首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously demonstrated that adenosine causes contraction of guinea-pig myometrium in a fashion consistent with the presence of a purinergic receptor of the A1 subtype. Incubation of guinea-pig uterine smooth muscle membranes with the stable adenosine analogue [3H]cyclohexyladenosine [( 3H]CHA) resulted in rapid, reversible association of radioligand to saturable sites. The affinity (KD) of the receptor for [3H]CHA determined from kinetic experiments (3.14 nM) is in good agreement with that determined in saturation experiments (KD = 4.5 nM). Scatchard analysis of specific [3H]CHA binding (Bmax = 79 fmol/mg protein) is consistent with a single class of binding sites for [3H]CHA. Computer analysis of competition of [3H]CHA binding by the stereoisomers of phenylisopropyl adenosine, R-PIA (KI = 5.3 nM) and S-PIA (KI = 69 nM), as well as the 5'-substituted analogue, ethylcarboxamide adenosine (NECA; KI = 4.2 nM) suggest that [3H]CHA binding occurs to a single class of receptors of the AI subtype. Contractile studies employing these agents reveal that the relative order of potency, based on ED50 values, correlates well with the relative order of competition of agonist binding, based on equilibrium binding constants. Direct assay of myometrial adenylate cyclase failed to show that adenosine receptors in this smooth muscle are coupled to adenylate cyclase. We conclude here that a smooth muscle adenosine receptor is not coupled to adenylate cyclase, yet subserves muscle contraction. These data are important in light of recent attempts to classify adenosine receptors as dual regulators of adenylate cyclase.  相似文献   

2.
Clathrin-coated vesicles purified from bovine brain express adenosine A1 receptor binding activity. N6-Cyclohexyl[3H]adenosine [( 3H]CHA), an agonist for the A1 receptor, binds specifically to coated vesicles. High and low agonist affinity states of the receptor for the radioligand [3H]CHA with KD values of 0.18 and 4.4 nM, respectively, were detected. The high purity of coated vesicles was established by assays for biochemical markers and by electron microscopy. Binding competition experiments using agonists (N6CHA, N-cyclopentyladenosine, 5'-(N-ethylcarboxamido)adenosine, and N6-[(R)- and N6-[(S)-phenylisopropyl]adenosine) and antagonists (theophylline, 3-isobutyl-1-methylxanthine, and caffeine) confirmed the typical adenosine A1 nature of the binding site. This binding site presents stereospecificity for N6-phenylisopropyladenosine, showing 33 times more affinity for N6-[(R)- than for N6-[(S)-phenylisopropyl]adenosine. The specific binding of [3H]CHA in coated vesicles is regulated by guanine nucleotides. [3H]CHA specific binding was decreased by 70% in the presence of the hydrolysis-resistant GTP analogue guanyl-5-yl-imidodiphosphate. Bovine brain coated vesicles present adenylate cyclase activity. This activity was modulated by forskolin and CHA. The results of this study support the evidence that adenosine A1 receptors present in coated vesicles are coupled to adenylate cyclase activity through a Gi protein.  相似文献   

3.
At inflammatory sites neutrophils are stimulated to produce a variety of toxic agents, yet rarely harm the endothelium across which they migrate. We have recently found that endothelium releases adenosine which, acting via receptors on the surface of human neutrophils, inhibits generation of toxic metabolites by stimulated neutrophils but, paradoxically, promotes chemotaxis. Agents which diminish plasma membrane viscosity affect neutrophil function similarly, possibly by modulating chemoattractant receptor number or affinity. We therefore determined whether adenosine receptor agonists modulate neutrophil function by decreasing membrane viscosity and/or changing the affinity of chemoattractant (N-fMet-Leu-Phe, FMLP) receptors. Surprisingly, 5'-(N-ethylcarboxamido)adenosine (NECA, 10 microM), the most potent agonist at neutrophil adenosine receptors, increased plasma membrane viscosity, as measured by fluorescence anisotropy of the plasma membrane specific probe 1-(4-trimethylaminophenyl)-6-diphenyl-1,3,5-hexatriene (TMA-DPH), in unstimulated neutrophils from a mean microviscosity of 1.67 +/- 0.02 (S.E.) to 1.80 +/- 0.02 (p less than 0.001) while inosine (10 microM), a poor adenosine receptor agonist, had no effect (1.73 +/- 0.04, p = n.s. vs. control, p less than 0.01 vs. NECA). Adenosine receptor agonists increased plasma membrane viscosity in neutrophils with the same order of potency previously seen for inhibition of superoxide anion generation and enhancement of chemotaxis (NECA greater than adenosine = N6-phenylisopropyladenosine). The adenosine receptor antagonist 8-(p-sulfophenyl)theophylline reversed the effect of NECA on plasma membrane viscosity. Unlike other agents which modulate plasma membrane viscosity, NECA (10 microM) did not significantly change the number or affinity of [3H]FMLP binding sites on neutrophils. In contrast to the hypothesis of Yuli et al. these results indicate that occupancy of adenosine receptors on neutrophils increases plasma membrane viscosity without affecting chemoattractant receptor display.  相似文献   

