首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J H Dinsmore  R D Sloboda 《Cell》1989,57(1):127-134
Previously, we described a 62 kd protein that is a component of the isolated sea urchin mitotic apparatus. This protein is a substrate for an endogenous, calcium/calmodulin-dependent protein kinase also associated with the mitotic apparatus. Phosphorylation of the 62 kd protein directly correlates with the depolymerization of microtubules in isolated mitotic apparatuses. Here we report a test of the function of the 62 kd protein in vivo. Double labeling studies using a monoclonal antibody to tubulin and an affinity purified antibody specific for the 62 kd protein reveal that the 62 kd protein co-localizes with mitotic apparatus microtubules. When affinity purified antibodies to the 62 kd protein were microinjected into dividing sea urchin embryos, mitosis was blocked in a stage-specific manner. The results are discussed with respect to the role of the 62 kd protein in the metaphase-anaphase transition.  相似文献   

2.
When intact synaptosomes were incubated with [gamma-32P]ATP, maximal protein phosphorylation was attained 2 min after the start of incubation. Protein phosphorylation under basal conditions was dependent on external Ca2+, and the dominant peak of phosphorylation was a 50-kd protein. Incubation of intact synaptosomes in the presence of 3-6 mM 4-aminopyridine (4-AP) caused a markedly enhanced phosphorylation of high molecular weight proteins of 90, 100, 130, and 180 kd, with no increase in the 50 or 38 kd proteins. This effect of 4-AP was dependent on external calcium ions in the incubation medium. The 4-AP effect on the high molecular weight proteins was also found in synaptosomal plasma membranes isolated from the synaptosomes. Tetraethylammonium (TEA) ions did not produce this enhancement of phosphorylation.  相似文献   

3.
Birefringence of the mitotic apparatus (MA) and its change during mitosis in sea urchin eggs were quantitatively determined using the birefringence detection apparatus reported in the preceding paper (Hiramoto el al., 1981, J. Cell Biol. 89:115-120). The birefringence and the form of the MA are represented by five parameters: peak retardation (delta p), through retardation (delta t), interpolar distance (D1), the distance (D2) between chromosome groups moving toward poles, and the distance (D3) between two retardation peaks. Distributions of birefringence retardation and the coefficient of birefringence in the spindle were quantitatively determined in MAs isolated during metaphase and anaphase. The distribution of microtubules (MTs) contained in the spindle is attributable to the form birefringence caused by regularly arranged MTs. The distribution coincided fairly well with the distribution of MTs in isolated MAs determined by electron microscopy. Under the same assumption, the distribution of MTS in the spindle in living cells during mitosis was determined. The results show that the distribution of MTs and the total amount of polymerized tubulin (MTs) in the spindle change during mitosis, suggesting the assembly and disassembly of MTs as well as the dislocation of MTs during mitosis.  相似文献   

4.
Mitotic apparatuses (MAs) isolated from sea urchin eggs contained clusters of granular material in their centrospheres. After cold treatment and mild agitation, the MA fraction formed asters when combined with tubulin. Many microtubules grew from isolated centrospheres most of which were covered with astral residues. Homogenization of the isolated MA fraction dispersed the centrospheres which broke into fragments or into aggregates of small granules that formed small asters when tubulin was added. Electron microscopy showed that more than ten microtubules were nucleated from a granular aggregate composed of several approximately 90-nm granules. The aster-forming activity was lost with time when the MAs were kept at 0 degree C. Only glycerol stabilized this activity. The aster-forming activity also was heat labile and trypsin sensitive, but it was resistant to RNase treatment. When the dispersed MAs were extracted with a buffer solution of high ionic strength, aster-forming activity was recovered only in the extract; that is, when the extract had been dialyzed against a solution of low ionic strength, the fine granules self assembled and retained their aster-forming ability.  相似文献   

