme of aldehyde dehydrogenase (designated AHD-4) was observed between C57BL/6J and SWR/J inbred strains of mice. The phenotypes were inherited in a normal mendelian fashion, with two alleles at a single locus (Ahd-4) showing codominant expression. The alleles assorted independently of those atAdh-3 [encoding the stomach and ocular isozyme of alcohol dehydrogenase (ADH-C2)] on chromosome 3. Three chromosome 11 markers, hemoglobin -chain (Hba), trembler (Tr), and rex (Re), were used in backcross analyses which established thatAhd-4 is closely linked to trembler. The distribution patterns for stomach and ocular AHD-4 phenotypes were examined among SWXL recombinant inbred mice, and those for stomach and ocular ADH-C2 among BXD recombinant inbred strains. The data provided evidence for the genetic identity of stomach and ocular ADH-C2 and of stomach and ocular AHD-4.This research was supported in part by the U.S. Department of Energy under Contract DE-ACO5-84OR214000 with Martin Marietta Energy Systems, Inc. (to R.A.P.).  相似文献   

20.
Seven different mildew resistant wheat lines derived from crosses between triticale and bread wheat were examined by molecular cytogenetics and chromosome C-banding in order to determine their chromosomal composition. Genomic in situ hybridisation (GISH) showed the presence of rye germplasm in all the lines and identified three substitution lines, three double substitution lines and one addition-substitution line. C-banding identified rye chromosomes 1R and 4R in the addition-substitution line, rye chromosomes 1R and 6R in two substitution lines and 1R and 2R in the third line, and rye chromosome 1R in the three substitution lines. Two of the latter lines (7-102 and 7-169) contained a modified form of the chromosome; fluorescent in situ hybridisation (FISH) using five different repetitive DNA-probes showed a pericentric inversion of 1R in both lines. The breakpoints of the 1R inversion were between (1) the 5S rDNA site and the NOR-region on the satellite of the short arm, and (2) between two AAC(5) sites close to the centromere on the long arm. The role of the rye chromosomes in the mildew resistance, the utilisation of the inverted 1R and the significance of the lines in wheat breeding are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号