4.
The adenosine A1 receptors of sheep brain membranes have been identified by the specific binding of radiolabeled cyclohexyl[3H]adenosine ([3H]CHA). Pretreatment of membranes with periodate-oxidized CHA causes a dose- and time-dependent decrease in the number of binding sites. No decrease occurs when membranes are pretreated with CHA. Binding of [3H]CHA to the remaining sites occurs with the same characteristics as binding to the untreated receptor population.  相似文献   

5.
The specific binding of the A1 adenosine receptor ligand, [3H]CHA, was investigated in membrane fractions prepared from brains of eleven vertebrate species and ganglia of four invertebrate species. Substantial amounts of specific [3H]CHA binding sites were demonstrated in brain membranes of all vertebrate species examined; however, [3H]CHA binding sites were not detectable in nervous tissue of the invertebrate species studied. The densities of [3H]CHA binding sites in vertebrate brains increase in higher vertebrates. Moreover, the pharmacological characteristics of the site labeled by [3H]CHA in two divergent classes of vertebrates were similar. The broad phylogenetic distribution of A1 adenosine receptors in primitive as well as advanced vertebrate species suggests a fundamental role for adenosine in neuronal modulation.  相似文献   

6.
Abstract

The characteristics of adenosine receptors and adenosine uptake sites in brain are presented. High affinity adenosine receptors of the A1 type bind [3H]cyclohexyladenosine ([3H]CHA) and [3 H]diethyl-phenyl-xanthine ([3H]DPX) with 10?9 potency while adenosine uptake sites are labeled 10?10 potency with [3 H]nitrobenzyl-thioinosine ([3H]NBI). NBI does not inhibit either [3H]CHA (agonist) or [3H]DPX (antagonist) binding to adenosine receptors in brain cortical membranes and conversely CHA and other adenosine receptor ligands are very poor inhibitors of [3H]NBI binding to adenosine uptake sites. A number of other differences between the receptor and uptake site are discussed which provide rather strong evidence that these two sites are quite distinct and that the labeled ligands used represent specific probes for each site.  相似文献   

7.
At inflammatory sites neutrophils are stimulated to produce a variety of toxic agents, yet rarely harm the endothelium across which they migrate. We have recently found that endothelium releases adenosine which, acting via receptors on the surface of human neutrophils, inhibits generation of toxic metabolites by stimulated neutrophils but, paradoxically, promotes chemotaxis. Agents which diminish plasma membrane viscosity affect neutrophil function similarly, possibly by modulating chemoattractant receptor number or affinity. We therefore determined whether adenosine receptor agonists modulate neutrophil function by decreasing membrane viscosity and/or chaning the affinity of chemoattractant (N-fMet-Leu-Phe, FMLP) receptors. Surprisingly, 5′-(N-ethylcar☐amido)adenosine (NECA, 10 μM), the most potent agonist at neutrophil adenosine receptors, increased plasma membrane viscosity, as measured by fluorescence anisotropy of the plasma membrane specific probe 1-(4-trimethylaminophenyl)-6-diphenyl-1,3,5-hexatriene (TMA-DPH), in unstimulated neutrophils from a mean microviscosity of 1.67 ± 0.02 (S.E.) to 1.80 ± 0.02 (p < 0.001) while inosine (10 μM), a poor adenosine receptor agonist, had no effect (1.73 ± 0.04, p =n.s. vs. control, p < 0.01 vs. NECA). Adenosine receptor agonists increased plasma membrane viscosity in neutrophils with the same order of potency previously seen for inhibition of superoxide anion generation and enhancement of chemotaxis (NECA > adenosine = N6-phenylisopropyladenosine). The adenosine receptor antagonist 8-(p-sulfophenyl)theophylline reversed the effect of NECA on plasma membrane viscosity. Unlike other agents which modulate plasma membrane viscosity, NECA (10 μM) did not significantly change the number or affinity of [3H]FMLP binding sites on neutrophils. In contrast to the hypothesis of Yuli et al. these results indicate that occupancy of adenosine receptors on neutrophils increases plasma membrane viscosity without affecting chemoattractant receptor display.  相似文献   