5.
A protein of 62 kD is a substrate of a calcium/calmodulin-dependent protein kinase, and both proteins copurify with isolated mitotic apparatuses (Dinsmore, J. H., and R. D. Sloboda. 1988. Cell. 53:769-780). Phosphorylation of the 62-kD protein increases after fertilization; maximum incorporation of phosphate occurs during late metaphase and anaphase and correlates directly with microtubule disassembly as determined by in vitro experiments with isolated mitotic apparatuses. Because 62-kD protein phosphorylation occurs in a pattern similar to the accumulation of the mitotic cyclin proteins, experiments were performed to determine the relationship between cyclin and the 62-kD protein. Continuous labeling of marine embryos with [35S]methionine, as well as immunoblots of marine embryo proteins using specific antibodies, were used to identify both cyclin and the 62-kD protein. These results clearly demonstrate that the 62-kD protein is distinct from cyclin and, unlike cyclin, is a constant member of the cellular protein pool during the first two cell cycles in sea urchin and surf clam embryos. Similar results were obtained using immunofluorescence microscopy of intact eggs and embryos. In addition, immunogold electron microscopy reveals that the 62-kD protein associates with the microtubules of the mitotic apparatus in dividing cells. Interestingly, the protein changes its subcellular distribution with respect to microtubules during the cell cycle. Specifically, during mitosis the 62-kD protein associates with the mitotic apparatus; before nuclear envelope breakdown, however, the 62-kD protein is confined to the nucleus. After anaphase, the 62-kD protein returns to the nucleus, where it resides until nuclear envelope disassembly of the next cell cycle.  相似文献   

6.
Mitotic apparatuses (MAs) isolated from sea urchin metaphase eggs were chilled on ice to depolymerize microtubules, homogenized, and incubated with tubulin. This caused formation of many small asters with microtubules focusing on granules which were probably fragments of the centrosome. The aster-forming protein components of the granules in the homogenized MAs were solubilized in 0.5 M KCl containing 50% glycerol. After dialysis against low-ionic-strength buffer solution, proteins congregated to form granular assembly capable of initiating aster formation. Phosphocellulose column chromatography enabled the separation of the aster-forming protein fraction which contained a 51,000 molecular weight protein (51-kd protein) as a major component. The protein fraction possessing the aster-forming activity was also prepared from methaphase whole egg homogenate, and the elution profile of the 51-kd protein on phosphocellulose column also coincided with that of the aster-forming activity. The granular assembly reconstituted from the phosphocellulose fraction formed asters whose microtubules show the same growth rate and length distribution as those of asters reconstructed from the granules in the homogenized MAs. Anti-51-kd protein antibody that was raised in rabbit and affinity-purified stained the center of asters which were reconstructed either from the granules in the homogenized MAs or from the granular assembly reconstituted from the phosphocellulose fraction. These results suggest that the 51-kd protein is a component in the aster-forming activity of the centrosomal component in vitro.  相似文献   

7.
Evidence has suggested that cyclic AMP, acting through activation of the type II cyclic AMP-dependent protein kinase, may play a role in the regulation of interphase and mitotic microtubules. In order to examine the potential role of the type II cAMP-dependent kinase during mitosis, dividing PtK1 cells were microinjected with two specific inhibitors of the catalytic activity of the type II kinase. These inhibitors were a specific protein inhibitor of cAMP-dependent protein kinase (PKI) and an affinity-purified polyclonal antiserum (anti-C) directed against the catalytic subunit of the kinase. Both have been shown previously to inhibit kinase activity in vitro. Microinjection of PKI during early- to mid-prophase significantly delayed the progression of the cells through mitosis, with the greatest delay occurring in metaphase. PKI injected during prometaphase also delayed progression through mitosis but to a lesser extent. Microinjection of anti-C during early- to mid-prophase also caused a significant delay in the completion of mitosis, with many cells becoming "hung up" in prometaphase. Anti-C injected during prometaphase had little effect on subsequent progression through mitosis. Microinjection of either anti-C or PKI during metaphase had no discernible effect. No effect on anaphase movement of chromosomes was observed with any treatment. These results provide further evidence that cAMP-dependent phosphorylation may be involved in the regulation of mitosis, although whether it acts directly through regulation of mitotic spindle microtubules is unclear.  相似文献   

