首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methods for on-chip protein analysis   总被引:7,自引:0,他引:7  
The unambiguous identification of peptides/proteins is crucial for the definition of the proteome. Using ProteinChip Array technology also known as surface-enhanced laser desorption/ionization-time of flight mass spectrometry (SELDI-TOF MS), we developed experimental protocols and probed test conditions required for the protein identification on ProteinChip surfaces. We were able to directly digest peptides/proteins on-chip surfaces by specific proteases, such as trypsin, and to obtain the peptide mass fingerprint of the sample under investigation by its direct analysis on a simple laser desorption/ionization mass spectrometer. Furthermore, tandem mass spectrometry was performed on several of the resulting tryptic peptides by using collision quadrupole time of flight (Qq-TOF) MS/MS via the ProteinChip interface, thus allowing the unambiguous identification of the protein(s) within the sample. In addition, we were able to identify the C-terminal sequence of peptides by their digestion with carboxypeptidase Y directly on ProteinChip surfaces coupled with SELDI-TOF MS analysis of the resulting peptide mass ladders employing the instrument's protein ladder sequence software. Moreover, the removal of up to nine amino acid residues from the C-terminal end of a peptide extends the functional range of Qq-TOF MS/MS sequence determination to over 3000 m/z. The utility of these procedures for the proteome exploration are discussed.  相似文献   

2.
A rapid method to screen and identify unknown bound proteins to specific nucleic acid probes anchored on ProteinChip array surfaces from crude biological samples has been developed in this paper. It was demonstrated with screening specific binding proteins from LPS-stimulated mouse 70Z/3 pre-B cell nuclear extracts by direct coupling of thioaptamer XBY-S2 to the pre-activated ProteinChip array surfaces. With pre-fractionation of crude nuclear extracts by ion exchange method, specific "on-chip" captured proteins have been obtained that were pure enough to do "on-chip" digestion and the subsequent identification of the "on-chip" bound proteins by microsequencing of the trypsin digested peptide fragments through tandem MS. Five mouse heterogeneous nuclear ribonucleoproteins (hnRNPs) A1, A2/B1, A3, A/B, and D0 were identified. To verify those bound hnRNPs, a novel thioaptamer/antibody sandwich assay provides highly sensitive and selective identification of proteins on ProteinChip arrays.  相似文献   

3.
The monolayer of fourth-generation poly(amidoamine) dendrimers was adopted to construct the immunoaffinity surface of an antibody layer. The antibody layer as a bait on the dendrimer monolayer was found to result in high binding capacity of antigenic proteins and a reliable detection. The affinity-captured protein at the immunosensing surface was subjected to direct on-chip tryptic digestion, and the resulting proteolytic peptides were analyzed by using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The performance of the on-chip digestion procedure was investigated with respect to the ratio of trypsin to protein, digestion time, composition of a reaction buffer, and the amount of affinity-captured protein on a surface. Addition of a water-miscible organic solvent to a reaction buffer had no significant effect on the digestion efficiency under the optimized digestion conditions. The on-chip digestion method identified the affinity-captured bovine serum albumin (BSA), lysozyme, and ferritin at the level of around 100 fmol. Interestingly, the detected number of peptide hits through the on-chip digestion was almost similar regardless of the amount of captured protein ranging from low- to high-femtomole levels, whereas the efficiency of in-solution digestion decreased significantly as the amount of protein decreased to low-femtomole levels. The structural alignment of the peptide fragments from on-chip-digested BSA revealed that the limited exterior of the captured protein is subjected to attack by trypsin. The established detection procedures enabled the identification of BSA in the biological mixtures at the level of 0.1 ng/mL. The use of antibodies against the proteins involved in the metabolic pathway of L-threonine in Escherichia coli also led to discrimination of the respective target proteins from cell lysates.  相似文献   

4.
A new application of microwave technology to proteomics   总被引:4,自引:0,他引:4  
Juan HF  Chang SC  Huang HC  Chen ST 《Proteomics》2005,5(4):840-842
Two-dimensional electrophoresis (2-DE) combined with mass spectrometry has significantly improved the possibilities of large-scale identification of proteins. However, 2-DE is limited by its inability to speed up the in-gel digestion process. We have developed a new approach to speed up the protein identification process utilizing microwave technology. Proteins excised from gels are subjected to in-gel digestion with endoprotease trypsin by microwave irradiation, which rapidly produces peptide fragments. The peptide fragments were further analyzed by matrix-assisted laser desorption/ionization technique for protein identification. The efficacy of this technique for protein mapping was demonstrated by the mass spectral analyses of the peptide fragmentation of several proteins, including lysozyme, albumin, conalbumin, and ribonuclease A. The method reduced the required time for in-gel digestion of proteins from 16 hours to as little as five minutes. This new application of microwave technology to protein identification will be an important advancement in biotechnology and proteome research.  相似文献   

