首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 58 毫秒
1.
Stereoselective drug-channel interactions may help to elucidate the molecular basis of voltage-gated potassium channel block by local anesthetic drugs. We studied the effects of the enantiomers of bupivacaine on a cloned human cardiac potassium channel (hKv1.5). This channel was stably expressed in a mouse Ltk- cell line and studied using the whole-cell configuration of the patch-clamp technique. Both enantiomers modified the time course of this delayed rectifier current. Exposure to 20 microM of either S(-)-bupivacaine or R(+)-bupivacaine did not modify the activation time constant of the current, but reduced the peak outward current and induced a subsequent exponential decline of current with time constants of 18.7 +/- 1.1 and 10.0 +/- 0.9 ms, respectively. Steady-state levels of block (assessed with 250-ms depolarizing pulses to +60 mV) averaged 30.8 +/- 2.5% (n = 6) and 79.5 +/- 3.2% (n = 6) (p < 0.001), for S(-)- and R(+)-bupivacaine, respectively. The concentration dependence of hKv1.5 inhibition revealed apparent KD values of 27.3 +/- 2.8 and 4.1 +/- 0.7 microM for S(-)-bupivacaine and R(+)-bupivacaine, respectively, with Hill coefficients close to unity, suggesting that binding of one enantiomer molecule per channel was sufficient to block potassium permeation. Analysis of the rate constants of association (k) and dissociation (l) yielded similar values for l (24.9 s-1 vs. 23.6 s-1 for S(-)- and R(+)-bupivacaine, respectively) but different association rate constants (1.0 x 10(6) vs. 4.7 x 10(6) M-1 s-1 for S(-)- and R(+)-bupivacaine, respectively). Block induced by either enantiomer displayed a shallow voltage dependence in the voltage range positive to 0 mV, i.e., where the channel is fully open, consistent with an equivalent electrical distance delta of 0.16 +/- 0.01. This suggested that at the binding site, both enantiomers of bupivacaine experienced 16% of the applied transmembrane electrical field, referenced to the inner surface. Both bupivacaine enantiomers reduced the tail current amplitude recorded on return to -40 mV and slowed their time course relative to control, resulting in a "crossover" phenomenon.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
rac-Bupivacaine HCl was infused intravenously to constant arterial blood drug concentrations in sheep using a regimen of 4 mg/min for 15 min followed by 1 mg/min to 24 h. At 24 h, arterial blood was sampled, the animal was killed with a bolus of KCl solution, then rapidly dissected and samples were obtained from heart, brain, lung, kidney, liver, muscle, fat, gut, and rumen. Tissue:blood distribution coefficients for (+)-(R)-bupivacaine exceeded those of (?)-(S)-bupivacaine (P < 0.05) for heart, brain, lung, fat, gut, and rumen by an overall mean of 43%. Blood:plasma distribution coefficients of (?)-(S)-bupivacaine exceeded those of (+)-(R)-bupivacaine by a mean of 29% and this offset the tissue:blood distribution coefficients so that the previously significant enantioselective differences disappeared. It is concluded that although enantioselectivity of bupivacame distribution is shown by the measured tissue:blood distribution coefficients, it is not shown when tissue:plasma water distribution coefficients are calculated, suggesting that there is no intrinsic difference between the bupivacaine enantiomers in tissue affinity. Sheep given fatal intravenous bolus doses of rac-bupivacaine had significantly greater concentrations of (+)-(R)-bupivacaine than (?)-(S)-bupivacaine in brain (P = 0.028) and ventricle (P = 0.036); these could augment the greater myocardial toxicity of this enantiomer found in vitro. © 1993 Wiley-Liss, Inc.  相似文献   

3.
Bupivacaine and levobupivacaine are amino amide local anesthetics commonly used in medical practice. Although bupivacaine consists of a racemic mixture of S (–)-bupivacaine and R (+)-bupivacaine enantiomers, levobupivacaine is comprised of pure S (–)-bupivacaine. It has been known that levobupivacaine is preferable to bupivacaine since it may cause cardiovascular and nervous system toxicity. For determining genotoxicity of these anesthetics, we used the wing somatic mutation and recombination test in Drosophilamelanogaster. Three-day-old trans-heterozygous larvae were treated with bupivacaine and levobupivacaine. Analysis of the standard crosses indicated that bupivacaine and levobupivacaine did not exhibit mutagenic or recombinogenic activity until toxic doses have been reached at the larval stage. When we examined bupivacaine and levobupivacaine in the HB cross, bupivacaine did not exhibit any genotoxicity at high concentrations (500 µg/mL), but levobupivacaine did exert genotoxicity at high concentrations (1000 µg/mL)—depending on the substantial recombinogenic effect.  相似文献   

