首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The impact of a mutation at the r locus of peas ( Pisum sativum L.) on the structure of starch in the leaf has been studied. The mutation specifically eliminates the A class of isoform of starch-branching enzyme (SBE A) from the leaf, causing a 10-fold reduction in the total activity of the enzyme. Gel-permeation chromatography and thymol precipitation show that wild-type leaf starch consists of polymers with the general characteristics of amylose and amylopectin, although amylose is only a very minor component of the starch. High-performance anion exchange chromatography (HPAEC) of debranched amylopectin reveals that the distribution profile of branch lengths is strongly polymodal, and distinctly different from that of the amylopectin of storage starches. The mutation at the r locus results in the appearance of an amylopectin-like glucan of low molecular weight in the starch. The absorbance of the iodine complex of the amylopectin and analysis by HPAEC both indicate that the mutation causes an increase in the average branch length of the amylopectin but does not affect the polymodal nature of the distribution of branch lengths. The extent to which these effects of the mutation are specifically due to the loss of SBE A is discussed. It is suggested that differences in properties between isoforms of SBE are not the main factors that determine the polymodal distribution of branch lengths in amylopectin.  相似文献   

3.
4.
Mutation and selection for increased resistance to cell-wall synthesis inhibitors led to alterations in the hyphal branching rate of Saccharopolyspora erythraea NRRL 2338. Mutants with decreased branching frequency exhibited increased hyphal strength (estimated by in vitro micromanipulation). As the hyphal strength was increased, this led to a greater proportion of hyphal particles in liquid culture with a hyphal fragment diameter of greater than 88 microm. This, in turn, coincided with proportionately increased antibiotic production.  相似文献   

5.
Jiang H  Dian W  Wu P 《Phytochemistry》2003,63(1):53-59
Rice (Oryza sativa L.) grain quality is affected by the environmental temperature it experiences. To investigate the physiological molecular mechanisms of the effect of high temperatures on rice grain, a non-waxy indica rice was grown under two temperature conditions, (29/35 degrees C) and (22/28 degrees C), during the ripening stage in two phytotrons. The activities and gene expression of key enzymes for the biosynthesis of amylose and amylopectin were examined. The activity and expression levels of soluble endosperm starch synthase I were higher at 29/35 degrees C than that at 22/28 degrees C. In contrast, the activities and expression levels of the rice branching enzyme1, the branching enzyme3 and the granule bound starch synthase of the endosperm were lower at 29/35 degrees C than those at 22/28 degrees C. These results suggest that the decreased activity of starch branching enzyme reduces the branching frequency of the branches of amylopectin, which results in the increased amount of long chains of amylopectin of endosperm in rice grain at high temperature.  相似文献   

6.
When the starch branching enzyme IIb (BEIIb) gene was introduced into a BEIIb-defective mutant, the resulting transgenic rice plants showed a wide range of BEIIb activity and the fine structure of their amylopectins showed considerable variation despite having the two other BE isoforms, BEI and BEIIa, in their endosperm at the same levels as in the wild-type. The properties of the starch granules, such as their gelatinization behaviour, morphology and X-ray diffraction pattern, also changed dramatically depending on the level of BEIIb activity, even when this was either slightly lower or higher than that of the wild-type. The over-expression of BEIIb resulted in the accumulation of excessive branched, water-soluble polysaccharides instead of amylopectin. These results imply that the manipulation of BEIIb activity is an effective strategy for the generation of novel starches for use in foodstuffs and industrial applications.  相似文献   

7.
Escherichia coli cells lacking low-molecular-weight penicillin-binding proteins (LMW PBPs) exhibit morphological alterations that also appear when the septal protein FtsZ is mislocalized, suggesting that peptidoglycan modification and division may work together to produce cell shape. We found that in strains lacking PBP5 and other LMW PBPs, higher FtsZ concentrations increased the frequency of branched cells and incorrectly oriented Z rings by 10- to 15-fold. Invagination of these rings produced improperly oriented septa, which in turn gave rise to asymmetric cell poles that eventually elongated into branches. Branches always originated from the remnants of abnormal septation events, cementing the relationship between aberrant cell division and branch formation. In the absence of PBP5, PBP6 and DacD localized to nascent septa, suggesting that these PBPs can partially substitute for the loss of PBP5. We propose that branching begins when mislocalized FtsZ triggers the insertion of inert peptidoglycan at unusual positions during cell division. Only later, after normal cell wall elongation separates the patches, do branches become visible. Thus, a relationship between the LMW PBPs and cytoplasmic FtsZ ultimately affects cell division and overall shape.  相似文献   