8.
Protein phosphorylation has been investigated in non-photosynthetic plastids of pea roots. Intact and lysed preparations of plastids were incubated with [gamma-(32)P]ATP and three stromal proteins of sizes 41, 58 and 62 kDa were phosphorylated on a serine residue. No other proteins were significantly labelled under the conditions used. The 62 kDa protein is probably phosphoglucomutase and represents a phosphoenzyme catalytic intermediate. The protein kinase(s) and phosphatase(s) acting on the other proteins were not sensitive to exogenous calcium but were sensitive to magnesium. The protein phosphatase which acts on the 41 kDa protein is possibly of type 2C, whereas that acting on the 58 kDa phosphoprotein did not fall into any class defined by mammalian systems. Metabolism of exogenous glucose 6-phosphate by the oxidative pentose phosphate pathway in intact plastids abolished the phosphorylation of the 58 kDa protein. Dihydroxyacetone phosphate, phosphoenolpyruvate and 3-phosphoglycerate also inhibited phosphorylation of the 58 kDa protein and had a time-dependent effect on the phosphorylation of the 41 kDa protein. The significance of these results in relation to a possible role for protein phosphorylation in these plastids is considered.  相似文献   

9.
The effects of cyclic AMP on the phosphorylation of different acidic proteins of rat liver nuclei were examined in vivo and in vitro. N6,O2′-dibutyryl cyclic AMP selectively stimulated in vivo phosphorylation of specific nuclear proteins more than twofold within 15 min after injection. Cyclic AMP caused only a small stimulation of phosphorylation of acidic proteins in isolated nuclei but the stimulation was selective for specific proteins. When isolated nuclear acidic proteins were incubated with a soluble cyclic AMP-dependent protein kinase, the cyclic nucleotide stimulated total phosphorylation about 1.7-fold. These results support the view that the regulatory effects of cyclic AMP may involve phosphorylation of acidic proteins associated with DNA in the chromatin.  相似文献   

10.
Mass isolation of pure mitotic apparatuses (MAs) from sea urchin eggs was achieved using a glycerol/Mg2+/Triton X-100 isolation medium. The Mg ions stabilized the fibrous structures of the spindle and asters, while Triton X-100 favored dispersion of cell membranes. The MAs were stable for at least 1 day at 20 °C as indicated by phase contrast microscopy. The MAs also showed stable birefringence and solubility properties over a period of several hours. Only centrospheres remained intact in 0.4 M KCl-containing isolation medium. The 0.4 M KCl extract contained tubulin as one of its major components. Transfer of isolated MAs to an Mg-free medium caused the otherwise stable MA birefringence to decay upon addition of sulfhydryl-blocking reagents or Ca ions that depolymerize MA microtubules. Furthermore, when Mg ions were omitted from the isolation medium, only unstable MAs were obtained. This method seems to be of great advantage in the preparation of pure MAs in large quantity.  相似文献   

