首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ribosomal proteins not only act as components of the translation apparatus but also regulate cell proliferation and apoptosis. A previous study reported that MRPL41 plays an important role in p53-dependent apoptosis. It also showed that MRPL41 arrests the cell cycle by stabilizing p27(Kip1) in the absence of p53. This study found that MRPL41 mediates the p21(WAF1/CIP1)-mediated G1 arrest in response to serum starvation. The cells were released from serum starvation-induced G1 arrest via the siRNA-mediated blocking of MRPL41 expression. Overall, these results suggest that MRPL41 arrests the cell cycle by increasing the p21(WAF1/CIP1) and p27(Kip1) levels under the growth inhibitory conditions.  相似文献   

2.
Sphingolipids such as ceramide are important mediators of apoptosis and growth arrest triggered by ligands such as tumor necrosis factor and Fas-L binding to their receptors. When LM (expressing p53) and LME6 (lacking p53) cells were exposed to the genotoxin N-methyl-N-nitro-N-nitrosoguanidine (MNNG), both cell lines underwent cytolysis in a very similar manner, suggesting the presence of a p53-independent apoptotic response to this genotoxic stress. To determine whether sphingolipids such as ceramide might serve as mediators in this system, the responses of these cells to exogenous sphingolipids as well as their changes in endogenous sphingolipid levels after DNA damage were examined. Treatment with exogenous C2-ceramide and sphingosine led to cell death in both LM and LME6, and treatment of the LME6 cells with MNNG resulted in a transient increase in intracellular ceramide of approximately 50% over a period of 3 h. Finally, treatment with the de novo inhibitor of ceramide synthesis ISP-1 protected LME6 cells from MNNG-triggered cell death. This MNNG-triggered induction of ceramide was not observed in the p53-expressing LM cells, suggesting that it may be down-regulated by p53. Although ceramide-mediated cell death can proceed in the absence of p53, exogenously added C2-ceramide increased the cellular p53 level in LM cells, suggesting that the two pathways do interact.  相似文献   

3.
We previously reported that the suppression of SIRT2, an NAD + -dependent protein deacetylases, induces p53 accumulation via degradation of p300 and the subsequent MDM2 degradation, eventually leading to apoptosis in HeLa cells. The present study identified a novel pathway of p53 accumulation by SIRT2 suppression in HCT116(p53+/+) cells in which SIRT2 suppression led to escape from mitotic cell death caused by spindle assembly checkpoint activation induced by microtubule inhibitors such as nocodazole but not apoptosis or G1 or G2 arrest. We found that SIRT2 interacts with P/CAF, a histone acetyltransferase, which also acts as a ubiquitin ligase against MDM2. SIRT2 suppression led to an increase of P/CAF acetylation and its stabilization followed by a decrease in MDM2 and activation of the p53-p21 pathway. Depression of mitotic cell death in HCT116(p53+/+) cells with SIRT2 suppression was released by suppression of P/CAF or p21. Thus, the P/CAF-MDM2-p53-p21 axis enables the escape from mitotic cell death and confers resistance to nocodazole in HCT116(p53+/+) cells with SIRT2 suppression. As SIRT2 has attracted attention as a potential target for cancer therapeutics for p53 regulation, the present study provides a molecular basis for the efficacy of SIRT2 for future cancer therapy based on p53 regulation. These findings also suggest an undesirable function of the SIRT2 suppression associated with activation of the p53-p21 pathway in the suppression of mitotic cell death caused by spindle assembly checkpoint activation.  相似文献   

4.
5.
p53-mediated cell death: relationship to cell cycle control.   总被引:35,自引:8,他引:27       下载免费PDF全文
M1 clone S6 myeloid leukemic cells do not express detectable p53 protein. When stably transfected with a temperature-sensitive mutant of p53, these cells undergo rapid cell death upon induction of wild-type (wt) p53 activity at the permissive temperature. This process has features of apoptosis. In a number of other cell systems, wt p53 activation has been shown to induce a growth arrest. Yet, wt 53 fails to induce a measurable growth arrest in M1 cells, and cell cycle progression proceeds while viability is being lost. There exists, however, a relationship between the cell cycle and p53-mediated death, and cells in G1 appear to be preferentially susceptible to the death-inducing activity of wt p53. In addition, p53-mediated M1 cell death can be inhibited by interleukin-6. The effect of the cytokine is specific to p53-mediated death, since apoptosis elicited by serum deprivation is refractory to interleukin-6. Our data imply that p53-mediated cell death is not dependent on the induction of a growth arrest but rather may result from mutually incompatible growth-regulatory signals.  相似文献   