4.
Nine patients taking oral doses of 10 mg/12 h rac-pindolol as part of their treatment for hypertension in pregnancy were recruited for the study. Maternal and fetal gestational age ranged from 20-38 years and 28-41 weeks, respectively. Blood was collected from the umbilical cord vein and from the mother from zero to 12 h after drug administration. Urine was collected for 12 h after rac-pindolol administration at the following intervals: 0-3, 3-6, 6-9, and 9-12 h. Plasma and urine concentrations of the pindolol enantiomers were determined by HPLC using a Chiralpak AD chiral column and fluorescence detection. The data were fitted to a one-compartment model and differences between (+)-R and (-)-S enantiomers were compared by the paired t-test (P < 0.05). Mean results are reported. The disposition of pindolol in maternal plasma was stereoselective, with higher AUC(SS)0-12 (84.34 vs. 95.69 ng.h/ml) and Cl(R) values (9.16 vs. 10.85 L/h) and lower Vd/f (251.38 vs. 225.17 L) and Cl/f (62.48 vs. 55.74 L/h) for the (+)-R pindolol. The transplacental distribution of pindolol was not stereoselective. Cord, plasma, and presumably fetal, concentrations of the pindolol enantiomers were 56% of the maternal plasma concentrations up to 6 h after the last dose.  相似文献   

5.
Less than 11% of the dose of bupivacaine could be accounted for in urine from 10 patients receiving continuous epidural infusions. HPLC analysis of metabolites confirmed (S)-bupivacaine was more extensively metabolised than (R)-bupivacaine, and dealkylation was the predominant metabolic pathway although co-elution of metabolites made quantitation difficult. The percentage of (S)-2',6'-pipecoloxylidide and co-eluting metabolites excreted relative to (R)-2',6'-pipecoloxylidide from three patients was 0.32+/-0.05, while for seven patients it was 1.28+/-0.09. Conversely, the percentage of (S)-3'-hydroxy bupivacaine and co-eluants excreted relative to (R)-2',6'-pipecoloxylidide from the three patients (1.76+/-0.48) was greater than the seven patients (0.19+/-0.09). Urinary metabolites were analysed for evidence of aliphatic hydroxylation of bupivacaine. Chiral liquid chromatography-mass spectrometry (LC-MS) on an alpha(1)-glycoprotein column at pH 7 used hydroxylamine acetate as the volatile mobile phase. Compounds tentatively identified as hydroxybupivacaines by MRM were verified by their product ion spectra in a subsequent MS-MS run. Eighteen oxygenated metabolites of bupivacaine were detected, half of which were hydroxylated on nonaromatic groups. Equal numbers of mono- and dihydroxybupivacaines were excreted. There was no evidence to suggest the presence of (S)-4'-hydroxybupivacaine, 2'-hydroxymethylbupivacaine, 3'-hydroxy-2',6'-pipecoloxylidide or a piperidone. The metabolite previously identified as (S)-4'-hydroxybupivacaine was not hydroxylated on the xylyl group.  相似文献   

6.
Amide-type pipecoloxylidide local anesthetics, bupivacaine, and ropivacaine, show cardiotoxic effects with the potency depending on stereostructures. Cardiotoxic drugs not only bind to cardiomyocyte membrane channels to block them but also modify the physicochemical property of membrane lipid bilayers in which channels are embedded. The opposite configurations allow enantiomers to be discriminated by their enantiospecific interactions with another chiral molecule in membranes. We compared the interactions of local anesthetic stereoisomers with biomimetic membranes consisting of chiral lipid components, the differences of which might be indicative of the drug design for reducing cardiotoxicity. Fluorescent probe-labeled biomimetic membranes were prepared with cardiolipin and cholesterol of varying compositions and different phospholipids. Local anesthetics were reacted with the membrane preparations at a cardiotoxically relevant concentration of 200 μM. The potencies to interact with biomimetic membranes and change their fluidity were compared by measuring fluorescence polarization. All local anesthetics acted on lipid bilayers to increase membrane fluidity. Chiral cardiolipin was ineffective in discriminating S(-)-enantiomers from their antipodes. On the other hand, cholesterol produced the enantiospecific membrane interactions of bupivacaine and ropivacaine with increasing its composition in membranes. In 40 mol% and more cholesterol-containing membranes, the membrane-interacting potency was S(-)-bupivacaine相似文献   