11.
Tyrosine hydroxylase is activated in the adrenal gland in vivo after acute stresses, such as decapitation or electroconvulsive shock. In nonstressed animals that are anesthetized with pentobarbital prior to surgical removal of the adrenals, approximately 5-10% of the enzyme molecules are in the activated form, whereas in stressed animals, approximately 40-50% of the enzyme molecules are in the activated form. In the present study, we have tested the hypothesis that the stress-induced activation of the adrenal enzyme in vivo is due to the phosphorylation of the enzyme by cyclic AMP-dependent protein kinase. Soluble adrenal tyrosine hydroxylase prepared from either stressed or nonstressed rats is incubated in vitro with [gamma-32P]ATP and purified cyclic AMP-dependent protein kinase under optimal conditions for the phosphorylation of the enzyme. Using this assay, we have measured the number of vacant sites remaining on the enzyme, which are available for in vitro phosphorylation by cyclic AMP-dependent protein kinase. These studies suggest that the initial, in vitro rate of phosphorylation of tyrosine hydroxylase isolated from stressed rats is less than the initial rate of phosphorylation of the enzyme isolated from nonstressed rats. However, there is no significant difference in the final level of 32P phosphorylation of tyrosine hydroxylase isolated from either stressed or nonstressed rats. We conclude that, even though phosphorylation of tyrosine hydroxylase by cyclic AMP-dependent protein kinase leads to the activation of the enzyme under in vitro conditions, this mechanism cannot account for the activation of the enzyme in vivo in the adrenal gland following decapitation.  相似文献   

12.
R L Margolis  C T Rauch  F Pirollet    D Job 《The EMBO journal》1990,9(12):4095-4102
STOP (Stable Tubule Only Polypeptide) is a neuronal microtubule associated protein of 145 kd that stabilizes microtubules indefinitely to in vitro disassembly induced by cold temperature, millimolar calcium or by drugs. We have produced monoclonal antibodies against STOP. Using an antibody affinity column, we have produced a homogeneously pure 145 kd protein which has STOP activity as defined by its ability to induce cold stability and resistance to dilution induced disassembly in microtubules in vitro. Western blot analysis, using a specific monoclonal antibody, demonstrates that STOP recycles quantitatively with microtubules through three assembly cycles in vitro. Immunofluorescence analysis demonstrates that STOP is specifically associated with microtubules of mitotic spindles in neuronal cells. Further, and most interestingly, STOP at physiological temperature appears to be preferentially distributed on the distinct microtubule subpopulations that display cold stability; kinetochore-to-pole microtubules and telophase midbody microtubules. The observed distribution suggests that STOP induces the observed cold stability of these microtubule subpopulations in vivo.  相似文献   

13.
Acetyl-CoA carboxylase (EC 6.4.1.2) has been isolated from rat liver by an avidin-affinity chromatography technique. This preparation has a specific activity of 1.17 +/- 0.06 U/mg and appears as a major (240,000 dalton) and minor (140,000 dalton) band on SDS-polyacrylamide gel electrophoresis. Enzyme isolated by this technique can incorporate 1.09 +/- 0.07 mol phosphate per mol enzyme (Mr = 480,000) when incubated with the catalytic subunit of the cyclic AMP-dependent protein kinase at 30 degrees C for 1 h. The associated activity loss under these conditions is 57 +/- 4.0% when the enzyme is assayed in the presence of 2.0 mM citrate. Less inactivation is observed when the enzyme is assayed in the presence of 5.0 mM citrate. The specific protein inhibitor of the cyclic AMP-dependent protein kinase blocks both the protein kinase stimulated phosphorylation and inactivation of acetyl-CoA carboxylase. The phosphorylated, inactivated rat liver carboxylase can be partially dephosphorylated and reactivated by incubation with a partially purified protein phosphatase. Preparations of acetyl-CoA carboxylase also contained an endogenous protein kinase(s) which incorporated 0.26 +/- 0.11 mol phosphate per mol carboxylase (Mr = 480,000) accompanied by a 26 +/- 9% decline in activity. We have additionally confirmed that the rat mammary gland enzyme, also isolated by avidin affinity chromatography, can be both phosphorylated and inactivated upon incubation with the cyclic AMP-dependent kinase.  相似文献   