5.
The effect of polyamines on the digestion of proteins by serine proteases was examined. Based on the mechanism of action of serine proteases, it was anticipated that nucleophilic functionalities such as amino groups in polyamine, rather than hydroxyl ions, would react with peptide bonds during the hydrolysis process. If this were the case, polyamine might be covalently linked to the C-terminus of the product peptides during protein digestion. In order to test this hypothesis, hemoglobin was used as a model protein and was digested with trypsin in the presence of polyamine. The product peptides were separated, collected by HPLC, and analyzed by MALDI-TOF MS using post-source decay. The results showed that some peptides were indeed modified with polyamine at the C-terminus.  相似文献   

6.
Protein disulfide isomerase (PDI) has been identified in a protein extract from the venom duct of the marine snail C. amadis. In-gel tryptic digestion of a thick protein band at approximately 55 kDa yields a mixture of peptides. Analysis of tryptic fragments by MALDI-MS/MS and LC-ESI-MS/MS methods permits sequence assignment. Three tryptic fragments yield two nine residue sequences (FVQDFLDGK and EPQLGDRVR ) and an eleven residue sequence (DQESTGALAFK ). Database analysis using peptides and were consistent with the sequence of PDI and peptide appears to be derived from a co-migrating protein. In identifying proteins based on the characterization of short peptide sequences the question arises about the reliability of identification using peptide fragments. Here we have also demonstrated the minimum length of peptide fragment necessary for unambiguous protein identification using fragments obtained from the experimentally derived sequences. Sequences of length > or =7 residues provide unambiguous identification in conjunction with protein molecular mass as a filter. The length of sequence necessary for unambiguous protein identification is also established using randomly chosen tryptic fragments from a standard dataset of proteins. The results are of significance in the identification of proteins from organisms with unsequenced genomes.  相似文献   

7.
The combinations of gel electrophoresis or LC and mass spectrometry are two popular approaches for large scale protein identification. However, the throughput of both approaches is limited by the speed of the protein digestion process. Present research into fast protein enzymatic digestion has been focused mainly on known proteins, and it is unclear whether these results can be extrapolated to complex protein mixtures. In this study microwave technology was used to develop a fast protein preparation and enzymatic digestion method for protein mixtures. The protein mixtures in solution or in gel were prepared and digested by microwave-assisted protein enzymatic digestion, which rapidly produces peptide fragments. The peptide fragments were further analyzed by capillary LC and ESI-ion trap-MS or MALDI-TOF-MS. The technique was optimized using bovine serum albumin and then applied to human urinary proteins and yeast lysate. The method enabled preparation and digestion of protein mixtures in solution (human urinary proteins) or in gel (yeast lysate) in 6 or 25 min, respectively. Equivalent (in-solution) or better (in-gel) digestion efficiency was obtained using microwave-assisted protein enzymatic digestion compared with the standard overnight digestion method. This new application of microwave technology to protein mixture preparation and enzymatic digestion will hasten the application of proteomic techniques to biological and clinical research.  相似文献   

8.
A successful strategy for the identification of shell proteins is based on proteomic analyses where soluble and insoluble fractions isolated from organic shell matrix are digested with trypsin with the aim of generating peptides, which are used to identify novel shell proteins contained in databases. However, using trypsin as a sole degradative agent is limited by the enzyme's cleavage specificity and is dependent upon the occurrence of lysine and arginine in the shell protein sequence. To bypass this limitation, we investigated the ability of trifluoroacetic acid (TFA), a low-specificity chemical degradative agent, to generate clusters of analyzable peptides from organic shell matrix, suitable for database annotation. Acetic acid-insoluble fractions from Haliotis tuberculata shell were processed by trypsin followed by TFA digestion. The hydrolysates were used to annotate an expressed sequence tag library constructed from the mantle tissue of Haliotis asinina, a tropical abalone species. The characterization of sequences with repeat motifs featured in some of the shell matrix proteins benefited from TFA-induced serial cutting, which can result in peptide ladder series. Using the degradative specificities of TFA and trypsin, we were able to identify five novel shell proteins. This pilot study indicates that a mild chemical digestion of organic shell matrix combined with trypsin generates peptides suitable for proteomic analysis for better characterization of mollusc shell matrix proteins.  相似文献   

