首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The interaction between transmembrane helices is of great interest because it directly determines biological activity of a membrane protein. Either destroying or enhancing such interactions can result in many diseases related to dysfunction of different tissues in human body. One much studied form of membrane proteins known as bitopic protein is a dimer containing two membrane-spanning helices associating laterally. Establishing structure-function relationship as well as rational design of new types of drugs targeting membrane proteins requires precise structural information about this class of objects. At present time, to investigate spatial structure and internal dynamics of such transmembrane helical dimers, several strategies were developed based mainly on a combination of NMR spectroscopy, optical spectroscopy, protein engineering and molecular modeling. These approaches were successfully applied to homo- and heterodimeric transmembrane fragments of several bitopic proteins, which play important roles in normal and in pathological conditions of human organism.Key words: bitopic proteins, transmembrane domain dimer, spatial structure, dynamics, protein-protein interactions, protein-membrane interactions, molecular modeling, NMR  相似文献   

2.
The interaction between transmembrane helices is of a great interest because it directly determines biological activity of a membrane protein. Either destroying or enhancing such interactions can result in many diseases related to dysfunction of different tissues in human body. One much studied form of membrane proteins known as bitopic protein is a dimer containing two membrane-spanning helices associating laterally. Establishing structure-function relationship as well as rational design of new types of drugs targeting membrane proteins requires precise structural information about this class of objects. At present time, to investigate spatial structure and internal dynamics of such transmembrane helical dimers, several strategies were developed based mainly on a combination of NMR spectroscopy, optical spectroscopy, protein engineering and molecular modeling. These approaches were successfully applied to homo- and heterodimeric transmembrane fragments of several bitopic proteins, which play important roles in normal and in pathological conditions of human organism.  相似文献   

3.
Liu W  Crocker E  Zhang W  Elliott JI  Luy B  Li H  Aimoto S  Smith SO 《Biochemistry》2005,44(9):3591-3597
Amyloid fibrils associated with diseases such as Alzheimer's are often derived from the transmembrane helices of membrane proteins. It is known that the fibrils have a cross-beta-sheet structure where main chain hydrogen bonding occurs between beta-strands in the direction of the fibril axis. However, the structural basis for how the membrane-spanning helix is converted into a beta-sheet or how protofibrils associate into fibrils is not known. Here, we use a model peptide corresponding to a portion of the single transmembrane helix of glycophorin A to investigate the structural role of glycine in amyloid-like fibrils formed from transmembrane helices. Glycophorin A contains a GxxxG motif that is found in many transmembrane sequences including that of the amyloid precursor protein and prion protein. We propose that glycine, which mediates helix interactions in membrane proteins, also provides key packing motifs when it occurs in beta-sheets. We show that glycines in the glycophorin A transmembrane helix promote extended beta-strand formation when the helix partitions into aqueous environments and stabilize the packing of beta-sheets in the formation of amyloid-like fibrils. We demonstrate that fibrillization can be disrupted with a new class of inhibitors that target the molecular grooves created by glycine.  相似文献   

4.
Jittikoon J  East JM  Lee AG 《Biochemistry》2007,46(38):10950-10959
Hydropathy plots have problems in identifying the sequences of transmembrane (TM) alpha-helices when they contain charged residues. Here we show that fluorescence spectroscopy can be used to define the ends of TM alpha-helices. Diacylglycerol kinase (DGK) from Escherichia coli contains three transmembrane (TM) alpha-helices per monomer. We have used fluorescence techniques to define the region of the putative first TM helix (TM1) that spans the hydrophobic core of the lipid bilayer surrounding DGK in reconstituted membranes. Single Cys mutants were introduced into TM1 and flanking sites, in a mutant of DGK lacking the two native Cys residues. Introduction of Cys residues into the region between residues 28 and 34 resulted in mutants with low activities, due to a combination of reduced affinities for ATP and diacylglycerol and a reduced maximum rate. Cross-linking experiments showed that the low-activity mutants were present largely in the normal, trimeric form after reconstitution. Fluorescence emission maxima for the Cys mutants labeled with N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazole (IANBD) reconstituted into bilayers of dioleoylphosphatidylcholine varied with position, suggesting that the region of TM1 spanning the hydrophobic core of the bilayer runs from Glu-28 on the cytoplasmic side to Asp-49 or Val-50 on the periplasmic side. This locates the charged/polar cluster 32RQE34 within the hydrophobic core of the bilayer. Fluorescence quenching experiments agree with this assignment for TM1, the results showing a periodicity consistent with distinct stripes of amino acid residues along the length of the helix, the stripes facing the lipid bilayer and facing the rest of the protein, respectively. The residues located close to the glycerol backbone region of the bilayer remained the same when the lipid fatty acyl chain length was changed in the range C14 to C22, showing that hydrophobic matching between the protein and the surrounding lipid bilayer is highly efficient.  相似文献   

