首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
"Reduced minus oxidized" difference extinction coefficients Deltavarepsilon in the alpha-bands of Cyt b559 and Cyt c550 were determined by using functionally and structurally well-characterized PS II core complexes from the thermophilic cyanobacterium Thermosynechococcus elongatus. Values of 25.1+/-1.0 mM(-1) cm(-1) and 27.0+/-1.0 mM(-1) cm(-1) were obtained for Cyt b559 and Cyt c550, respectively. Anaerobic redox titrations covering the wide range from -250 up to +450 mV revealed that the heme groups of both Cyt b559 and Cyt c550 exhibit homogenous redox properties in the sample preparation used, with E(m) values at pH 6.5 of 244+/-11 mV and -94+/-21 mV, respectively. No HP form of Cyt b559 could be detected. Experiments performed on PS II membrane fragments of higher plants where the content of the high potential form of Cyt b559 was varied by special treatments (pH, heat) have shown that the alpha-band extinction of Cyt b559 does not depend on the redox form of the heme group. Based on the results of this study the Cyt b559/PSII stoichiometry is inferred to be 1:1 not only in thermophilic cyanobacteria as known from the crystal structure but also in PSII of plants. Possible interrelationships between the structure of the Q(B) site and the microenvironment of the heme group of Cyt b559 are discussed.  相似文献   

3.
We describe a method of reductive titration of photosystem I (PSI) density in leaves by generating a known amount of electrons (e-) in photosystem II (PSII) and measuring the resulting change in optical signal as these electrons arrive at pre-oxidized PSI. The method complements a recently published method of oxidative titration of PSI donor side e- carriers P700, plastocyanin (PC) and cytochrome f by illuminating a darkened leaf with far-red light (FRL) [V. Oja, H. Eichelmann, R.B. Peterson, B. Rasulov, A. Laisk, Decyphering the 820 nm signal: redox state of donor side and quantum yield of photosystem I in leaves, Photosynth. Res. 78 (2003) 1-15], presenting a nondestructive way for the determination of PSI density in intact leaves. Experiments were carried out on leaves of birch (Betula pendula Roth) and several other species grown outdoors. Single-turnover flashes of different quantum dose were applied to leaves illuminated with FRL, and the FRL was shuttered off immediately after the flash. The number of e- generated in PSII by the flash was measured as four times O2 evolution following the flash. Reduction of the pre-oxidized P700 and PC was followed as a change in leaf transmittance using a dual-wavelength detector ED P700DW (810 minus 950 nm, H. Walz, Effeltrich, Germany). The ED P700DW signal was deconvoluted into P700+ and PC+ components using the abovementioned oxidative titration method. The P700+ component was related to the absolute number of e- that reduced the P700+ to calculate the extinction coefficient. The effective differential extinction coefficient of P700+ at 810-950 nm was 0.40+/-0.06 (S.D.)% of transmittance change per micromol P700+ m(-2) or 17.6+/-2.4 mM(-1) cm(-1). The result shows that the scattering medium of the leaf effectively increases the extinction coefficient by about two times and its variation (+/-14% S.D.) is mainly caused by light-scattering properties of the leaf.  相似文献   

4.
Action spectra for photosystem II (PSII)-driven oxygen evolution and of photosystem I (PSI)-mediated H(2) photoproduction and photoinhibition of respiration were used to determine the participation of chlorophyll (Chl) a/b-binding Pcb proteins in the functions of pigment apparatus of Prochlorothrix hollandica. Comparison of the in situ action spectra with absorption spectra of PSII and PSI complexes isolated from the cyanobacterium Synechocystis 6803 revealed a shoulder at 650 nm that indicated presence of Chl b in the both photosystems of P. hollandica. Fitting of two action spectra to absorption spectrum of the cells showed a chlorophyll ratio of 4:1 in favor of PSI. Effective antenna sizes estimated from photochemical cross-sections of the relevant photoreactions were found to be 192+/-28 and 139+/-15 chlorophyll molecules for the competent PSI and PSII reaction centers, respectively. The value for PSI is in a quite good agreement with previous electron microscopy data for isolated Pcb-PSI supercomplexes from P. hollandica that show a trimeric PSI core surrounded by a ring of 18 Pcb subunits. The antenna size of PSII implies that the PSII core dimers are associated with approximately 14 Pcb light-harvesting proteins, and form the largest known Pcb-PSII supercomplexes.  相似文献   