7.
Binding of R(+)-bupivacaine to open-state homology models of the mammalian K(v)1.5 membrane ion channel is studied using automated docking and molecular dynamics (MD) methods. Homology models of K(v)1.5 are built using the 3D structures of the KcsA and MthK channels as a template. The packing of transmembrane (TM) alpha-helices in the KcsA structure corresponds to a closed channel state. Opening of the channel may be reached by a conformational transition yielding a bent structure of the internal S6 helices. Our first model of the K(v) open state involves a PVP-type of bending hinge in the internal helices, while the second model corresponds to a Gly-type of bending hinge as found in the MthK channel. Ligand binding to these models is probed using the common local anaesthetic bupivacaine, where blocker binding from the intracellular side of the channel is considered. Conformational properties and partial atomic charges of bupivacaine are determined from quantum mechanical HF/6-31G* calculations with inclusion of solvent effects. The automated docking and MD calculations for the PVP-bend model predict that bupivacaine could bind either in the central cavity or in the PVP region of the channel pore. Linear interaction energy (LIE) estimates of the binding free energies for bupivacaine predict strongest binding to the PVP region. Surprisingly, no binding is predicted for the Gly-bend model. These results are discussed in light of electrophysiological data which show that the K(v)1.5 channel is unable to close when bupivacaine is bound.  相似文献   

8.
The study reports on the stereoselective pharmacokinetics of fluvastatin, a racemic mixture of (-)-(3S,5R)- and (+)-(3R,5S)-enantiomers, in streptozotocin-induced diabetic rats. Wistar (control) and streptozotocin-induced diabetic rats (n = 6/time point) received by oral gavage racemic fluvastatin (5 mg/kg), and blood samples were collected until 24 h. The enantiomers were analysed by chiral HPLC with fluorescence detection. The pharmacokinetic parameters were analysed by Wilcoxon and Mann-Whitney tests. The results are reported as means (95% CI). The following differences (p < 0.05) were observed between the control and diabetic groups, respectively: maximum plasma concentration (Cmax) of (-)-(3S,5R), 410.0 (310.0-510.0) versus 532.6 (463.5-601.8) ng x mL(-7); area under the plasma concentration versus time curve (AUC(0-infinity)) for (-)-(3S,5R), 4342A (3,775.7-4,909.0) versus 3025.2 (2,218.9-3,831.5) ng x h x mL(-1); apparent total clearance (Cl/f) of (-)-(3S,5R), 0.6 (0.5-0.7) versus 0.9 (0.6-1.1) L x h(-1) x kg(-1); AUC(0-infinity) for (+)-(3R,5S), 493.5 (376.9-610.1) versus 758.5 (537.1-980.0) ng x h x mL(-1); and Cl/f of (+)-(3R,5S), 5.3 (3.9-6.8) versus 3.5 (2.6-4.4) L x h(-1) x kg(-1). Streptozotocin-induced diabetes in rats alters the pharmacokinetics of fluvastatin in a stereoselective manner.  相似文献   