8.
Ontogeny of Adenosine Binding Sites in Rat Forebrain and Cerebellum   总被引:5,自引:3,他引:2  
The metabolically stable adenosine analogue N6-cyclohexyl [3H]adenosine ([3H]CHA) was used to label adenosine receptors in rat forebrain and cerebellum during development. [3H]CHA binding develops rather slowly, with adult binding levels obtained at 24 days in cerebellum and later in the forebrain. Ontogenic profiles in both areas are consistent with the onset of neuronal differentiation. High and low affinity sites appear to develop in parallel, since Scatchard analysis in forebrain tissue obtained from 5-day-old animals revealed both binding sites.  相似文献   

9.
Solubilization of an Adenosine Uptake Site in Brain   总被引:1,自引:1,他引:0  
Procedures are described for the solubilization of adenosine uptake sites in guinea pig and rat brain tissue. Using [3H]nitrobenzylthioinosine [( 3H]NBI) the solubilized site is characterized both kinetically and pharmacologically. The binding is dependent on protein concentration and is saturable, reversible, specific, and high affinity in nature. The KD and Bmax of guinea pig extracts are 0.13 +/- 0.02 nM and 133 +/- 18 fmol/mg protein, respectively, with linear Scatchard plots obtained routinely. Similar kinetic parameters are observed in rat brain. Adenosine uptake inhibitors are the most potent inhibitors of [3H]NBI binding with the following order of potency, dilazep greater than hexobendine greater than dipyridamole. Adenosine receptor ligands are much less potent inhibitors of binding, and caffeine is without effect. The solubilized adenosine uptake site is, therefore, shown to have virtually identical properties to the native membrane site. The binding of the adenosine A1 receptor agonist [3H]cyclohexyladenosine [( 3H]CHA) to the solubilized brain extract was also studied and compared with that of [3H]NBI. In contrast to the [3H]NBI binding site [3H]CHA binds to two apparent populations of adenosine receptor, a high-affinity site with a KD of 0.32 +/- 0.06 nM and a Bmax of 105 +/- 30 fmol/mg protein and a lower-affinity site with a KD of 5.50 +/- 0.52 nM and Bmax of 300 +/- 55 fmol/mg protein. The pharmacology of the [3H]CHA binding site is consistent with that of the adenosine receptor and quite distinct from that of the uptake [( 3H]NBI binding) site. Therefore, we show that the adenosine uptake site can be solubilized and that it retains both its binding and pharmacologic properties in the solubilized state.  相似文献   

10.
Adenosine receptors in rat testes: labeling with 3H-cyclohexyladenosine   总被引:2,自引:0,他引:2  
We have labeled adenosine receptors in rat tissues with 3HN6cyclohexyladenosine (3HCHA) and evaluated the organ distribution and drug specificity of these binding sites throughout the body. Detectable receptor concentrations are restricted to the brain and testes. Brain displays receptor levels of 9 pmoles/g wet weight of tissue while the testes display 2 pmoles/g, with all other tissues examined showing less than detectable specific binding of 3HCHA. The receptors in these two tissues appear to possess identical pharmacologic profiles with an A1 specificity for both. No change in the total number of 3HCHA binding sites is seen in testes of rats which had been hypophysectomized 14 days prior to sacrifice. This may exclude the Leydig cells as a source of adenosine receptors in the rat testes.  相似文献   

