首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
GenBank.   总被引:2,自引:0,他引:2       下载免费PDF全文
The GenBank (Registered Trademark symbol) sequence database incorporates DNA sequences from all available public sources, primarily through the direct submission of sequence data from individual laboratories and from large-scale sequencing projects. Most submitters use the BankIt (Web) or Sequin programs to format and send sequence data. Data exchange with the EMBL Data Library and the DNA Data Bank of Japan helps ensure comprehensive worldwide coverage. GenBank data is accessible through NCBI's integrated retrieval system, Entrez, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome and protein structure information. MEDLINE (Registered Trademark symbol) s from published articles describing the sequences are included as an additional source of biological annotation through the PubMed search system. Sequence similarity searching is offered through the BLAST series of database search programs. In addition to FTP, Email, and server/client versions of Entrez and BLAST, NCBI offers a wide range of World Wide Web retrieval and analysis services based on GenBank data. The GenBank database and related resources are freely accessible via the URL: http://www.ncbi.nlm.nih.gov  相似文献   

2.
HOWDY: an integrated database system for human genome research   总被引:1,自引:0,他引:1  
HOWDY is an integrated database system for accessing and analyzing human genomic information (http://www-alis.tokyo.jst.go.jp/HOWDY/). HOWDY stores information about relationships between genetic objects and the data extracted from a number of databases. HOWDY consists of an Internet accessible user interface that allows thorough searching of the human genomic databases using the gene symbols and their aliases. It also permits flexible editing of the sequence data. The database can be searched using simple words and the search can be restricted to a specific cytogenetic location. Linear maps displaying markers and genes on contig sequences are available, from which an object can be chosen. Any search starting point identifies all the information matching the query. HOWDY provides a convenient search environment of human genomic data for scientists unsure which database is most appropriate for their search.  相似文献   

3.
An Internet computing server has been developed to identify all the occurrences of the internal sequence repeats in a protein and DNA sequences. Further, an option is provided for the users to check the occurrence(s) of the resultant sequence repeats in the other sequence and structure (Protein Data Bank) databases. The databases deployed in the proposed computing engine are up-to-date and thus the users will get the latest information available in the respective databases. The server is freely accessible over the World Wide Web (WWW). AVAILABILITY: http://bioserver1.physics.iisc.ernet.in/fair/  相似文献   

4.
The Homeodomain Resource is an annotated collection of non-redundant protein sequences, three-dimensional structures and genomic information for the homeodomain protein family. Release 3.0 contains 795 full-length homeodomain-containing sequences, 32 experimentally-derived structures and 143 homeo-box loci implicated in human genetic disorders. Entries are fully hyperlinked to facilitate easy retrieval of the original records from source databases. A simple search engine with a graphical user interface is provided to query the component databases and assemble customized data sets. A new feature for this release is the addition of DNA recognition sites for all human homeodomain proteins described in the literature. The Homeodomain Resource is freely available through the World Wide Web at http://genome.nhgri.nih.gov/homeodomain.  相似文献   

5.
MOTIVATION: There are a large number of computational programs freely available to bioinformaticians via a client/server, web-based environment. However, the client interface to these tools (typically an html form page) cannot be customized from the client side as it is created by the service provider. The form page is usually generic enough to cater for a wide range of users. However, this implies that a user cannot set as 'default' advanced program parameters on the form or even customize the interface to his/her specific requirements or preferences. Currently, there is a lack of end-user interface environments that can be modified by the user when accessing computer programs available on a remote server running on an intranet or over the Internet. RESULTS: We have implemented a client/server system called ORBIT (Online Researcher's Bioinformatics Interface Tools) where individual clients can have interfaces created and customized to command-line-driven, server-side programs. Thus, Internet-based interfaces can be tailored to a user's specific bioinformatic needs. As interfaces are created on the client machine independent of the server, there can be different interfaces to the same server-side program to cater for different parameter settings. The interface customization is relatively quick (between 10 and 60 min) and all client interfaces are integrated into a single modular environment which will run on any computer platform supporting Java. The system has been developed to allow for a number of future enhancements and features. ORBIT represents an important advance in the way researchers gain access to bioinformatics tools on the Internet.  相似文献   