5.
Clustering of membrane proteins plays an important role in many cellular activities such as protein sorting and signal transduction. In this study, we used dissipative particle dynamics simulation method to investigate the clustering of anchored membrane proteins (AMPs) in the presence of transmembrane proteins (TMPs). First, our simulation results show that clustering of AMPs and that of TMPs are in fact interdependent, and depending on their hydrophobic length, both protein mixing and protein demixing are observed. Especially, the protein demixing occurs only when the hydrophobic mismatch of TMPs is negative while that of AMPs is positive. Second, our simulation results indicate that the clustering of TMPs also modulates the coupling of the clustering of AMPs in both leaflets. On the one hand, the coupling between AMPs in different leaflets will be strongly restrained if TMPs form protein mixing with AMPs in one leaflet and protein demixing with AMPs in the other leaflet. On the other hand, the coupling between AMPs can be enhanced or mediated by TMPs when TMPs mix with AMPs in both leaflets. Our results may have some implications on our understanding of how different types of membrane proteins cluster and provide a possible explanation of how TMPs participate in signal transduction across cellular membranes.  相似文献   

6.
Phospholamban is a 52 amino acid calcium regulatory protein found as pentamers in cardiac SR membranes. The pentamers form through interactions between its transmembrane domains, and are stable in SDS. We have employed a saturation mutagenesis approach to study the detailed interactions between the transmembrane segments, using a chimeric protein construct in which staphylococcal nuclease (a monomeric soluble protein) is fused to the N-terminus of phospholamban. The chimera forms pentamers observable in SDS-PAGE, allowing the effects of mutations upon the oligomeric association to be determined by electrophoresis. The disruptive effects of amino acid substitutions in the transmembrane domain were classified as sensitive, moderately sensitive or insensitive. Residues of the same class lined up on faces of a 3.5 amino acids/turn helical projection, allowing the construction of a model of the interacting surfaces in which the helices are associated in a left-handed pentameric coiled-coil configuration. Molecular modeling simulations (to be described elsewhere in detail) confirm that the helices readily form a left-handed coiled-coil helical bundle and have yielded molecular models for the interacting surfaces, the best of which is identical to that predicted by the mutagenesis. Residues lining the pore show considerable structural sensitivity to mutation, indicating that care must be taken in interpreting the results of mutagenesis studies of channels. The cylindrical ion pore (minimal diameter of 2 A) appears to be defined largely by hydrophobic residues (I40, L43 and I47) with only two mildly polar elements contributed by sulfurs in residues C36 and M50.  相似文献   

7.
The physical mechanisms that govern the folding and assembly of integral membrane proteins are poorly understood. It appears that certain properties of the lipid bilayer affect membrane protein folding in vitro, either by modulating helix insertion or packing. In order to begin to understand the origin of this effect, we investigate the effect of lipid forces on the insertion of a transmembrane alpha-helix using a water-soluble, alanine-based peptide, KKAAAIAAAAAIAAWAAIAAAKKKK-amide. This peptide binds to preformed 1,2-dioleoyl-l-alpha-phosphatidylcholine (DOPC) vesicles at neutral pH, but spontaneous transmembrane helix insertion directly from the aqueous phase only occurs at high pH when the Lys residues are de-protonated. These results suggest that the translocation of charge is a major determinant of the activation energy for insertion. Time-resolved measurements of the insertion process at high pH indicate biphasic kinetics with time constants of ca 30 and 430 seconds. The slower phase seems to correlate with formation of a predominantly transmembrane alpha-helical conformation, as determined from the transfer of the tryptophan residue to the hydrocarbon region of the membrane. Temperature-dependent measurements showed that insertion can proceed only above a certain threshold temperature and that the Arrhenius activation energy is of the order of 90 kJ mol(-1). The kinetics, threshold temperature and the activation energy change with the mole fraction of 1,2-dioleoyl-l-alpha-phosphatidylethanolamine (DOPE) introduced into the DOPC membrane. The activation energy increases with increasing DOPE content, which could reflect the fact that this lipid drives the bilayer towards a non-bilayer transition and increases the lateral pressure in the lipid chain region. This suggests that folding events involving the insertion of helical segments across the bilayer can be controlled by lipid forces.  相似文献   