11.
Detergent solubilization of human neutrophil leukotriene B4 receptors   总被引:1,自引:0,他引:1  
Specific leukotriene B4 (LTB4) receptors in human neutrophils were solubilized by treatment of "receptor fraction" membranes with the zwitterionic detergent (3-[(3-cholamidopropyl)-dimethylammonio]1-propane sulfonate (CHAPS). The soluble receptors were assayed by polyethylene glycol (PEG) precipitation coupled with Millipore filtration. The solubilized receptors retained all of the characteristics of the receptor sites in intact neutrophils. The binding of LTB4 was rapid, reversible and stereospecific. Mathematical modeling analysis revealed biphasic binding of [3H] LTB4 indicating two classes of binding sites. The high affinity binding site had a dissociation constant of 1.93 nM and Bmax of 281 fmoles/mg protein; the low affinity binding site had a dissociation constant of 78.92 nM and Bmax of 2522 fmoles/mg protein. Competitive binding experiments with structural analogs of LTB4 demonstrate that the interaction between LTB4 and its binding site is stereospecific and correlates with the relative biological activity of the analogs. These data suggest that it may be possible to purify the LTB4 receptor from human neutrophil membranes.  相似文献   

12.
Abstract: Membranes from adult chicken brain have high-affinity binding sites for N6-cyclohexyl[3H]adenosine (CHA) (KD= 4 nM, Bmax = 0.6 pmol/mg protein). This CHA binding could be attributed to adenosine receptors of the A1 type, since substituted adenosine analogs, e.g. N6-(l -2-phenylisopropyl)adeno sine (IC50 = 60 nM), were very potent displacers. Binding sites for 1,3-diethyl- 8-[3H]phenylxanthine (DPX) in adult brain membranes have a moderate affinity (KD= 50 nM, Bmax = 1.5 pmol/mg). The association of DPX with these sites could be completely displaced by 8-phenyltheophylline (IC50= 300 nM) and other xanthines, but only 45% of specific DPX binding could be displaced by phenylisopropyladenosine. This suggests that about half of DPX sites are putative A1 receptors and the other half are of the A2 type. Primary cultures of pure glial and neuronal cells from chick embryo brain were also examined for adenosine receptors. Specific binding of CHA could not be detected in these preparations, but both glial and neuronal membranes have specific sites for DPX. At a [3H]DPX concentration of 20 nM, specific binding was 50% higher (per mg protein) in glial than in neuronal membranes. The maximum binding of DPX to glial membranes (Bmax= 1.6 pmol/mg) was comparable to values for adult brain, but the glial affinity (KD= 90 nM) was somewhat less. Phenylisopropyladenosine was able to displace less than 20% of the total glial sites for DPX. This finding was in accord with the lack of CHA sites and demonstrates that A1 receptors make little contribution to DPX binding in glial membranes. In decreasing order of potency, 8-phenyltheophylline, CHA, theophylline, caffeine, and 3-isobutyl-I-methylxanthine completely displace DPX association with glia. DPX binding to glial membranes thus appears due to a single class of receptors, which may prove to be of the A2 type.  相似文献   

13.
We have examined the binding of the adenosine agonist radioligands [3H]cyclohexyladenosine [( 3H]CHA), R-N6-[3H]phenylisopropyladenosine [( 3H]R-PIA), and 5'-N-ethylcarboxamido[3H]adenosine [( 3H]NECA) to membranes prepared from rat pineal gland. The results showed that the A-1-selective ligands (CHA and R-PIA) had less than or equal to 10% specific binding. By contrast, [3H]NECA, a nonselective A-1/A-2 ligand, gave 72% specific binding of the total binding. This specific binding was insensitive to cyclopentyladenosine (50 nM) or R-PIA (50 microM). To characterize this binding, we used the N-ethylmaleimide pretreatment method. Under these conditions, this binding was of high affinity with a KD of 51 +/- 10 nM and an apparent Bmax of 1,060 +/- 239 fmol/mg of protein. Specific binding was unaffected by the presence of MgCl2 (10 mM) but was sensitive to guanylylimidodiphosphate (100 microM) (-25%), a result suggesting the involvement of an N-protein mechanism in the coupling of the adenosine receptor labeled by [3H]NECA to other components of the receptor complex. The rank of activity of adenosine analogues in displacing specific [3H]NECA binding was NECA greater than 2-chloroadenosine greater than S-adenosyl-L-homocysteine greater than CHA. Binding was also displaced by 3-isobutyl-1-methylxanthine (IC50 = 23.6 microM). These findings are consistent with the selective labeling by [3H]NECA of an A-2-type adenosine receptor in rat pineal membranes.  相似文献   

14.