14.
Cyclic nucleotides and cyclic nucleotide-dependent protein kinases have been implicated in the regulation of cell motility and division, processes that depend on the cell cytoskeleton. To determine whether cyclic nucleotides or their kinases are physically associated with the cytoskeleton during cell division, fluorescently labeled antibodies directed against cyclic AMP, cyclic GMP, and the cyclic nucleotide- dpendent protein kinases were used to localize these molecules in mitotic PtK1 cells. Both the cyclic GMP-dependent protein kinase and the type II regulatory subunit of the cyclic AMP-dependent protein kinase were localized on the mitotic spindle. Throughout mitosis, their distribution closely resembled that of tubulin. Antibodies to cyclic AMP, cyclic GMP, and the type I regulatory and catalytic subunits of the cyclic AMP-dependent protein kinase did not label the mitotic apparatus. The association between specific components of the cyclic neucleotide system and the mitotic spindle suggests that cyclic nucleotide-dependent phosphorylation of spindle proteins, such as those of microtubules, may play a fundamental role in the regulation of spindle assembly and chromosome motion.  相似文献   

15.
An oscillatory mode for microtubule assembly.   总被引:5,自引:1,他引:4       下载免费PDF全文
F Pirollet  D Job  R L Margolis    J R Garel 《The EMBO journal》1987,6(11):3247-3252
Depending upon the conditions under which polymerization takes place, pure tubulin can assemble into microtubules following either the usual monotonic kinetics or a more complex oscillatory mechanism. When present, these oscillations involve large cyclic changes in the extent of polymer formed before a steady-state is reached. Analysis of the microtubules formed at different times shows that these oscillations involve marked redistribution in both the length and number of microtubules. No significant difference is found between two populations of microtubules corresponding to the same level of assembly, one for which the extent of polymerization will remain stable with time and one for which it will decrease by as much as 90% in the next oscillation. The amplitude of these oscillations is sensitive to changes in the concentrations of protein, nucleotide (GTP, GDP or GMPpNp), magnesium ion or GTP regenerating system. A complete shift from an oscillatory to a monotonic polymerization can be induced by a minor increase in the concentration of free nucleotide, GTP or GDP.  相似文献   

16.
Calcium channels in the heart play a major role in cardiac function. These channels are modulated in a variety of ways, including protein phosphorylation. Cyclic AMP-mediated phosphorylation is the best understood phosphorylation mechanism which regulates calcium influx into cardiac cells. Binding of an agonist (e.g., a catecholamine) to the appropriate receptor stimulates production of cyclic AMP by adenylate cyclase. The cyclic AMP may subsequently bind to and activate a cyclic AMP-dependent protein kinase, which then can phosphorylate a number of substrates, including the calcium channel (or a closely-associated regulatory protein). This results in stimulation of the calcium channels, greater calcium influx, and increased contractility. The cyclic AMP system is not the only protein kinase system in the heart. Thus, the possibility exists that other protein kinases may also regulate the calcium channels and, hence, cardiac function. Recent evidence suggests that cyclic GMP-mediated phosphorylation may play a role opposite to cyclic AMP-mediated phosphorylation, i.e., inhibition of the calcium current rather than stimulation. Other recent evidence also suggests that a calcium/calmodulin-dependent protein kinase and calcium/phospholipid-dependent protein kinase (protein kinase C) may also regulate the myocardial calcium channels. Thus, protein phosphorylation may be a general mechanism whereby calcium channels and cardiac function are modulated under a variety of conditions.  相似文献   

17.
The cellular protein calmodulin activates, in the presence of calcium ions, several functions and enzymes in eukaryotic cells. Calmodulin binds calcium and magnesium, and various calcium-calmodulin complexes bind to and activate both enzymes that regulate cellular calcium or cyclic nucleotides and specific protein kinases that regulate target enzymes by ATP-dependent phosphorylation. General principles of calmodulin activation are reviewed. The calmodulin-dependent enzymes show complicated activation kinetics and, in particular cases, the transitions between non-activated and activated enzyme states exhibit time-lag and hysteretic behaviour.  相似文献   