9.
Aim of this study was to evaluate level of analgesia and hemodynamic response to spinal anesthesia obtained by administering 15 mg 0.5% isobaric bupivacaine at L2-3 vs. L3-4 interspace for inguinal herniorrhaphy, since studies comparing analgesia and hemodynamic response at the L2-3 vs. L3-4 interspaces are lacking. In a prospective, randomized clinical study that encountered 72 patients undergoing elective inguinal herniorrhaphy randomly allocated in to two equal groups L2-3 (N = 36) and L3-4 (N = 36) according to lumbar interspace where intrathecal injection of bupivacaine was administered. Analgesia was evaluated by intraoperative "rescue" fentanyl requirements, the absence of pain and the maximal visual analogue scale (VAS) scores reached per patient during the operation. The severity of intraoperative pain was quantified by a 10 cm VAS scale (VAS 0: no pain to 10: worst pain imaginable) every 5 minutes after skin incision until the end of the operation. VAS > 3 was treated with intravenous fentanyl 25 microg. Hemodynamic response was monitored and evaluated, heart rate was continuously monitored as well as, baseline systolic, diastolic and mean arterial pressure prior to induction and every 5 minute after applying spinal anesthesia until surgical completion. Intraoperative fentanyl requirements were significantly higher in group L3-4 (L2-3 0%, 97.5% confidence interval [CI] 0.0-0.11 vs. L3-4 17%, 95% CI 0.07-0.32, p = 0.025). Absence of pain was significantly higher in L2-3 group at the beginning of the operation (L2-3 89%, 95% CI 0.74-0.96 vs. L3-4 67%, 95% CI 0.50-0.79, p = 0.047). The maximal VAS scores reached per patient during the operation in L2-3 group were lower then in L3-4 group (L2-3 median [M] 0, range [R] 0-3, L3-4 M 0, R 0-8, p = 0.014). There were no significant differences (p > 0.05) in the incidence of hypotension (L2-3 19%, 95% CI 0.09-0.35 vs. L3-4 17%, 95% CI 0.07-0.32) and bradycardia (L2-3 19%, 95% CI 0.09-0.35 vs. L3-4 8%, 95% CI 0.02-0.23). Spinal anesthesia with isobaric bupivacaine administered in L2-3 interspace for inguinal herniorrhaphy provides superior analgesia and equal hemodynamic stability as compared to neuroaxial anesthesia administered in the L3-4 interspace.  相似文献   

10.
Chiral separation of rac-bupivacaine extracted from blood was achieved with similar limits of detection but using a much simpler sample preparation than reported previously. The simple one-step sample preparation devised was highly robust and efficient and allowed a very high throughput of samples. The high-performance liquid chromatography (HPLC) conditions used gave baseline separation of the enantiomers with high sensitivity. R-(+)-bupivacaine and S-(−)-bupivacaine blood concentrations were determined using a chiral stationary phase (AGP, ChromTech) with diode array detection at 220 nm; this wavelength produced a stable baseline allowing semi-automated analysis. Sample preparation involved addition of internal standard (diphenhydramine), basification of blood, extraction with n-hexane, concentration of the extract to dryness and reconstitution in 0.002 M phosphoric acid. At rac-bupivacaine concentrations of 0.5, 5 and 50 μg/ml in blood, assay accuracy as estimated by coefficients of variation (C.V.s), were 3.3, 1.4, and 1.6%, respectively, for R-(+)-bupivacaine and 3.7, 2.0 and 1.5%, respectively, for S-(−)-bupivacaine. Using 0.6-ml samples, the estimated limits of detection for R-(+)-bupivacaine and S-(−)-bupivacaine were both 15 ng/ml of blood. Calibration curves (n=188) were linear from 0.1 to 50 μg/ml with all correlation coefficients being greater than 0.99. This semi-automated method was applied to studies involving whole body pharmacokinetics with intravenous doses ranging from 12.5 to 350 mg and regional myocardial pharmacokinetics with coronary arterial doses ranging from 2.5 to 12.5 mg. These studies generated approximately 12 000 blood samples.  相似文献   

11.
M Fujimaki 《Chirality》1992,4(3):148-154
After intravenous bolus injection of rac-carvedilol at 2 mg/kg to the rat, the (+)-(R)- and (-)-(S)-enantiomer levels in the blood and tissues (liver, kidney, heart, muscle, spleen, and aorta) were measured by stereospecific HPLC assay. As compared with the (+)-(R), the (-)-(S) had a larger Vdss (3.32 vs. 2.21 liter/kg), MRT (33.4 vs. 25.6 min), and CLtot (96.1 vs. 83.8 ml/min/kg). AUC comparison after iv and po administration showed systemic bioavailability of the (-)-(S) to be about half that of its antipode, explained by the fact that the free fraction of the (-)-(S) in blood was 1.65-fold greater than that of the (+)-(R). Tissue-to-blood partition coefficient values for the (-)-(S) were 1.6- to 2.1-fold greater than those for the (+)-(R) in all tissues, showing that the (-)-(S) accumulates more extensively in the tissues. These results were consistent with the greater Vdss for the (-)-(S) estimated from systemic blood data. The stereoselective tissue distribution of carvedilol enantiomers results from an enantiomeric difference in plasma protein binding rather than in tissue binding.  相似文献   