8.
The conformation and amide hydrogen exchangeability of the hydrophobic peptide Lys2-Gly-Leu24-Lys2-Ala-amide were studied by Fourier transform infrared spectroscopy. In these studies information on the secondary structure of the peptide was obtained from an examination of the contours of both the amide I and amide II absorption bands. The conformationally sensitive amide I and amide II regions of the infrared spectra suggest that the peptide is predominantly alpha-helical and that it contains some non-alpha-helical structures which are probably in an extended conformation. Studies of the exchangeability of the amide protons of the peptide indicate that there are two populations of amide protons which differ markedly with respect to their exchangeability with the bulk solvent phase, whether the peptide is dissolved in methanol or dispersed in hydrated lipid bilayers. One population of amide protons is very readily exchangeable, and our data suggest that it arises primarily but not exclusively from the extended regions of the peptide. The other population exchanges very slowly with the bulk solvent and appears to originate entirely from the alpha-helical domain of the peptide. This latter population is virtually unexchangeable when the peptide is dispersed in hydrated phosphatidylcholine bilayers but can be largely exchanged when the peptide is solubilized with methanol. We suggest that this slowly exchanging population of amide protons arises from the central part of the hydrophobic polyleucine core which forms a very stable alpha-helix that would be deeply buried in the hydrophobic domain of hydrated lipid bilayers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The mitochondrial inner membrane contains a large number of polytopic proteins that are derived from prokaryotic ancestors of mitochondria. Little is known about the intramitochondrial sorting of these proteins. We chose two proteins of known topology as examples to study the pathway of insertion into the inner membrane; Mrs2 and Yta10 are bitopic proteins that expose negatively charged loops of different complexity into the intermembrane space. Here we show that both Mrs2 and Yta10 transiently accumulate as sorting intermediates in the matrix before they integrate into the inner membrane. The sorting pathway of both proteins can be separated into two sequential reactions: (i) import into the matrix and (ii) insertion from the matrix into the inner membrane. The latter process was found to depend on the membrane potential and, in this respect, is similar to the insertion of membrane proteins in bacteria. A comparison of the charge distribution of intermembrane space loops in a variety of mitochondrial inner membrane proteins suggests that this mode of "conservative sorting" might be the typical insertion route for polytopic inner membrane proteins that originated from bacterial ancestors.  相似文献   

10.
The evolutionary adaptations of thermophilic water‐soluble proteins required for maintaining stability at high temperature have been extensively investigated. Little is known about the adaptations in membrane proteins, however. Here, we compare many properties of mesophilic and thermophilic membrane protein structures, including side‐chain burial, packing, hydrogen bonding, transmembrane kinks, loop lengths, hydrophobicity, and other sequence features. Most of these properties are quite similar between mesophiles and thermophiles although we observe a slight increase in side‐chain burial and possibly a slight decrease in the frequency of transmembrane kinks in thermophilic membrane protein structures. The most striking difference is the increased hydrophobicity of thermophilic transmembrane helices, possibly reflecting more stringent hydrophobicity requirements for membrane partitioning at high temperature. In agreement with prior work examining transmembrane sequences, we find that thermophiles have an increase in small residues (Gly, Ala, Ser, and Val) and a strong suppression of Cys. We also find a relative dearth of most strongly polar residues (Asp, Asn, Glu, Gln, and Arg). These results suggest that in thermophiles, there is significant evolutionary pressure to offload destabilizing polar amino acids, to decrease the entropy cost of side chain burial, and to eliminate thermally sensitive amino acids.  相似文献   

11.
Sequence specificity in the dimerization of transmembrane alpha-helices.   总被引:25,自引:0,他引:25  
While several reports have suggested a role for helix-helix interactions in membrane protein oligomerization, there are few direct biochemical data bearing on this subject. Here, using mutational analysis, we show that dimerization of the transmembrane alpha-helix of glycophorin A in a detergent environment is spontaneous and highly specific. Very subtle changes in the side-chain structure at certain sensitive positions disrupt the helix-helix association. These sensitive positions occur at approximately every 3.9 residues along the helix, consistent with their comprising the interface of a closely fit transmembranous supercoil of alpha-helices. By contrast with other reported cases of interactions between transmembrane helices, the set of interfacial residues in this case contains no highly polar groups. Amino acids with aliphatic side chains define much of the interface, indicating that precise packing interactions between the helices may provide much of the energy for association. These data highlight the potential general importance of specific interactions between the hydrophobic anchors of integral membrane proteins.  相似文献   