18.
Induction of tyrosine phosphorylation occurs as an early and specific event in keratinocyte differentiation. A set of tyrosine-phosphorylated substrates which transduce mitogenic signals by tyrosine kinases has previously been identified. We show here that of these substrates, the Ras GTPase-activating protein, GAP, is specifically affected during calcium-induced keratinocyte differentiation. As early as 10 min after calcium addition to cultured primary mouse keratinocytes, GAP associates with tyrosine-phosphorylated proteins and translocates to the membrane. In addition, a GAP-associated protein of approximately 62 kDa (p62) becomes rapidly and heavily tyrosine phosphorylated in both membrane and cytosolic fractions. This protein corresponds to the major tyrosine-phosphorylated protein that is induced in differentiating keratinocytes as early as 5 min after calcium addition. p62 phosphorylation was not observed after exposure of these cells to epidermal growth factor, phorbol ester, or transforming growth factor beta. In contrast, PLC gamma and P13K were tyrosine phosphorylated after epidermal growth factor, but not calcium, stimulation. Thus, changes of Ras GAP and an associated p62 protein occur as early and specific events in keratinocyte differentiation and appear to involve a calcium-induced tyrosine kinase.  相似文献   

19.
Previous work has shown that incubation of hippocampal slices in medium without added calcium markedly attenuates the capacity of vasoactive intestinal peptide (VIP) to elevate cyclic AMP levels. The present studies examined the mechanism that confers calcium dependence on VIP stimulation of cyclic AMP accumulation in hippocampal slices. Calcium dependence was apparent immediately on slice preparation and was reversible only if calcium ions were added back very early during slice incubation (within 5 min). The cyclic AMP response to VIP was not abolished by preincubating slices in 100 microM adenosine, suggesting that calcium-dependent, VIP-induced release of adenosine does not mediate VIP elevation of cyclic AMP. VIP-stimulated cyclic AMP accumulation was not decreased by agents that block calcium influx (verapamil, nifedipine, magnesium ions), or by calmodulin antagonists (trifluoperazine, calmidozolium). In fact both verapamil (100 microM) and magnesium (14 mM) augmented VIP stimulation of cyclic AMP generation. Incubation of slices with the phosphodiesterase inhibitor 1-methyl-3-isobutylxanthine (MIX) did not affect VIP activation of cyclic AMP accumulation if slices were incubated without added calcium, but MIX did enhance VIP elevation of cyclic AMP content in slices incubated with calcium. Thus calcium dependence of the cyclic AMP response to VIP in hippocampal slices is unlikely to result from VIP-dependent calcium influx, from interactions with calmodulin, or from calcium-inhibited phosphodiesterase(s).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
1. The levels of protein kinase activity and zymogen granule phosphorylation were studied in the adult rat during stimulus-coupled secretion in vitro. 2. The specific activity of protein kinase associated with intact zymogen granules was 11 pmol [32P]phosphate transferred to histone per min per mg protein. Most of this activity was recovered in purified granule membranes. 2. The addition of 10(-6) M cyclic AMP to a mixture of zymogen granules and the postmicrosomal supernatant resulted in a 5-fold increase in protein kinase activity associated with zymogen granules. The adsorbed activity was eluted from granules by 0.15 M NaCl. Cyclic GMP did not promote protein kinase binding to isolated granules. 4. Incubation of tissues with carbachol (10(-5) M), pancreozymin (0.1 unit/ml), caerulein (10(-8) M) or dibutyryl cyclic AMP (2.10(-4) M) between 2.5 and 60 min did not increase the levels of protein kinase activity in isolated zymogen granules above control values. 5. Protein phosphorylation of zymogen granule membranes and granule content was not detectable in tissues incubated with carbachol, pancreozymin-C-octapeptide, or caerulein. 6. These results suggest that neither the phosphorylation of zymogen granule membrane protein nor the adsorption of protein kinase activity to zymogen granules is an obligatory step in secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号