8.
9.
Two glucanotransferases, disproportionating enzyme 1 (StDPE1) and disproportionating enzyme 2 (StDPE2), were repressed using RNA interference technology in potato, leading to plants repressed in either isoform individually, or both simultaneously. This is the first detailed report of their combined repression. Plants lacking StDPE1 accumulated slightly more starch in their leaves than control plants and high levels of maltotriose, while those lacking StDPE2 contained maltose and large amounts of starch. Plants repressed in both isoforms accumulated similar amounts of starch to those lacking StDPE2. In addition, they contained a range of malto-oligosaccharides from maltose to maltoheptaose. Plants repressed in both isoforms had chlorotic leaves and did not grow as well as either the controls or lines where only one of the isoforms was repressed. Examination of photosynthetic parameters suggested that this was most likely due to a decrease in carbon assimilation. The subcellular localisation of StDPE2 was re-addressed in parallel with DPE2 from Arabidopsis thaliana by transient expression of yellow fluorescent protein fusions in tobacco. No translocation to the chloroplasts was observed for any of the fusion proteins, supporting a cytosolic role of the StDPE2 enzyme in leaf starch metabolism, as has been observed for Arabidopsis DPE2. It is concluded that StDPE1 and StDPE2 have individual essential roles in starch metabolism in potato and consequently repression of these disables regulation of leaf malto-oligosaccharides, starch content and photosynthetic activity and thereby plant growth possibly by a negative feedback mechanism.  相似文献   

10.
We examined the effects of the saponin fraction and its principal saponins, escins Ia (1), Ib (2), IIa (3) and IIb (4), obtained from European horse chestnut, and their hydrolyzed products, desacylescins I (5) and II (6) on magnesium absorption from the gastrointestinal tract in mice. Test samples were given orally to fasted mice before loading of 0.5 or 1.67 M MgSO4 (10 mL/kg, p.o.). The saponin fraction (12.5-100 mg/kg) significantly enhanced the Mg2+ absorption 30, 60, 120 and 240 min after administration, with maximum enhancement by 48.3% at 50 mg/kg. Escins Ib (2) and IIb (4) (12.5 and 25 mg/kg) also enhanced the absorption, whereas escins Ia (1) and IIa (3) (12.5 and 25 mg/kg) and desacylescins I(5) and II (6) (25 mg/kg) showed no activity. These results suggested that the 21-O-tigloyl and/or 22-O-acetyl group(s) is essential for such activity. The saponin fraction, 2 and 4 (50 mg/kg) also affected the activity, but their effects were attenuated in streptozotocin-induced diabetic mice. Furthermore, pretreatment with insulin or indomethacin did not reduce the effect of 2 and 4. These results also implied that neither the sympathetic nervous system nor endogenous prostaglandins were involved. The involvement of parathyroid hormone, and/or the metabolism of vitamin D should be considered.  相似文献   

11.
One isoform of the branching enzyme (BE; EC 2.4.1.18) of potato (Solarium tuberosum L.) is known and catalyses the formation of α-1,6 bonds in a glucan chain, resulting in the branched starch component amylopectin. Constructs containing the antisense or sense-orientated distal 1.5-kb part of a cDNA for potato BE were used to transform the amylose-free (amf) mutant of potato, the starch of which stains red with iodine. The expression of the endogenous BE gene was inhibited either largely or fully as judged by the decrease or absence of the BE mRNA and protein. This resulted in a low percentage of starch granules with a small blue core and large red outer layer. There was no effect on the amylose content, degree of branching or λmax of the iodine-stained starch. However, when the physico-chemical properties of the different starch suspensions were assessed, differences were observed, which although small indicated that starch in the transformants was different from that of theamf mutant.  相似文献   

12.
13.
Fifteen starches from different botanical sources were selected to study the influence of structural features on thermal properties and enzyme digestibility. Morphological appearance, X-ray diffraction pattern, apparent amylose content, unit-chain length distribution of amylopectin, thermal properties and enzyme digestibility of starch varied with botanical source. It was demonstrated that the distribution of unit-chains of amylopectin significantly correlated with functional properties of the starches. Gelatinization temperature of native and retrograded starches decreased and increased with a relative abundance of unit-chains with an approximate degree of polymerization (DP) of 8–12 and 16–26, respectively (P<0.01). Similar unit-chain lengths also affected the enzyme digestibility of starch granules (P<0.01).  相似文献   