9.
Identification of proteins from the mass spectra of peptide fragments generated by proteolytic cleavage using database searching has become one of the most powerful techniques in proteome science, capable of rapid and efficient protein identification. Using computer simulation, we have studied how the application of chemical derivatisation techniques may improve the efficiency of protein identification from mass spectrometric data. These approaches enhance ion yield and lead to the promotion of specific ions and fragments, yielding additional database search information. The impact of three alternative techniques has been assessed by searching representative proteome databases for both single proteins and simple protein mixtures. For example, by reliably promoting fragmentation of singly-charged peptide ions at aspartic acid residues after homoarginine derivatisation, 82% of yeast proteins can be unambiguously identified from a single typical peptide-mass datum, with a measured mass accuracy of 50 ppm, by using the associated secondary ion data. The extra search information also provides a means to confidently identify proteins in protein mixtures where only limited data are available. Furthermore, the inclusion of limited sequence information for the peptides can compensate and exceed the search efficiency available via high accuracy searches of around 5 ppm, suggesting that this is a potentially useful approach for simple protein mixtures routinely obtained from two-dimensional gels.  相似文献   

10.
Proteolytic degradation of autoantigens is of prime importance in current biochemistry and immunology. The fundamental issue is the functional role of peptides produced in the process of change of the hydrolysis specificity during the transition from the normal to a pathologic state. In some cases identification of specific peptide fragments can be a diagnostic and prognostic criterion of the pathology progress. The subject of this work is the comparative study of degradation peculiarities of one of the major neuroantigens, myelin basic protein, by proteases activated upon the development of a pathological demyelinating process, and by proteasomes of different origin. Comparison of the specificity of the tested biocatalysts in some cases demonstrated critical changes in the set of myelin basic protein fragments capable of being presented on the major histocompatibility complex class I upon neurodegeneration, which may promote the development of autoimmune pathological processes.  相似文献   

11.
The applicability of a trypsin-based monolithic bioreactor coupled on-line with LC/MS/MS for rapid proteolytic digestion and protein identification is here described. Dilute samples are passed through the bioreactor for generation of proteolytic fragments in less than 10 min. After digestion and peptide separation, electrospray ionization tandem mass spectrometry is used to generate a peptide map and to identify proteolytic peptides by correlating their fragmentation spectra with amino acid sequences from a protein database. By digesting picomoles of proteins sufficient data from ESI and MS/MS were obtained to unambiguously identify proteins alone and in serum samples. This approach was also extended to locate mutation sites in beta-lactoglobulin A and B variants.  相似文献   

12.
The disulfide peptides from the tryptic digestion of cyanogen bromide-treated hen egg white lysozyme (HEWL) were isolated by reverse phase high performance liquid chromatography (HPLC) and identified by amino acid analysis. Three peptides containing the I-VIII, II-VII, and III-V + IV-VI disulfide bonds were obtained. The two-disulfide peptide was further digested with proline-specific endopeptidase (PCE) (EC 3.4.21.26). Amino acid analysis of digest peptides separated by HPLC showed four peptides with the IV-VI disulfide bond as well as a peptide with the III-V disulfide bond. The IV-VI peptides were produced by hydrolysis of several alanine-X bonds as well as the prolyl-cystine bond. Our studies show that alanyl peptide bonds to lysyl, seryl, and leucyl residues are susceptible to hydrolysis by PCE preparations, thus substantially extending its known specificity range. The two-disulfide peptide was also digested sequentially with thermolysin and PCE; the resulting IV-VI and III-V peptides were identified by HPLC and amino acid analysis. PCE showed substantial activity at pH 5.3 as well as at pH 8.3. The lower pH is useful in studies of proteins or peptides where base-catalyzed reactions must be limited.  相似文献   