12.
Although it is energetically extremely unfavorable to have charged amino acid residues of a polypeptide in the hydrophobic environment of the membrane phospholipid bilayer, a few such charged residues are found in membrane-spanning regions of membrane proteins. Ion pairs (salt bridges) would be much more stable in low dielectric media than single ionized residues. This paper provides indirect evidence for a salt bridge between Asp-240 and Lys-319 in the lactose carrier of Escherichia coli. When Asp-240 was changed to alanine by site-directed mutagenesis, there was a loss of the ability to accumulate methyl-beta-D-thiogalactopyranoside (TMG), melibiose, or lactose. Fast-growing revertants were isolated on melibiose minimal agar plates. Two second-site revertants were isolated: Asp-240-->Ala plus Gly-268-->Val and Asp-240-->Ala plus Lys-319-->Gln. These revertants showed extremely poor accumulation of TMG, melibiose, and lactose, but showed significant "downhill" lactose entry into beta-galactosidase-containing cells with sugar concentrations of 2 and 5 mM. It is concluded that there is some important interaction between Asp-240 and Lys-319, possibly a salt bridge.  相似文献   

13.
W C AshishWimley 《Biochemistry》2001,40(46):13753-13759
Using peptides tethered to polymer microbeads, we have developed a technique for measuring the interactions between the transmembrane alpha-helices of membrane proteins and for screening combinatorial libraries of peptides for members that interact with specific helices from membrane proteins. The method was developed using the well-characterized homodimerization sequence of the membrane-spanning alpha-helix from the erythrocyte membrane protein glycophorin A (GPA). As a control, we also tested a variant with a dimer-disrupting alteration of a critical glycine residue to leucine. To test for detectable, native interactions between detergent-solubilized and microbead-tethered alpha-helices, we incubated fluorescent dye-labeled GPA analogues in sodium dodecyl sulfate solution with microbeads that contained covalently attached GPA analogues. When the dye-labeled peptide in solution and the bead-tethered peptide both contained the native glycophorin A sequence, the microbeads readily accumulated the dye through lateral peptide-peptide interactions and were visibly fluorescent under UV light. When either the peptide in solution or the peptide attached to the beads contained the glycine to leucine change, the beads did not accumulate any dye. The usefulness of this method for screening tethered peptide libraries was tested by incubating dye-labeled, native sequence peptides in detergent solution with a few native sequence beads plus an excess of beads containing the variant glycine to leucine sequence. When the dye-labeled peptide in solution was present at a concentration of > or =2 microM, the few native sequence beads were visually distinguishable from the others because of their bright fluorescence. Using this model system, we have shown that it is possible to visually detect specific, native interactions between alpha-helices from membrane proteins using peptides tethered to polymer microbeads. It will thus be possible to use this method to measure the specific lateral interactions that drive the folding and organization of membrane proteins and to screen combinatorial libraries of peptides for members that interact with them.  相似文献   

14.
The occurrence of hydroxyproline (Hyp) in collagen, C1q and acetylcholineesterase (AChE) raises important questions concerning the role of this unusual imino acid in the structure and function of these proteins. Available data on collagen indicate that Hyp is necessary for the normal secretion of the protein after its synthesis and for the integrity of the triple-helical conformation. Studies from our laboratory have dealt with the structural aspects of the posttranslational conversion of proline to hydroxyproline in collagen mediated by prolyl hydroxylase. We proposed that the beta-turn conformation at the Pro-Gly segments in the nascent procollagen molecule are the sites of the enzymatic hydroxylation and that this conformation changes over to the collagen-like helix as a result of the hydroxylation process. Recently, we have provided additional experimental support to our proposal by a) synthesizing specific beta-turn oligopeptides containing the Pro-Gly as well as Pro-Ala and Pro-DAla sequences and showing that these act as inhibitors of the enzymatic hydroxylation of a synthetic substrate and b) demonstrating, by circular dichroism spectroscopy, the occurrence of a conformational change leading to the triple-helix as a direct consequence of proline hydroxylation in a non-helical polypeptide substrate. We have also observed that the acquisition of hydroxylation results in a significant enhancement of the rate of folding of the polypeptide chain from the unfolded to the triple-helical conformation. We believe that our observations on proline hydroxylation in collagen should also be applicable to C1q and acetylcholineesterase both of which share the general structural and functional properties of collagen in their "tail" regions. Using the techniques employed in collagen studies, one should be able to assess the role of hydroxyproline in the folding, structural stabilities and functions of C1q and AChE. This would also involve the study of the unhydroxylated and hydroxylated precursors of these proteins which may share common structural features with their collagen counterparts. Finally, a systematic study of hydroxyproline-containing peptides and polypeptides has been initiated by us so as to understand the exact manner in which Hyp participates in the formation and stability of the triple-helical conformation in the proteins in which it occurs.  相似文献   