Extracellular adenosine is a biologically active signaling molecule that accumulates at sites of metabolic stress in sepsis. Extracellular adenosine has potent immunosuppressive effects by binding to and activating G protein-coupled A2A adenosine receptors (A2AARs) on the surface of neutrophils. A2AAR signaling reproduces many of the phenotypic changes in neutrophils that are characteristic of sepsis, including decreased degranulation, impaired chemotaxis, and diminished ability to ingest and kill bacteria. We hypothesized that A2AARs also suppress neutrophil aging, which precedes cell death, and N1 to N2 polarization. Using human neutrophils isolated from healthy subjects, we demonstrate that A2AAR stimulation slows neutrophil aging, suppresses cell death, and promotes the polarization of neutrophils from an N1 to N2 phenotype. Using genetic knockout and pharmacological blockade, we confirmed that A2AARs decrease neutrophil aging in murine sepsis induced by cecal ligation and puncture. A2AARs expression is increased in neutrophils from septic patients compared to healthy subject but A2AAR expression fails to correlate with aging or N1/N2 polarization. Our data reveals that A2AARs regulate neutrophil aging in healthy but not septic neutrophils.

  相似文献   

15.
Quantitative autoradiography was used to investigate the effects of Mg2+ on agonist and antagonist binding to A1 receptors in rat striatum. A1 receptors were labelled with the selective agonist N6-[3H]cyclohexyladenosine ([3H]CHA) or the selective antagonist 1,3-[3H]dipropyl-8-cyclopentylxanthine ([3H]DPCPX). Mg2+ had no significant effect on equilibrium binding constants for [3H]CHA [control: KD (95% confidence interval) of 0.34 (0.15-0.80) nM and Bmax of 267 +/- 8 fmol/mg of gray matter; with 10 mM Mg2+: KD of 0.8 (0.13-4.9) nM and Bmax of 313 +/- 8.9 fmol/mg of gray matter] or [3H]DPCPX [control: KD of 0.54 (0.30-0.99) nM and Bmax of 256 +/- 2.3 fmol/mg of gray matter; with 10 mM Mg2+: KD of 1.54 (0.2-11.0) nM and Bmax of 269 +/- 35.7 fmol/mg of gray matter]. In contrast, Mg2+ slowed the apparent association rate for both ligands; this was observed as a shift from a one-component to a two-component model for [3H]DPCPX. Mg2+ also affected the dissociation rates of both ligands; for [3H]CHA, dissociation in the presence of Mg2+ was not detected. Mg2+ produced a concentration-dependent inhibition of [3H]CHA binding only prior to equilibrium. HPLC was performed on untreated sections, sections preincubated with adenosine deaminase (ADA), and sections preincubated with ADA and incubated with ADA in the absence or presence of Mg2+. Adenosine was found in measurable quantities under all conditions, and the concentration was not influenced by Mg2+ or by the inclusion of GTP in the preincubation medium. From these data, we conclude the following: (a) adenosine is present and may be produced continuously in brain sections; (b) ADA is not capable of completely eliminating the produced adenosine; (c) Mg2+ apparently does not influence adenosine production or elimination; (d) A1 receptor-guanine nucleotide binding protein coupling is maximal in this preparation; and (e) Mg2+ decreases the dissociation rate of bound endogenous adenosine from A1 receptors, thus limiting the access of [3H]CHA and [3H]DPCPX to the receptors. Thus, enhancement of endogenous adenosine binding to A1 receptors by Mg2+ is a complicating factor in receptor autoradiography and may be so in other preparations as well.  相似文献   