13.
The direct linkage between folded structures of proteins and their function has increased the need for high resolution structures. In addition, there is a need for analytical methods for detecting and locating changes in the folded structures of proteins under a wide variety of conditions. The rates at which hydrogens located at peptide amide linkages undergo isotopic exchange has become the basis for an important method for detecting such structural changes. When detected by mass spectrometry, hydrogen exchange can be used to study dilute solutions of large proteins and protein complexes with very high sensitivity. To locate structural changes, labeled proteins are often digested with acid proteases to form peptides whose hydrogen/deuterium levels are determined by mass spectrometry. This approach is successful only when the protein can be digested rapidly under conditions where isotope exchange is slow. This study describes how columns packed with immobilized pepsin can be used to reduce the digestion time and to provide an effective means for separating the pepsin from the isotopically labeled fragments. These columns are part of an on-line system that facilitates both rapid digestion of low concentrations of protein and concentration of the peptides.  相似文献   

14.
In bottom-up proteomics, proteolytically derived peptides from proteins of interest are analyzed to provide sequence information for protein identification and characterization. Electron capture dissociation (ECD), which provides more random cleavages compared to "slow heating" techniques such as collisional activation, can result in greater sequence coverage for peptides and proteins. Most bottom-up proteomics approaches rely on tryptic doubly protonated peptides for generating sequence information. However, the effectiveness, in terms of peptide sequence coverage, of tryptic doubly protonated peptides in ECD remains to be characterized. Herein, we examine the ECD fragmentation behavior of 64 doubly- and 64 triply protonated peptides (i.e., a total of 128 peptide ions) from trypsin, Glu-C, and chymotrypsin digestion in a Fourier transform ion cyclotron resonance mass spectrometer. Our findings indicate that when triply protonated peptides are fragmented in ECD, independent of which proteolytic enzyme was used for protein digestion, more c- and z-type product ions are observed, and the number of complementary fragment pairs increases dramatically (44%). In addition, triply protonated peptides provide an increase (26%) in peptide sequence coverage. ECD of tryptic peptides, in both charge states, resulted in higher sequence coverage compared to chymotryptic and Glu-C digest peptides. The peptide sequence coverage we obtained in ECD of tryptic doubly protonated peptides (64%) is very similar to that reported for electron transfer dissociation of the same peptide type (63%).  相似文献   

15.
Attempts to characterize recombinant integral membrane proteins (IMPs) by mass spectrometry are frequently hindered by several factors including the detergents required for extraction and purification that interferes with analysis, poor solubility, incomplete digestion, and limited identification of the transmembrane domain-spanning peptides. The goal of this study was to examine and develop methods for purification of an IMP that are amenable to downstream digestion of the protein and peptide analysis by mass spectrometry. In this study, we have overexpressed a candidate IMP, the vesicular glutamate transporter 1 (VGLUT1) in Pichia pastoris and examined conditions for the efficient affinity purification, in-solution digestion, and analysis of the protein. Analysis of the intact purified protein without detergent was performed by MALDI-TOF mass spectrometry. The purified IMP was digested with trypsin, and the resulting peptides were identified. A method that utilizes differential solubility and ionization properties of hydrophobic and hydrophilic peptides was developed. Large hydrophobic peptides were only detected in solutions containing 50% formic acid. Ionization of hydrophilic peptides was suppressed in formic acid, but they produced a strong signal in 50% acetonitrile. Eighty-seven percent sequence coverage of the protein was obtained with only one large hydrophobic peptide that remained unidentified. The results demonstrate a simple method to purify and digest a recombinant IMP for analysis by mass spectrometry.  相似文献   

16.
Hua L  Low TY  Sze SK 《Proteomics》2006,6(2):586-591
We have developed a rapid microwave-assisted protein digestion technique based on classic acid hydrolysis reaction with 2% formic acid solution. In this mild chemical environment, proteins are hydrolyzed to peptides, which can be directly analyzed by MALDI-MS or ESI-MS without prior sample purification. Dilute formic acid cleaves proteins specifically at the C-terminal of aspartyl (Asp) residues within 10 min of exposure to microwave irradiation. By adjusting the irradiation time, we found that the extent of protein fragmentation can be controlled, as shown by the single fragmentation of myoglobin at the C-terminal of any of the Asp residues. The efficacy and simplicity of this technique for protein identification are demonstrated by the peptide mass maps of in-gel digested myoglobin and BSA, as well as proteins isolated from Escherichia coli K12 cells.  相似文献   