6.
The tumor suppressor gene p53 regulates apoptotic cell death and the cell cycle. In this study, we investigated the role of p53 in nitric oxide (NO)-induced apoptosis in vascular smooth muscle cells (VSMCs). We found that the NO donor S-nitroso-N-acetylpenicillamine (SNAP) increased apoptotic cell death in p53-deficient VSMCs compared with wild-type cells. The heme oxygenase (HO) inhibitor tin protoporphyrin IX reduced the resistance of wild-type VSMCs to SNAP-induced cell death. SNAP promoted HO-1 expression in both cell types. HO-2 protein was increased only in wild-type VSMCs following SNAP treatment; however, similar levels of HO-2 mRNA were detected in both cell types. SNAP significantly increased the levels of non-heme-iron and dinitrosyl iron-sulfur clusters in wild-type VSMCs compared with p53-deficient VSMCs. Moreover, pretreatment with FeSO4 and the carbon monoxide donor CORM-2, but not biliverdin, significantly protected p53-deficient cells from SNAP-induced cell death compared with normal cells. These results suggest that wild-type VSMCs are more resistant to NO-mediated apoptosis than p53-deficient VSMCs through p53-dependent up-regulation of HO-2.  相似文献   

7.
The non-Aβ component of Alzheimer's disease (AD) amyloid (NAC) is produced from the precursor protein NACP/α-synuclein (ASN) by till now unknown mechanism. Previous study showed that like ASN, NAC peptide induced oxidative/nitrosative stress and apoptosis. Our present study focused on the mechanisms of PC12 cells death evoked by NAC peptide, with particular consideration on the role of p53 protein. On the basis of molecular and transmission electron microscopic (TEM) analysis it was found that exogenous NAC peptide (10 μM) caused mitochondria dysfunction, enhanced free radical generation, and induced both apoptotic and autophagic cell death. Morphological and immunocytochemical evidence from TEM showed marked changes in expression and in translocation of proapoptotic protein Bax. We also observed time-dependent enhancement of Tp53 gene expression after NAC treatment. Free radicals scavenger N-tert-butyl-alpha-phenylnitrone (PBN, 1 mM) and p53 inhibitor (α-Pifithrin, 20 μM) significantly protected PC12 cells against NAC peptide-evoked cell death. In addition, exposure to NAC peptide resulted in higher expression of cyclin-dependent kinase 5 (Cdk5), one of the enzymes responsible for p53 phosphorylation and activation. Concomitantly, we observed the increase of expression of Cdk5r1 and Cdk5r2 genes, coding p35 and p39 peptides that are essential regulators of Cdk5 activity. Moreover, the specific Cdk5 inhibitor (BML-259, 10 μM) protected large population of cells against NAC-evoked cell death. Our findings indicate that NAC peptide exerts its toxic effect by activation of p53/Cdk5 and Bax-dependent apoptotic signaling pathway.  相似文献   

8.
S D Conzen  C A Snay    C N Cole 《Journal of virology》1997,71(6):4536-4543
The ability of DNA tumor virus proteins to trigger apoptosis in mammalian cells is well established. For example, transgenic expression of a simian virus 40 (SV40) T-antigen N-terminal fragment (N-termTag) is known to induce apoptosis in choroid plexus epithelial cells. SV40 T-antigen-induced apoptosis has generally been considered to be a p53-dependent event because cell death in the brain is greatly diminished in a p53-/- background strain and is abrogated by expression of wild-type (p53-binding) SV40 T antigen. We now show that while N-termTags triggered apoptosis in rat embryo fibroblasts cultured in low serum, expression of full-length T antigens unable to bind p53 [mut(p53-)Tags] protected against apoptosis without causing transformation. One domain essential for blocking apoptosis by T antigen was mapped to amino acids 525 to 541. This domain has >60% homology with a domain of adenovirus type 5 E1B 19K required to prevent E1A-induced apoptosis. In the context of both wild-type T antigen and mut(p53-)Tags, mutation of two conserved amino acids in this region eliminated T antigen's antiapoptotic activity in REF-52 cells. These data suggest that SV40 T antigen contains a novel functional domain involved in preventing apoptosis independently of inactivation of p53.  相似文献   