14.
Evidence is presented that the previously observed decrease of the Vmax of hepatic microsomal demethylation of dimethylnitrosamine (DMN), following pretreatment of rats with 3-methylcholanthrene (MC), is not due to increase in the rate of breakdown but to decrease of de novo synthesis. Determinations of Vmax at time intervals in the transition from the high steady-state level induced by a carbohydrate-devoid casein diet, down to the low steady-state level of carbohydrate-containing basal diet, yielded two consecutive slopes; descent from the basal diet level to the lower steady-state level following pretreatment with MC yielded one slope. Plotting these slopes against the initial Vmax values gave a typical exponential curve (or straight line if the logs of slopes are used) indicating that the rate of enzyme decay in the MC-treated animals is not greater than that expected from normal enzyme catabolism. A multiplicity of effector sites appears to be involved in the repressor action of different structural types; for example, repression by MC (46.6%) and by phenobarbital (23.9%) in combination are approximately additive (62.0%), rather than competitive, indicating that the two agents act at different sites. A P-450 type cytochrome is involved in the demethylation of DMN. DMN-demethylase is inhibited by carbon monoxide, but the susceptibility to CO is far greater than that observed previously with 3,4-benzopyrene hydroxylation; inhibition of DMN-demethylase as a function of CO concentration follows typical enzyme kinetics. However, while both phenobarbital and MC powerfully repress the DMN-demethylase, we have confirmed that they are strong inducers of the synthesis of P-450 and P-448, respectively, as estimated from the difference spectra.  相似文献   

15.
Studies of maize starch branching enzyme mutants suggest that the amylose extender high amylose starch phenotype is a consequence of the lack of expression of the predominant starch branching enzyme II isoform expressed in the endosperm, SBEIIb. However, in wheat, the ratio of SBEIIb and SBEIIa expression are inversely related to the expression levels observed in maize and rice. Analysis of RNA at 15 days post anthesis suggests that there are about 4-fold more RNA for SBE IIa than for SBE IIb. The genes for SBE IIa and SBE IIb from wheat are distinguished in the size of the first three exons, allowing isoform-specific antibodies to be produced. These antibodies were used to demonstrate that in the soluble fraction, the amount of SBE IIa protein is two to three fold higher than SBIIb, whereas in the starch granule, there is two to three fold more SBE IIb protein amount than SBE IIa. In a further difference to maize and rice, the genes for SBE IIa and SBE IIb are both located on the long arm of chromosome 2 in wheat, in a position not expected from rice–maize–wheat synteny.  相似文献   

16.
The effects of saponin fraction and its principal constituents escins Ia (1), Ib (2), IIa (3), and IIb (4) from horse chestnuts on gastrointestinal transit (GIT) and ileus were investigated in mice. Ileus was induced by acetic acid peritoneal irritation or by laparotomy with manipulation. One hour after the oral administration, the saponin fraction (12.5-100 mg/kg) and 14 (12.5-50 mg/ kg, except for 3 at 12.5 mg/kg) dose-dependently accelerated GIT. The optimal effects of the saponin fraction (25 mg/kg) occurred 5-240 min (applied intervals between the fraction and the charcoal meal) after the oral administration. The fraction (12.5-100 mg/ kg) and 1-4 (12.5-50 mg/kg, except for 1 and 2 at 12.5 mg/kg) dose-dependently prevented the inhibition of GIT induced by the acetic acid peritoneal irritation. They (12.5-100mg/kg) also dose-dependently prevented the inhibition of GIT induced by the laparotomy with manipulation. Desacylescins I (5) and II (6) (50 mg/kg) showed no such effects. These results demonstrated that the saponin fraction and 1-4 accelerated GIT and prevented the experimental ileus, and indicate that the 21, 22-acyl groups are essential for the accelerative effects of 1-4. The accelerations of GIT by 1-4 were completely abolished by the pretreatment with streptozotocin (100 mg/kg, iv), but not by the pretreatment with capsaicin (75 mg/kg in total, sc) or atropine (10 mg/kg, sc). These results imply that the sympathetic nervous system may be, but neither capsaicin-sensitive sensory nerves nor the cholinergic mechanism, involved in the accelerations of GIT by escins 1-4.  相似文献   