16.
We recently reported that adenine acts as a neurotrophic factor independent of adenosine or P2 receptors in cultured Purkinje cells [Watanabe S. et al. (2003) J. Neurosci. Res. 74, 754-759], suggesting the presence of specific receptors for adenine in the brain. In this study, the characterization of adenine-binding activity in the rat brain was performed to further characterize the receptor-like adenine-binding sites. Specific binding sites for [(3)H]adenine were detected in membrane fractions prepared from rat brains. The kinetics of [(3)H]adenine binding to membranes was described by the association and dissociation rate constants, 8.6 x 10(5) M(-1) min(-1) and 0.118 +/- 0.045 min(-1), respectively. A single binding site for [(3)H]adenine with a K (D) of 157.1 +/- 20.8 nM and a B (max) of 16.3 +/- 1.1 pmol/mg protein (n = 6) was demonstrated in saturation experiments. A displacement study involving various related compounds showed that the [(3)H]adenine binding was highly specific for adenine. It was also found that [(3)H]adenine-binding activity was inhibited by adenosine, although other adenosine receptor ligands were ineffective as to [(3)H]adenine binding. The brain, especially the cerebellum and spinal cord, showed the highest [(3)H]adenine-binding activity of the tissues examined. These results are consistent with the presence of a novel adenine receptor in rat brain membranes.  相似文献   

17.
Examination of the binding characteristics of the adenosine agonist radioligands [3H]N6-cyclohexyladenosine [( 3H]CHA), [3H]cyclopentyladenosine [( 3H]CPA), and [3H]5'-N-ethylcarboxamido adenosine [( 3H]NECA) to membranes prepared from PC12 cells showed that the A-1-selective ligands (CHA and CPA) had minimal binding, which was not amenable to analysis using curve-fitting programs. However, [3H]NECA, a nonselective A-1/A-2 agonist, gave reproducible binding, which was enhanced by removal of endogenous adenosine, using the catabolic enzyme adenosine deaminase. This binding was of high affinity (KD = 4.7 nM) with limited capacity (263 fmol/mg of protein). Specific binding of [3H]NECA was unaffected by the presence of either CPA (50 nM) or MgCl2 (10 mM) but was sensitive to guanylylimidodiphosphate (100 microM), a finding suggesting involvement of an N-protein mechanism in the coupling of the adenosine receptor labeled by [3H]NECA to other components of the receptor complex. Binding of [3H]NECA to PC12 cell membranes was stereo-selective, with the R isomer of N6-phenylisopropyladenosine (PIA) being approximately 12 times more active than S-PIA. The A-1-selective agonist CPA was a weak inhibitor of [3H]NECA binding (Ki = 251 nM). The rank order of activity of adenosine agonists in displacing specific [3H]NECA binding was NECA greater than or equal to 2-chloroadenosine greater than CHA greater than or equal to 5'-N-methylcarboxamido adenosine greater than or equal to R-PIA greater than CPA greater than S-PIA. Binding was also displaced by the marine adenosine agonist 1-methylisoguanosine and by a series of xanthine antagonists with the activity order being 1,3-dipropyl-8-(2-amino-4-chloro)phenylxanthine greater than 8-phenyltheophylline greater than 8-p-sulfophenyltheophylline.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
All four adenosine receptor subtypes have been shown to play a role in cardioprotection, and there is evidence that all four subtypes may be expressed in cardiomyocytes. There is also increasing evidence that optimal adenosine cardioprotection requires the activation of more than one receptor subtype. The purpose of this study was to determine whether adenosine A(2A) and/or A(2B) receptors modulate adenosine A(1) receptor-mediated cardioprotection. Isolated perfused hearts of wild-type (WT), A(2A) knockout (KO), and A(2B)KO mice, perfused at constant pressure and constant heart rate, underwent 30 min of global ischemia and 60 min of reperfusion. The adenosine A(1) receptor agonist N(6)-cyclohexyladenosine (CHA; 200 nM) was administrated 10 min before ischemia and for the first 10 min of reperfusion. Treatment with CHA significantly improved postischemic left ventricular developed pressure (74 ± 4% vs. 44 ± 4% of preischemic left ventricular developed pressure at 60 min of reperfusion) and reduced infarct size (30 ± 2% with CHA vs. 52 ± 5% in control) in WT hearts, effects that were blocked by the A(1) antagonist 8-cyclopentyl-1,3-dipropylxanthine (100 nM). Treatments with the A(2A) receptor agonist CGS-21680 (200 nM) and the A(2B) agonist BAY 60-6583 (200 nM) did not exert any beneficial effects. Deletion of adenosine A(2A) or A(2B) receptor subtypes did not alter ischemia-reperfusion injury, but CHA failed to exert a cardioprotective effect in hearts of mice from either KO group. These findings indicate that both adenosine A(2A) and A(2B) receptors are required for adenosine A(1) receptor-mediated cardioprotection, implicating a role for interactions among receptor subtypes.  相似文献   