9.
Mutations of the retinoblastoma tumor suppressor, pRb, or its cyclin-cyclin-dependent kinase (CDK) regulatory kinases or CDK inhibitors, allows unrestrained E2F activity, leading to unregulated cell cycle progression. However, overexpression of E2F-1 also sensitizes cells to apoptosis, suggesting that targeting this pathway may be of therapeutic benefit. Enforced expression of E2F-1 in interleukin-3-dependent myeloid cells led to preferential sensitivity to the topoisomerase II inhibitor, etoposide, which was independent of p53 accumulation. Pretreatment of the E2F-1-expressing cells with ICRF-193, a second topoisomerase II inhibitor that does not cause DNA damage, protected these cells against etoposide-induced apoptosis. However, ICRF-193 cooperated with other DNA-damaging agents to induce apoptosis. Enforced expression of E2F-1 led to accumulation of p53 protein. An E2F-1 mutant that is defective in inducing cell cycle progression also induced p53, suggesting that p53 was responding directly to E2F, and not to secondary events caused by inappropriate cell cycle progression (i.e., DNA damage). Thus, topoisomerase II inhibition and DNA damage cooperate to selectively induce apoptosis in cells that have mutations in the pRb pathway.  相似文献   

10.
With a previous paper (Niu & Wang, 1995), a general, hypothetical outline of the mechanism of carcinogenesis was proposed. With reference to the fact of starvation-induced hypermutation in micro-organisms, we propose that the hypoxia commonly seen in the cells at the centre of solid tumours might also result in hypermutation, and then p53-dependent programmed cell death. Like the apparently adaptive mutations in micro-organisms, only those genes (e.g. p53) that enable the cells to escape from apoptosis may be selected.  相似文献   

11.
Phenethyl isothiocyanate (PEITC) is a naturally occurring cruciferous vegetable-derived compound that inhibits cell growth and induces apoptosis in oral cancer cells. However, the exact mechanism of PEITC action has not been fully elucidated. This study investigated the molecular mechanism and anticancer potential of PEITC in oral squamous cell carcinoma (OSCC) cells with various p53 statuses. PEITC inhibited the growth of OC2, SCC4, and SCC25 cells (functional p53 mutants) in a dose-dependent manner with low toxicity to normal cells. Treatment with PEITC induced reactive oxygen species production, nitric oxide generation, and GSH depletion and triggered DNA damage response as evidenced by flow cytometry, 8-OHdG formation, and comet assay. Furthermore, the subsequent activation of ATM, Chk2, and p53 as well as the increased expression of downstream proteins p21 and Bax resulted in a G2/M phase arrest by inhibiting Cdc25C, Cdc2, and cyclin B1. The PEITC-induced apoptotic cell death, following a diminished mitochondrial transmembrane potential, reduced the expression of Bcl-2 and Mcl-1, released mitochondrial cytochrome c, and activated caspase 3 and PARP cleavage. The p53 inhibitor pifithrin-α and the antioxidants N-acetylcysteine and glutathione (GSH) protected the cells from PEITC-mediated apoptosis. However, mito-TEMPO, catalase, apocynin, and L-NAME did not prevent PEITC-induced cell death, suggesting that PEITC induced G2/M phase arrest and apoptosis in oral cancer cells via a GSH redox stress and oxidative DNA damage-induced ATM–Chk2–p53-related pathway. These results provide new insights into the critical roles of both GSH redox stress and p53 in the regulation of PEITC-induced G2/M cell cycle arrest and apoptosis in OSCCs.  相似文献   

12.
13.
BACKGROUND: p53 is frequently mutated in many cancers including human head and neck squamous cell carcinoma and pancreatic cancer. In tumor models, wild-type (wt) p53 gene transfer induces apoptosis and tumor regression in vivo, justifying the extensive clinical investigation of p53 gene therapy. METHODS: p53 nonviral-mediated gene transfer was achieved using glucosylated polyethylenimine (PEI) in conjunction with photochemical internalisation (PCI). Experimental conditions were optimised using the green fluorescent protein (GFP) as a reporter. p53 gene transfer was then evaluated using semi-quantitative RT-PCR in p53-deleted PANC3 and p53-mutated FaDu cell lines. Following gene transfer, induction of apoptosis was investigated using phosphatidylserine externalisation and nuclear fragmentation assays. Induction of long-term cell death was analysed using colony-forming assays. RESULTS: PCI was found to enhance GFP gene transfer after 48 h in both cell lines. Whether using glucosylated-PEI alone or associated with PCI, p53 gene transfer was achieved with subsequent recovery of p53 mRNA expression in PANC3 cells and a significant 4-fold increase in p53 mRNA expression in FaDu cells. PCI was found to further enhance p53 mRNA expression by 2.3-fold in PANC3 cells. Spontaneous induction of apoptosis following wt-p53 gene transfer was achieved in both cell lines. PCI was found to enhance apoptosis up to levels similar to those achieved with chemotherapy. As a consequence, long-term cell death was significantly enhanced after wt-p53 gene transfer when PCI was used in both cell lines, yielding up to 60% cell death. CONCLUSIONS: PCI increases glucosylated-PEI-mediated p53 gene transfer, apoptosis as well as cell death in mutant p53 human cancer cells.  相似文献   