17.
The Class I phosphoinositide 3-kinases (PI3Ks) are lipid kinases that phosphorylate the 3-hydroxyl group of the inositol ring of phosphatidylinositides. Although closely related, experimental evidence suggests that the four Class I PI3Ks may be functionally distinct. To further study their unique biochemical properties, the three human Class Ia PI3K (alpha, beta, and delta) p110 catalytic domains were cloned and co-expressed with the p85alpha regulatory domain in Sf9 cells. None of the p110 subunits were successfully expressed in the absence of p85alpha. Successful expression and purification of each p85alpha/p110 protein required using an excess of the p110 vector over the p85 vector during co-infection of Sf9 cells. Proteins were purified as the p85alpha/p110 complex by nickel affinity chromatography through an N-terminal His-tag on the p110 subunit using an imidazole gradient. The purification yields were high using the optimized ratio of p85/p110 vector and small culture volumes, with 24mg/L cell culture media for p85alpha/p110alpha, 17.5mg/L for p85alpha/p110delta, and 3.5mg/L for p85alpha/p110beta. The identity of each purified isoform was confirmed by mass spectral analysis and immunoblotting. The activities of the three p85alpha/p110 proteins and the Class Ib p110gamma catalytic domain were investigated using phosphatidylinositol 4,5-bisphosphate (PIP2) as the substrate in a PIP2/phosphatidylserine (PS) liposome. All four enzymes exhibited reaction velocities that were dependent on the surface concentration of PIP2. The surface concentrations that gave maximal activity for each human isoform with 0.5mM PIP2 were 2.5mol% PIP2 for p110gamma, 7.5mol% for p85alpha/p110beta, and 10mol% PIP2 for p85alpha/p110alpha and p85alpha/p110delta. The specific activity of p85alpha/p110alpha was three to five times higher than that of the other human isoforms. These kinetic differences may contribute to the unique roles of these isoforms in cells.  相似文献   

18.
Laminin-5 (Ln-5) is expressed in several human carcinomas and hypothesized to contribute to tumor invasion. To understand the role of Ln-5 in human cancers, we stably delivered small interfering RNAs (siRNAs) directed against the Ln-5 gamma2 chain into JHU-022-SCC cells (022), a non-invasive oral squamous cell carcinoma (OSCC) cell line which secretes Ln-5. Lysates from gamma2 siRNA cells (022-sigamma2) had nearly undetectable levels of the gamma2 chain while the alpha3 and beta3 subunits of Ln-5 remained unchanged compared to parental and control. In conditioned medium from 022-sigamma2 cells, the gamma2 chain and the Ln-5 heterotrimer were barely detectable, similar to an invasive OSCC cell line. Conditioned medium from 022-sigamma2 cells contained less alpha3 and beta3 subunits than both parental and control. Although the proliferation and adhesive properties of the 022-sigamma2 cells remained similar to parental and control cells, 022-sigamma2 cells showed increased detachment and a fibroblastic morphology similar to invasive cells. Moreover, migration, in vitro invasion, and in vivo tumorigenicity were enhanced in 022-sigamma2 cells. Our results suggest that the Ln-5 gamma2 chain regulates the secretion of the alpha3 and beta3 subunits. More importantly, suppression of Ln-5 results in a phenotype that is representative of invasive tumor cells.  相似文献   

19.
Hamada S  Ito H  Ueno H  Takeda Y  Matsui H 《Phytochemistry》2007,68(10):1367-1375
Starch-branching enzymes (SBEs) play a pivotal role in determining the fine structure of starch by catalyzing the syntheses of alpha-1,6-branch points. They are the members of the alpha-amylase family and have four conserved regions in a central (beta/alpha)8 barrel, including the catalytic sites. Although the role of the catalytic barrel domain of an SBE is known, that of its N- and C-terminal regions remain unclear. We have previously shown that the C-terminal regions of the two SBE isozymes (designated as PvSBE1 and PvSBE2) from kidney bean (Phaseolus vulgaris L.) have different roles in branching enzyme activity. To understand the contribution of the N-terminal region to catalysis, six chimeric enzymes were constructed between PvSBE1 and PvSBE2. Only one enzyme (1Na/2Nb)-II, in which a portion of the N-terminal region of PvSBE2 was substituted by the corresponding region of PvSBE1, retained 6% of the PvSBE2 activity. The N-terminal truncated form (DeltaN46-PvSBE2), lacking 46 N-terminal residues of PvSBE2, lost enzyme activity and stability to proteolysis. To investigate the possible function of this region, three residues (Asp-15, His-24, and Arg-28) among these 46 residues were subjected to site-directed mutagenesis. The purified mutant enzymes showed nearly the same K(m) values as PvSBE2 but had lower V(max) values and heat stabilities than PvSBE2. These results suggest that the N-terminal region of the kidney bean SBE is essential for maximum enzyme activity and thermostability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号