12.
The concentration-dependent effects of clonidine, isomers of epinephrine, norepinephrine (NE), isoproterenol, cobefrin and alpha-methyldopamine, and related desoxy analogs (epinine, dopamine, N-isopropyldopamine) were examined on human platelets. The rank order of aggregatory potency (pD2 values) was R(-)-epinephrine (6.3) greater than R(-)-NE (5.9) greater than (+/-)-erythro-cobefrin (5.3) greater than S(+)-epinephrine (4.7) = S(+)-NE (4.7) = clonidine (4.7) = dopamine (4.6) greater than epinine (4.4) greater than S(+)-alpha-methyldopamine (4.3) = R(-)-alpha-methyldopamine (4.3) greater than (+/-)-threo-cobefrin (3.7). The isoproterenol isomers and N-isopropyl-dopamine were inactive as agonists. In 9 of 16 platelet-rich plasma preparations, R(-)-epinephrine, R(-)-NE, and (+/-)erythro-cobefrin were agonists and the remaining analogs blocked R(-)-NE-induced aggregation with a rank order of inhibitory potencies (pKB values) of clonidine (6.2) greater than S(+)-alpha-methyldopamine (5.0) greater than dopamine (4.6) = R(-)-alpha-methyldopamine (4.4) greater than or equal to S(+)-NE (4.3) greater than N-isopropyldopamine (4.1) greater than S(+)-isoproterenol (3.7) = R(-)-isoproterenol (3.5). Each compound was also able to reverse prostaglandin E1 (PGE1) (0.1 microM)-induced blockade of the maximal aggregation response to ADP. At high concentrations, R(-)-isoproterenol was more potent than either the S(+)-isomer or desoxy analog, N-isopropyldopamine, in the reversal of PGE1 inhibition of ADP aggregation. Phentolamine blocked these alpha 2-adrenoceptor-mediated actions against PGE1 on ADP aggregation. The rank order of potency for the reversal of PGE1-mediated inhibition of ADP aggregation by these catecholamines was similar to that observed for platelet aggregation. Our results indicate that (i) the stereochemical requirements for the interaction of catecholamines with platelet alpha 2-adrenoceptors are in agreement with the Easson-Stedman hypothesis and other alpha-adrenoceptor tissues; (ii) catecholamines lacking a benzylic hydroxyl group in the R-configuration and/or possessing an N-isopropyl group were alpha 2-adrenoceptor antagonists; (iii) clonidine gave quantitatively different responses compared with catecholamines for interaction with alpha 2-adrenoceptors; and (iv) inhibition of platelet adenylate cyclase is correlated to the inhibition of epinephrine-induced aggregation response for this series of compounds.  相似文献   

13.
We assessed the hypothesis that the epinephrine surge present during sepsis accelerates aerobic glycolysis and lactate production by increasing activity of skeletal muscle Na(+)-K(+)-ATPase. Healthy volunteers received an intravenous bolus of endotoxin or placebo in a randomized order on two different days. Endotoxemia induced a response resembling sepsis. Endotoxemia increased plasma epinephrine to a maximum at t = 2 h of 0.7 +/- 0.1 vs. 0.3 +/- 0.1 nmol/l (P < 0.05, n = 6-7). Endotoxemia reduced plasma K(+) reaching a nadir at t = 5 h of 3.3 +/- 0.1 vs. 3.8 +/- 0.1 mmol/l (P < 0.01, n = 6-7), followed by an increase to placebo level at t = 7-8 h. During the declining plasma K(+), a relative accumulation of K(+) was seen reaching a maximum at t = 6 h of 8.7 +/- 3.8 mmol/leg (P < 0.05). Plasma lactate increased to a maximum at t = 1 h of 2.5 +/- 0.5 vs. 0.9 +/- 0.1 mmol/l (P < 0.05, n = 8) in association with increased release of lactate from the legs. These changes were not associated with hypoperfusion or hypoxia. During the first 24 h after endotoxin infusion, renal K(+) excretion was 27 +/- 7 mmol, i.e., 58% higher than after placebo. Combination of the well-known stimulatory effect of catecholamines on skeletal muscle Na(+)-K(+)-ATPase activity, with the present confirmation of an expected Na(+)-K(+)- ATPase-induced decline in plasma K(+), suggests that the increased lactate release was due to increased Na(+)-K(+)-ATPase activity, supporting our hypothesis. Thus increased lactate levels in acutely and severely ill patients should not be managed only from the point of view that it reflects hypoxia.  相似文献   