14.
Thioredoxin reductase 1 (TrxR1) is a key regulator in many redox-dependent cellular pathways, and is often overexpressed in cancer. Several studies have identified TrxR1 as a potentially important target for anticancer therapy. The low molecular weight compound RITA (NSC 652287) binds p53 and induces p53-dependent apoptosis. Here we found that RITA also targets TrxR1 by non-covalent binding, followed by inhibition of its activity in vitro and by inhibition of TrxR activity in cancer cells. Interestingly, a novel ~130 kDa form of TrxR1, presumably representing a stable covalently linked dimer, and an increased generation of reactive oxygen species (ROS) were induced by RITA in cancer cells in a p53-dependent manner. Similarly, the gold-based TrxR inhibitor auranofin induced apoptosis related to oxidative stress, but independently of p53 and without apparent induction of the ~130 kDa form of TrxR1. In contrast to the effects observed in cancer cells, RITA had no impact on TrxR or ROS formation in normal fibroblasts (NHDF). The inhibition of TrxR1 can sensitize tumor cells to agents that induce oxidative stress and may directly trigger cell death. Thus, our results suggest that a unique p53-dependent effect of RITA on TrxR1 in cancer cells might synergize with p53-dependent induction of pro-apoptotic genes and oxidative stress, thereby leading to a robust induction of cancer cell death, without affecting non-transformed cells.  相似文献   

15.
A number of oncogenes alter the regulation of the cell cycle and cell death, contributing to the altered growth of tumours. Expression of the v-Src oncoprotein in Rat-1 fibroblasts prevented cell cycle exit in response to growth factor withdrawal. Here we investigated whether survival of v-Src transformed cells in low serum is dependent on v-Src activity. We used a temperature sensitive v-Src to study the effect inactivating v-Src on transformed cells growing under low serum conditions. We found when we switched off v-Src the cells died by apoptosis characterised by activation of caspases and the stress-activated kinases, JNK (Jun N-terminal kinase) and p38 MAP (mitogen activated protein) kinase. We were able to prevent cell death by addition of serum or overexpression of Bcl-2. Thus v-Src transformed Rat-1 cells can be protected from apoptosis by serum, v-Src, or Bcl-2. We investigated how v-Src protects from apoptosis under these conditions. Amongst other effects, v-Src activates two kinases which have been shown to protect cells from apoptosis, phosphatidylinositol 3-kinase (PI3-K) and extracellular signal-regulated kinase (ERK1/2). We found that switching off v-Src led to a decrease in the activity of both PI3-K and ERK1/2, however, we found that adding a specific inhibitor of PI3-K (LY294002) to v-Src transformed Rat-1 cells grown in low serum induced apoptosis while a specific ERK kinase (MEK1) inhibitor (PD98059) had no effect. This suggests that v-Src protects from apoptosis under low serum conditions by activating PI3-K.  相似文献   