15.
Structural and functional characterization of proteins as well as the design of targeted drugs heavily rely on recombinant protein expression and purification. The polyhistidine-tag (His-tag) is among the most prominent examples of affinity tags used for the isolation of recombinant proteins from their expression hosts. Short peptide tags are commonly considered not to interfere with the structure of the tagged protein and tag removal is frequently neglected. This study demonstrates the formation of higher-order oligomers based on the example of two His-tagged membrane proteins, the dimeric arginine-agmatine antiporter AdiC and the pentameric light-driven proton pump proteorhodopsin. Size exclusion chromatography revealed the formation of tetrameric AdiC and decameric as well as pentadecameric proteorhodopsin through specific interactions between their His-tags. In addition, single particle cryo-electron microscopy (cryo-EM) allowed structural insights into the three-dimensional arrangement of the higher-order oligomers and the underlying His-tag-mediated interactions. These results reinforce the importance of considering the length and removal of affinity purification tags and illustrate how neglect can lead to potential interference with downstream biophysical or biochemical characterization of the target protein.  相似文献   

16.
Protein interactions play key roles throughout all subcellular compartments. In the present paper, we report the visualization of protein interactions throughout living mammalian cells using two oligomerizing MV (measles virus) transmembrane glycoproteins, the H (haemagglutinin) and the F (fusion) glycoproteins, which mediate MV entry into permissive cells. BiFC (bimolecular fluorescence complementation) has been used to examine the dimerization of these viral glycoproteins. The H glycoprotein is a type II membrane-receptor-binding homodimeric glycoprotein and the F glycoprotein is a type I disulfide-linked membrane glycoprotein which homotrimerizes. Together they co-operate to allow the enveloped virus to enter a cell by fusing the viral and cellular membranes. We generated a pair of chimaeric H glycoproteins linked to complementary fragments of EGFP (enhanced green fluorescent protein)--haptoEGFPs--which, on association, generate fluorescence. Homodimerization of H glycoproteins specifically drives this association, leading to the generation of a fluorescent signal in the ER (endoplasmic reticulum), the Golgi and at the plasma membrane. Similarly, the generation of a pair of corresponding F glycoprotein-haptoEGFP chimaeras also produced a comparable fluorescent signal. Co-expression of H and F glycoprotein chimaeras linked to complementary haptoEGFPs led to the formation of fluorescent fusion complexes at the cell surface which retained their biological activity as evidenced by cell-to-cell fusion.  相似文献   

17.
18.
Structural genomics of membrane proteins   总被引:2,自引:0,他引:2  
Improvements in the fields of membrane-protein molecular biology and biochemistry, technical advances in structural data collection and processing, and the availability of numerous sequenced genomes have paved the way for membrane-protein structural genomics efforts. There has been significant recent progress, but various issues essential for high-throughput membrane-protein structure determination remain to be resolved.  相似文献   

19.
Binding of specific lipids to large, polytopic membrane proteins is well described, and it is clear that such lipids are crucial for protein stability and activity. In contrast, binding of defined lipid species to individual transmembrane helices and regulation of transmembrane helix monomer–oligomer equilibria by binding of distinct lipids is a concept, which has emerged only lately. Lipids bind to single-span membrane proteins, both in the juxta-membrane region as well as in the hydrophobic membrane core. While some interactions counteract transmembrane helix oligomerization, in other cases lipid binding appears to enhance oligomerization. As reversible oligomerization is involved in activation of many membrane proteins, binding of defined lipids to single-span transmembrane proteins might be a mechanism to regulate and/or fine-tune the protein activity. But how could lipid binding trigger the activity of a protein? How can binding of a single lipid molecule to a transmembrane helix affect the structure of a transmembrane helix oligomer, and consequently its signaling state? These questions are discussed in the present article based on recent results obtained with simple, single-span transmembrane proteins. This article is part of a Special Issue entitled: Lipid–protein interactions.  相似文献   

20.
Pore-forming toxins (PFTs) are proteins that are secreted as soluble molecules and are inserted into membranes to form oligomeric transmembrane pores. In this paper, we report the crystal structure of Fragaceatoxin C (FraC), a PFT isolated from the sea anemone Actinia fragacea, at 1.8?? resolution. It consists of a crown-shaped nonamer with an external diameter of about 11.0?nm and an internal diameter of approximately 5.0?nm. Cryoelectron microscopy studies of FraC in lipid bilayers reveal the pore structure that traverses the membrane. The shape and dimensions of the crystallographic oligomer are fully consistent with the membrane pore. The FraC structure provides insight into the interactions governing the assembly process and suggests the structural changes that allow for membrane insertion. We propose a nonameric pore model that spans the membrane by forming a lipid-free α-helical bundle pore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号