6.
GenBank   总被引:51,自引:4,他引:47       下载免费PDF全文
The GenBank((R))sequence database incorporates publicly available DNA sequences of >55 000 different organisms, primarily through direct submission of sequence data from individual laboratories and large-scale sequencing projects. Most submissions are made using the BankIt (Web) or Sequin programs and accession numbers are assigned by GenBank staff upon receipt. Data exchange with the EMBL Data Library and the DNA Data Bank of Japan helps ensure comprehensive worldwide coverage. GenBank data is accessible through NCBI's integrated retrieval system, Entrez, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome, mapping and protein structure information, plus the biomedical literature via PubMed. Sequence similarity searching is provided by the BLAST family of programs. Complete bimonthly releases and daily updates of the GenBank database are available by FTP. NCBI also offers a wide range of WWW retrieval and analysis services based on GenBank data. The GenBank database and related resources are freely accessible via the NCBI home page at http://www.ncbi.nlm.nih.gov  相似文献   

7.
8.
基因转录调控相关数据库集成系统及其应用   总被引:1,自引:0,他引:1  
通过互联网访问的有关基因转录调控的数据库集成系统及其应用 ,包括调控区 (3’和 5’调控区、内显子和外显子调控区等 )、调控单元 (启动子 ,增强子 ,沉默子等 )和转录因子结合位点相关数据库及其数据库系统的性质、组成和功能。也介绍了这些数据库和系统的查询和搜索方法以及相关开发的程序工具。这些生物信息学资源对于从事生物信息学、分子生物学、遗传工程、基因功能、生物技术、代谢工程、药物设计、病理学和药理学研究的机构及人员在教学研究方面具一定的参考价值和帮助。  相似文献   

9.
10.
Modern information technologies and world wide communications through the Internet play a significant role in medicinal plant research across the globe. The phenomenal growth in Internet usage is largely due to the success of World Wide Web. Various useful websites and databases on phytopharmacology are already in the "Net" and many more are being added constantly. The future of phytopharmacological research is handling the existing information in proper way. In this review of the Internet, compilation of important websites is expected to stimulate, instruct and update academicians and researchers involved in phytopharmacological research.  相似文献   

11.
The bioinformatics software, Geneious, provides a useful platform for researchers to retrieve and analyse genomic and functional genomics information. However, the main databases that the software is able to access are hosted by NCBI (National Center for Biotechnology Information). The databases of EuPathDB (Eukaryotic Pathogen Database Resources), such as PlasmoDB and PiroplasmaDB, collect more specific and detailed information about eukaryotic pathogens than those kept in NCBI databases. Two plugins for Geneious, one for PlasmaDB and one for PiroplasmaDB were developed. When installed, users can use search facilities to find and import gene and protein sequences from the EuPathDB databases. Users can then use the functions of Geneious to process the sequence information. When information unique to PlasmoDB and PiroplasmaDB is required, the user can access results linked with the gene/protein sequence via the default web browser. The plugins are freely available from the Victorian Bioinformatics Consortium website. The plugins can be modified to access any of the databases of EuPathDB.  相似文献   

12.
GenBank.   总被引:2,自引:1,他引:2       下载免费PDF全文
The GenBank(R) sequence database (http://www.ncbi.nlm.nih.gov/) incorporates DNA sequences from all available public sources, primarily through the direct submission of sequence data from individual laboratories and from large-scale sequencing projects. Most submitters use the BankIt (WWW) or Sequin programs to send their sequence data. Data exchange with the EMBL Data Library and the DNA Data Bank of Japan helps ensure comprehensive worldwide coverage. GenBank data is accessible through NCBI's integrated retrieval system, Entrez , which integrates data from the major DNA and protein sequence databases along with taxonomy, genome and protein structure information. MEDLINE(R) abstracts from published articles describing the sequences are also included as an additional source of biological annotation. Sequence similarity searching is offered through the BLAST series of database search programs. In addition to FTP, e-mail and server/client versions of Entrez and BLAST, NCBI offers a wide range of World Wide Web retrieval and analysis services of interest to biologists.  相似文献   

13.
Replication of Web Services has an important role among techniques that have been developed in order to meet the demand for faster and more efficient access to the Internet. Replication can be addressed both by a cluster of servers, and by servers geographically distributed in the Internet. In this paper, we focus on geographical replication. Two approaches are commonly used for geographical replication: server-side and client-side. In the client-side approach, the client has a significant role in the policy used to exploit Web Service Replication. In the server-side approach, the client transparently exploits a Replicated Web Service. Both server-side and client-side approaches provide various strategies that can be adopted. An analysis of these strategies, and an overall classification, is presented here. Finally, client-side and server-side approaches are compared, identifying their pros and cons in order to propose the features of an eventual complete approach.  相似文献   