16.
17.
Silent information regulator type-1 (SIRT1) is the best-studied member of the Sirtuin (Sir2) family of nicotinamide dinucleotide (NAD)-dependent class III histone deacetylases (HDACs), but has not yet been explored in cutaneous T-cell lymphoma (CTCL). We analyzed five CTCL cell lines and lesional tissues using flow cytometry, immunostaining, immunoblotting, cell death, viability, and apoptosis assays, small-molecule inhibitors, and shRNA knockdown. We found strong SIRT1 expression among CTCL lines relative to normal lymphocytes. CTCL cells in lesional tissues also expressed SIRT1 strongly. SIRT1 knockdown resulted in reduced cellular metabolism and proliferation, increased apoptosis, and PARP cleavage products. Tenovin-1, which reversibly inhibits class III HDACs (SIRT1 and SIRT2), reduced SIRT enzymatic activity and SIRT1 expression and led to increased apoptosis. These alterations were accompanied by increased forkhead box O3 (FoxO3) in several cell lines and increased nuclear p53, as well as acetylated p53 in wtp53 MyLa CTCL line. A combination of class I/II and class III HDACIs (vorinostat and tenovin-1) produced significantly greater growth inhibition, cell death via apoptosis, as well as superior p53 promoter upregulation in wtp53 MyLa cells as compared with either agent alone. This occurred in a partially p53-dependent manner, as these effects were blunted by p53 knockdown. Our results indicate that SIRT1 is strongly expressed in CTCL. Its inhibition results in reduced growth and increased apoptosis of CTCL cells. Furthermore, our findings suggest that some CTCL patients, such as those with wtp53, might benefit more from treatment with a combination of different classes of HDACIs than with a single agent.  相似文献   

18.
Asymmetric dimethylarginine (ADMA) is synthesized by protein arginine methyltransferases during methylation of protein arginine residues and released into blood upon proteolysis. Higher concentrations of ADMA in blood have been observed in patients with metabolic diseases and certain cancers. However, the role of ADMA in colon cancer has not been well investigated. ADMA serum levels in human patients diagnosed with colon cancer were found to be higher than those present in healthy subjects. ADMA treatment of LoVo cells, a human colon adenocarcinoma cell line, attenuated serum starvation-induced apoptosis and suppressed the activation of the Fas (APO-1/CD95)/JNK (SAPK) (c-Jun N terminal protein kinase/stress-activated protein kinase)pathway. ADMA also suppressed the activation of JNK triggered by death receptor ligand anti-Fas mAb and exogenous C2-ceramide. Moreover, we demonstrated that ADMA pretreatment protected LoVo cells from doxorubicin hydrochloride-induced cell death and activation of the Fas/JNK pathway. In summary, our results suggest that the elevated ADMA in colon cancer patients may contribute to the blocking of apoptosis of cancer cells in response to stress and chemotherapy.  相似文献   

19.
The retinoblastoma gene product (pRB) plays an important role in controlling both cell release from the G1 phase and apoptosis. We show here that in the early phases of apoptosis, pRB is posttranslationally modified by a tissue transglutaminase (tTG)-catalyzed reaction. In fact, by employing a novel haptenized lysis synthetic substrate which allows the isolation of glutaminyl-tTG substrates in vivo, we identified pRB as a potential tTG substrate in U937 cells undergoing apoptosis. In keeping with this finding, we showed that apoptosis of U937 cells is characterized by the rapid disappearance of the 105,000- to 110,000-molecular-weight pRB forms concomitantly with the appearance of a smear of immunoreactive products with a molecular weight of greater than 250,000. The shift in pRB molecular weight was reproduced by adding exogenous purified tTG to extracts obtained from viable U937 cells and was prevented by dansylcadaverine, a potent enzyme inhibitor. The effect of the pRB posttranslational modification during apoptosis was investigated by determining the E2F-1 levels and by isolating and characterizing pRB-null clones from U937 cells. Notably, the lack of pRB in these U937-derived clones renders these p53-null cells highly resistant to apoptosis induced by serum withdrawal, calphostin C, and ceramide. Taken together, these data suggest that tTG, acting on the pRB protein, might play an important role in the cell progression through the death program.  相似文献   

20.
Lens epithelium-derived growth factor p75 (LEDGF/p75) is a nuclear autoantigen in atopic disorders implicated in cellular protection against stress-induced apoptosis. We observed that LEDGF/p75 was cleaved during apoptosis into fragments of 65 and 58 kD generated by caspases-3 and -7 cleaving at three sites: DEVPD30/G, DAQD486/G and WEID85/N. Sequence analysis revealed that the DEVPD30/G and WEID85/N sites lie within the highly conserved HATH (homologous to amino terminus of hepatoma-derived growth factor) region, also known as PWWP domain. Alignment of proteins containing this domain failed to reveal conservation of the DEVPD30/G and WEID85/N sites, suggesting that the HATH/PWWP domain of LEDGF/p75 may be specifically targeted by caspases. Overexpression of LEDGF/p75 protected HepG2 cells from serum starvation-induced cell death, whereas expression of the 65 kD fragment failed to protect. The apoptotic cleavage of LEDGF/p75 may contribute to the pathogenesis of atopic disorders by abrogating its pro-survival function and enhancing its immunogenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号