17.
Partial digestion of the native beta subunit of F1-ATPase from the thermophilic Bacillus strain PS3 by three different proteases produced a limited number of peptide fragments. In most cases, the peptides remained associated, and the gross structure of the beta subunit was not destroyed. Furthermore, most peptides were able to reassociate into the form of the beta subunit after denaturating urea treatment. Therefore, the cleaved sites are most likely located in water-exposed loop regions in the tertiary structure of the protein. Almost all peptides were analyzed, and 17 cleaved sites were determined. From the analysis of the distribution of cleaved sites and deletions or insertions in the multiple amino acid sequence alignment of proteins homologous to the beta subunit, locations of five loops and four candidate loops in the beta subunit are suggested. There are two large loops in the central region of the beta subunit sequence, and dicyclohexylcarbodiimide-reactive Glu190 is located in one of them. Tyr341, involved in putative catalytic ATP binding, is also found in one of the loops. Then, taking cleaved sites as a reference, two kinds of expression plasmids, each of which carried genes of two complementary peptide fragments, 1-193 and 198-473 or 1-284 and 285-473, were constructed and expressed in Escherichia coli. For each plasmid, two peptides were coexpressed, associated into a stable beta subunit form in E. coli cells, and purified without dissociation. When these beta subunits were denatured by urea and applied to polyacrylamide gel without denaturant, a protein band with the same mobility as that of the beta subunit appeared, indicating that reassociation of peptide fragments into the form of the beta subunit occurred upon removal of urea. These beta subunits retained the ability to reconstitute the alpha 3 beta 3 gamma complexes even though the efficiency of reconstitution and the recovered ATPase activities were decreased. These complexes were stable at high or low temperature, and ATPase activities were sensitive to inhibition by N3-.  相似文献   

18.
High mobility group (HMG) proteins 1 and 2 from calf thymus have been digested under structuring conditions (0.35 M NaCl, pH 7.1) with two proteases of different specificities, trypsin and V8. The two proteases give a different but restricted pattern of peptides in a time course digestion study. However, when the interactions of the peptides with DNA are studied by blotting, a closely related peptide from HMG-1 and -2 does not show any apparent binding. This peptide, from the V8 protease digestion, has been isolated by DNA-cellulose chromatography and has the amino acid composition predicted for a fragment containing the two C-terminal domains of the protein, i.e., approximately residues 74-243 for HMG-1. The same peptide shows the only interaction detectable with labelled histone H1. A separate function for the different domains of HMG proteins 1 and 2 is proposed.  相似文献   

19.
Serum gelsolin, a Ca2+-dependent protein regulating the length of actin filaments, undergoes conformational changes upon binding Ca2+. These were detected and analyzed by several approaches including ultraviolet difference spectroscopy, circular dichroism studies, analytical ultracentrifugation, thiol group titration, and limited proteolytic digestions. The effect of Ca2+ binding on the UV absorption difference spectrum and the near-UV circular dichroism spectrum was consistent with changes in the environments of tyrosine and phenylalanine residues. In the presence of Ca2+, the S0(20),w value decreased from 5.3 to 4.7. This latter result implies a transformation to a more asymmetric molecular shape. Gelsolin contained only two accessible thiol groups per mole of protein, one of which was titratable in the native protein; it was more accessible to 5,5'-dithiobis(2-nitrobenzoic acid) in the absence than in the presence of Ca2+. The limited digestion of gelsolin from serum and bovine aorta smooth muscle by two different proteases, chymotrypsin and trypsin, proceeded much faster in the presence of Ca2+ than in its absence with the production of three main fragments of about 40K, 32K, and 21K. This fragment mixture was found still able to shorten F-actin in a Ca2+-dependent manner; this severing activity was expressed by the isolated 40K peptide. Gelsolin was cross-linked to F- and G-actin by the zero-length cross-linker 1-ethyl-3-[3-(dimethylamino)propyl]-carbodiimide (EDC), generating a covalent 130K binary complex (actin1-gelsolin1) followed by a covalent 180K ternary complex (actin2-gelsolin1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
A new method was developed for generating peptide fragments for amino acid sequence analysis from polyacrylamide-gel separated proteins. This method involves in situ CNBr treatment of proteins in the polyacrylamide gel after their separation by electrophoresis. Pure CNBr peptides were recovered either by solvent extraction followed by microbore column reversed-phase HPLC or, alternatively, by a second electrophoretic separation step (SDS-PAGE) followed by electrotransfer of the peptides onto polyvinylidene difluoride (PVDF) membranes. These approaches yielded sequence data at subnanomole levels for a wide range of CNBr fragments recovered from gel-separated proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号