14.
15.
16.
The Histone Sequence Database is an annotated and searchable collection of all available histone and histone fold sequences and structures. Particular emphasis has been placed on documenting conflicts between similar sequence entries from a number of source databases, conflicts that are not necessarily documented in the source databases themselves. New additions to the database include compilations of post-translational modifications for each of the core and linker histones, as well as genomic information in the form of map loci for the human histone gene complement, with the genetic loci linked to Online Mendelian Inheritance in Man (OMIM). The database is freely accessible through the World Wide Web at either http://genome.nhgri.nih.gov/histones/ or http://www.ncbi.nlm.nih. gov/Baxevani/HISTONES  相似文献   

17.
The Internet is a massive expanding body of information, which is likely to play a significant role for clinicians and researchers across the world. Since its inception in December 1969 the Internet has grown rapidly and is anticipated to expand 1,000% in the coming next few years. Various useful databases on human genetics are already in 'the Net' and many more are being added constantly. The future of human geneticist is in handling of information. In this review of Internet and compilation of important web site addresses we expect to stimulate and instruct human geneticists in navigating the Net. The list of web sites provided in this article is expected to facilitate their search.  相似文献   

18.

Background

A number of databases have been developed to collect disease-related molecular, phenotypic and environmental features (DR-MPEs), such as genes, non-coding RNAs, genetic variations, drugs, phenotypes and environmental factors. However, each of current databases focused on only one or two DR-MPEs. There is an urgent demand to develop an integrated database, which can establish semantic associations among disease-related databases and link them to provide a global view of human disease at the biological level. This database, once developed, will facilitate researchers to query various DR-MPEs through disease, and investigate disease mechanisms from different types of data.

Methodology

To establish an integrated disease-associated database, disease vocabularies used in different databases are mapped to Disease Ontology (DO) through semantic match. 4,284 and 4,186 disease terms from Medical Subject Headings (MeSH) and Online Mendelian Inheritance in Man (OMIM) respectively are mapped to DO. Then, the relationships between DR-MPEs and diseases are extracted and merged from different source databases for reducing the data redundancy.

Conclusions

A semantically integrated disease-associated database (SIDD) is developed, which integrates 18 disease-associated databases, for researchers to browse multiple types of DR-MPEs in a view. A web interface allows easy navigation for querying information through browsing a disease ontology tree or searching a disease term. Furthermore, a network visualization tool using Cytoscape Web plugin has been implemented in SIDD. It enhances the SIDD usage when viewing the relationships between diseases and DR-MPEs. The current version of SIDD (Jul 2013) documents 4,465,131 entries relating to 139,365 DR-MPEs, and to 3,824 human diseases. The database can be freely accessed from: http://mlg.hit.edu.cn/SIDD.  相似文献   

19.
Amino acid changes due to non-synonymous variation are included as annotations for individual proteins in UniProtKB/Swiss-Prot and RefSeq which present biological data in a protein-or gene-centric fashion. Unfortunately, proteome-wide analysis of non-synonymous singlenucleotide variations (nsSNVs) is not easy to perform because information on nsSNVs and functionally important sites are not well integrated both within and between databases and their search engines. We have developed SNVDis that allows evaluation of proteome-wide nsSNV distribution in functional sites, domains and pathways. More specifically, we have integrated human-specific data from major variation databases (UniProtKB, dbSNP and COSMIC), comprehensive sequence feature annotation from UniProtKB, Pfam, RefSeq, Conserved Domain Database (CDD) and pathway information from Protein ANalysis THrough Evolutionary Relationships (PANTHER) and mapped all of them in a uniform and comprehensive way to the human reference proteome provided by UniProtKB/Swiss-Prot. Integrated information of active sites, pathways, binding sites, domains, which are extracted from a number of different sources, provides a detailed overview of how nsSNVs are distributed over the human proteome and pathways and how they intersect with functional sites of proteins. Additionally, it is possible to find out whether there is an over-or under-representation of nsSNVs in specific domains, pathways or user-defined protein lists. The underlying datasets are updated once every 3 months. SNVDis is freely available at http://hive.biochemistry.gwu.edu/tool/snvdis.  相似文献   

20.
Geotemporal information, information associated with geographical space and time, has always been critical to climate and environmental science. However, this information is certainly not universally or easily accessible. In fact, obtaining and using geotemporal information often comes with a considerable technical overheads, impeding research progress. To address this, we introduce FetchClimate: a cloud service designed to provide easy, universal access to geotemporal information. FetchClimate enables and accelerates the use of geotemporal information by enabling it to be accessed programmatically from a Web service (such as the statistical software R) or non‐programmatically using a Web browser. We intend the service to accelerate the pace of ecological and environmental research by eliminating the technical overheads currently needed to obtain geotemporal information. The software, online manual, and user support are freely available at < http://www.fetchclimate.com >.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号