14.
Many terpenes are used therapeutically, and as flavor and fragrance materials. (R)-(-)-Carvone, the main constituent of spearmint oil, and (S)-(+)-carvone, found as major component of caraway and dill seed oils, have several applications and are used in cosmetic, food, and pharmaceutical preparations. In this study, the effect of enantiomers of carvone on the central nervous system (CNS) was evaluated in mice. The LD50 value was 484.2 mg/kg (358.9-653.2) for (S)-(+)-carvone, and 426.6 (389.0-478.6) mg/kg for (R)-(-)-carvone. Both enantiomers caused depressant effects, such as decrease in the response to the touch and ambulation, increase in sedation, palpebral ptosis, and antinociceptive effects. (S)-(+)- and (R)-(-)-carvone caused a significant decrease in ambulation. (R)-(-)-Carvone appeared to be more effective than its corresponding enantiomer at 0.5 and 2.0 h after administration. However, (S)-(+)-carvone was slightly more potent at 1 h. In potentiating pentobarbital sleeping time, (R)-(-)-carvone was more effective than (S)-(+)-carvone at 100 mg/kg, but was less potent at 200 mg/kg compared to the (+)-enantiomer, indicating a sedative action. (S)-(+)-Carvone at the dose of 200 mg/kg increased significantly the latency of convulsions induced by PTZ and PIC, but (R)-(-)-carvone was not effective against these convulsions. These results suggest that (S)-(+)-carvone and (R)-(-)-carvone have depressant effect in the CNS. (S)-(+)-Carvone appears to have anticonvulsant-like activity.  相似文献   

15.
从土壤中分离的1株产碱杆菌Alcaligenes sp.ECU0401具有扁桃酸脱氢酶活性,可以以扁桃酸、苯甲酰甲酸或苯甲酸为唯一C源生长,并且具有较高的脱氢酶活力。以外消旋扁桃酸为C源,采用分批补料策略培养(或反应)99h,扁桃酸累计投入量为30.4g/L,(S)-(+)-扁桃酸被完全降解,(R)-(-)-扁桃酸回收产率为32.8%,对映体过量值(e.e.)〉99.9%。利用静息细胞作为催化剂不对称降解外消旋扁桃酸的氯代衍生物,制备获得光学活性的(R)-(-)-邻氯扁桃酸、(S)-(+)-间氯扁桃酸和(S)-(+)-对氯扁桃酸,光学纯度均超过99.9%e.e.。  相似文献   

16.
The substrate oxidation profiles of Sphingomonas yanoikuyae B1 biphenyl-2,3-dioxygenase and cis-biphenyl dihydrodiol dehydrogenase activities were examined with 1,2-dihydronaphthalene and various cis-diols as substrates. m-Xylene-induced cells of strain B1 oxidized 1,2-dihydronaphthalene to (-)-(1R,2S)-cis-1,2-dihydroxy-1,2-3,4-tetrahydronaphthalene as the major product (73% relative yield). Small amounts of (+)-(R)-2-hydroxy-1,2-dihydronaphthalene (15%), naphthalene (6%), and alpha-tetralone (6%) were also formed. Strain B8/36, which lacks an active cis-biphenyl dihydrodiol dehydrogenase, formed (+)-(1R,2S)-cis-1,2-dihydroxy-1,2-dihydronaphthalene (51%), in addition to (-)-(1R,2S)-cis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene (44%) and (+)-(R)-2-hydroxy-1,2-dihydronaphthalene (5%). The cis-biphenyl dihydrodiol dehydrogenase of strain B1 oxidized both enantiomers of cis-1,2-dihydroxy-1,2-dihydronaphthalene, but only the (+)-(1S,2R)-enantiomers of cis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene and cis-1,2-dihydroxy-3-phenylcyclohexa-3,5-diene. The results show that biphenyl dioxygenase expressed by S. yanoikuyae catalyzes dioxygenation, monooxygenation, and desaturation reactions with 1,2-dihydronaphthalene as the substrate, and cis-biphenyl dihydrodiol dehydrogenase catalyzes the enantioselective dehydrogenation of (+)-(1S,2R)-cis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene and (+)-(1S,2R)-cis-1,2-dihydroxy-3-phenylcyclohexa-3,5-diene.  相似文献   