19.
Little is known about the mechanisms that regulate the expression of adenosine receptors during CNS development. We demonstrate here that retinas from chick embryos injected in ovo with selective adenosine receptor ligands show changes in A1 receptor expression after 48 h. Exposure to A1 agonist N6‐cyclohexyladenosine (CHA) or antagonist 8‐Cyclopentyl‐1, 3‐dipropylxanthine (DPCPX) reduced or increased, respectively, A1 receptor protein and [3H]DPCPX binding, but together, CHA+DPCPX had no effect. Interestingly, treatment with A2A agonist 3‐[4‐[2‐[[6‐amino‐9‐[(2R,3R,4S,5S)‐5‐(ethylcarbamoyl)‐3,4‐dihydroxy‐oxolan‐2‐yl]purin‐2‐yl]amino] ethyl]phenyl] propanoic acid (CGS21680) increased A1 receptor protein and [3H]DPCPX binding, and reduced A2A receptors. The A2A antagonists 7‐(2‐phenylethyl)‐5‐amino‐2‐(2‐furyl)‐pyrazolo‐[4,3‐e]‐1,2,4‐trizolo[1,5‐c] pyrimidine (SCH58261) and 4‐(2‐[7‐amino‐2‐[2‐furyl][1,2,4]triazolo[2,3‐a][1,3,5]triazo‐5‐yl‐amino]ethyl)phenol (ZM241385) had opposite effects on A1 receptor expression. Exposure to CGS21680 + CHA did not change A1 receptor levels, whereas CHA + ZM241385 or CGS21680 + DPCPX had no synergic effect. The blockade of adenosine transporter with S‐(4‐nitrobenzyl)‐6‐thioinosine (NBMPR) also reduced [3H]DPCPX binding, an effect blocked by DPCPX, but not enhanced by ZM241385. [3H]DPCPX binding kinetics showed that treatment with CHA reduced and CGS21680 increased the Bmax, but did not affect Kd values. CHA, DPCPX, CGS21680, and ZM241385 had no effect on A1 receptor mRNA. These data demonstrated an in vivo regulation of A1 receptor expression by endogenous adenosine or long‐term treatment with A1 and A2A receptors modulators.  相似文献   

20.
The effect of a single electroconvulsive shock (ECS) (30 min and 24 h after treatment) and repeated ECS (10 once-daily) on the adenosine neuromodulatory system was investigated in rat cerebral cortex, cerebellum, hippocampus, and striatum. The present study examined the adenosine A1 receptor using N6-[3H]cyclohexyladenosine ([3H]CHA), the A2 receptor using 5'-N-[3H]ethylcarboxyamidoadenosine ([ 3H]NECA), adenylate cyclase using [3H]forskolin, and the adenosine uptake site using [3H]nitrobenzylthioinosine ([3H]NBI). At 30 min after a single ECS, the Bmax of the [3H]NBI binding in striatum was increased by 20%, which is in good agreement with the well-known postictal adenosine release. The Bmax of [3H]forskolin binding in striatum and cerebellum was increased by 60 and 20%, respectively. In contrast to earlier reported changes following chemically induced seizures, [3H]CHA binding was not altered postictally. At 24 h after a single ECS, there were no changes for any ligand in any brain region. Following repeated ECS, there was a 20% increase of [3H]CHA binding sites in cerebral cortex, which lasted for at least 14 days after the last ECS. [3H]Forskolin binding in hippocampus and striatum was 20% lowered 24 h after 10 once-daily ECS but had already returned to control levels 48 h after the last treatment. Evidence is provided that the upregulated adenosine A1 receptors are coupled to guanine nucleotide binding proteins and, furthermore, that this upregulation is not paralleled by an increase in adenylate cyclase activity as labeled by [3H]forskolin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号