17.
The complete pharmacokinetics (PK) of (R)- and (S)-cyclophosphamide (CP) and their dechloroethylated (DCE) metabolites have not been reported to date. We collected plasma and urine samples from 12 cancer patients and determined concentrations of both enantiomers of CP and DCE-CP using a chiral GC-MS method. All concentrations of (R)-CP, (S)-CP, (R)-DCE-CP, and (S)-DCE-CP were simultaneously modeled using an enantiospecific compartmental PK model. A population PK analysis was performed. Enantiospecific differences between (R)- and (S)-CP were found for the formation clearance of CP to the DCE metabolites (Clf: 0.25 (R) vs. 0.14 (S) L/h). No difference was found between enantiomers for Cl40H, Cld, Cl(m)R, ClT, or T1/2. In contrast to the adolescent and adult group of patients, a child (6 years old) appeared to have a very different PK and metabolic profile (Bayesian control analysis). Proportions of the (R,S)-CP doses transformed to the (R)-DCE- and (S)-DCE-CP were much higher (R: 25 vs. 1.9%, and S: 38 vs. 3.6%), while formation of active metabolites was much lower (R: 42 vs. 74%, and S: 48 vs. 77%). CP appears to be enantioselectively metabolized to the DCE metabolites. This PK model can evaluate the proportion of a CP dose that is transformed to toxic or active metabolites. It may therefore be used to optimize CP treatment, to identify important drug interactions and/or patients with an abnormal metabolic profile.  相似文献   

18.
The R- and S-enantiomers of 4-amino-3-hydroxybutanoic acid (GABOB) were full agonists at human recombinant rho1 GABA(C) receptors. Their enantioselectivity (R>S) matched that reported for their agonist actions at GABA(B) receptors, but was the opposite to that reported at GABA(A) receptors (S>R). The corresponding methylphosphinic acid analogues proved to be rho1 GABA(C) receptor antagonists with R(+)-CGP44533 being more potent than S(-)-CGP44532, thus showing the opposite enantioselectivity to the agonists R(-)- and S(+)-GABOB. These studies highlight the different stereochemical requirements for the hydroxy group in these analogues at GABA(A), GABA(B) and GABA(C) receptors.  相似文献   

19.
R(-) isomer of diniconazole [S-3308L, (E)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-l-yl)-1-+ ++penten-3-ol], a newly developed fungicide strongly inhibited lanosterol 14 alpha-demethylation catalyzed by a yeast cytochrome P-450 (P-450/14DM). On the other hand, S(+) isomer of diniconazole was a weaker inhibitor for P-450/14DM. The R(-) isomer combined with both ferric and ferrous P-450/14DM and interfered binding of CO to the cytochrome. The S(+) isomer also interacted with both forms of P-450/14DM but the absorption spectra of the S(+)-diniconazole complexes were different from those of the R(-)-diniconazole complexes. Furthermore, S(+) isomer did not significantly interfere the binding of CO to P-450/14DM. These observations suggest that P-450/14DM discriminates enantiomers of diniconazole and the R(-) isomer is more favorably fit for the active site of the cytochrome.  相似文献   

20.
何斌  葛庆华 《生理学报》1991,43(4):405-409
For evaluating the role of prostacyclin (PGI2) and thromboxane A2 (TXA2) in the metabolism of salt and water, the metabolic products of PGI2 and TXA2 (6-keto-PGF1 alpha and TXB2 respectively) were measured by radioimmunoassay in salt-loaded rabbits. 36 normal rabbits were randomly divided into 3 groups: 1. normal control group; 2. 3h salt-loading group (3 h group); 3. 24 h salt-loading group (24 h group). Both the 3 h and 24 h groups were given 0.9% NaCl solution by subcutaneous injection to the hind legs. The kidneys were dissected into 4 slices: outer cortex, inner cortex, outer medulla and inner medulla. The plasma 6-keto-PGF1 alpha in the 3 h group was increased from the control value of 46.61 +/- 19.04 pg/ml to 111.63 +/- 58.36 pg/ml (P less than 0.01). All of the dissected renal slices also showed significant increase of 6-keto-PGF1 alpha synthesis in both the 3 h and the 24 h groups (P less than 0.001 vs. normal). The urinary sodium concentrations have a good correlation with 6-keto-PGF1 alpha in plasma or in kidney tissues. Plasma TXB2 in normal group was 499.27 +/- 197.86 pg/ml, but no significant change was found in the 3h group. However, in the 24 h group it decreased significantly to 218.76 +/- 114.54 pg/ml (P less than 0.05 vs. normal group). Although the TXB2 increment was significant only in inner medulla, all other dissected renal slices showed some increase of TXB2 synthesis too. It is concluded that salt-loading can cause increase of PGI1 and TXA2 synthesis in normal renal tissues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号