5.
The fluorescence decay kinetics of Photosystem II (PSII) membranes from spinach with open reaction centers (RCs), were compared after exciting at 420 and 484 nm. These wavelengths lead to preferential excitation of chlorophyll (Chl) a and Chl b, respectively, which causes different initial excited-state populations in the inner and outer antenna system. The non-exponential fluorescence decay appears to be 4.3+/-1.8 ps slower upon 484 nm excitation for preparations that contain on average 2.45 LHCII (light-harvesting complex II) trimers per reaction center. Using a recently introduced coarse-grained model it can be concluded that the average migration time of an electronic excitation towards the RC contributes approximately 23% to the overall average trapping time. The migration time appears to be approximately two times faster than expected based on previous ultrafast transient absorption and fluorescence measurements. It is concluded that excitation energy transfer in PSII follows specific energy transfer pathways that require an optimized organization of the antenna complexes with respect to each other. Within the context of the coarse-grained model it can be calculated that the rate of primary charge separation of the RC is (5.5+/-0.4 ps)(-1), the rate of secondary charge separation is (137+/-5 ps)(-1) and the drop in free energy upon primary charge separation is 826+/-30 cm(-1). These parameters are in rather good agreement with recently published results on isolated core complexes [Y. Miloslavina, M. Szczepaniak, M.G. Muller, J. Sander, M. Nowaczyk, M. R?gner, A.R. Holzwarth, Charge separation kinetics in intact Photosystem II core particles is trap-limited. A picosecond fluorescence study, Biochemistry 45 (2006) 2436-2442].  相似文献   

6.
A method for determining the individual optical characteristics (fluorescence quantum yield, the rate constant and quantum yield of singlet-triplet conversion, excitation of fluorescence cross-section, extinction coefficient) and concentration correlations between the fluorescent forms of fluorescent proteins arising in the reaction of posttranslational chromophore formation has been developed, which is based on combined application of absorption spectroscopy and classical and nonlinear laser fluorimretry. The method allows one to determine the share of fluorescent forms in the mixture of chromoproteins. The individual optical characteristics of the red form of the fluorescent protein mRFP1 has been determined: the fluorescence quantum yield eta = 0.24 +/- 0.03; the extinction coefficient in the maximum of absorbance band (584 nm) epsilon = 213 +/- 40 mM(-1) cm(-1) (the cross-section of absorbance sigma = (8.2 +/- 1.5).10(-16) cm2); the constant of singlet-triplet conversion rate K32 = (0 +/- 0.6)-10970 s(-1). The part of the red form in the mixture of chromoproteins is 26 +/- 6%.  相似文献   

7.
Monoclonal antibodies have been raised against the light-harvesting chlorophyll a/b-binding proteins of photosystem I (LHCI) using a photosystem (PS) I preparation (PSI-200) wild-type from barley (Hordeum vulgare L. cv. Svaløf's Bonus) as the antigen. These antibodies cross-reacted with a minor light-harvesting chlorophyll a/b-protein of PSII (Chla/b-P1=CP29), but not with the major one, LHCII (=Chla/b-P2**). Similarly, a monoclonal antibody to Chla/b-P1, elicited by a PSII preparation as the antigen, cross-reacted with LHCI, but not LHCII. This explains why an antigen consisting of LHCII, free of LHCI, but contaminated with Chla/b-P1, can elicit antibodies which cross-react with LHCI. Immunoblot assays showed that LHCI and Chla/b-P1 have at least two epitopes in common. Immunogold labelling of thin-sectioned wild-type thylakoids confirmed a preferential localisation of Chla/b-P1 in grana partition membranes and LHCI in stroma lamellae. The presence of LHCI was demonstrated in barley mutants lacking the PSI reaction centre (viridis-zb 63) and chlorophyll b (chlorina-f2), and was correlated with the presence of long-wavelength (730 nm) fluorescence emission at 77 K. The mutant viridis-k 23, which has a 77 K long-wavelength fluorescence peak at 720 nm, was shown by immune-blot assay to lack LHCI, although Chla/b-P1 was present.Abbreviations Chl-P chlorophyll-protein - CM Carlsberg Monoclonal - Da dalton - LHC light-harvesting complex - PAGE polyacrylamide gel electrophoresis - PSI, II photosystem I, II - PSI-200 PSI containing LHCI polypeptides - SDS sodium dodecyl sulphate  相似文献   

8.
Preparation of a minimum PSII core complex from spinach is described, containing four Mn per reaction center (RC) and exhibiting high O2 evolving activity [approximately 4000 micromol of O2 (mg of chl)(-1) x h(-1)]. The complex consists of the CP47 and CP43 chlorophyll binding proteins, the RC D1/D2 pair, the cytochrome b559 subunits, and the Mn-stabilizing psbO (33 kDa) protein, all present in the same stoichiometric amounts found in the parent PSII membranes. Several small subunits are also present. The cyt b559 content is 1.0 per RC in core complexes and PSII membranes. The total chlorophyll content is 32 chl a and <1 chl b per RC, the lowest yet reported for any active PSII preparation. The core complex exhibits the characteristic EPR signals seen in the S2 state of higher plant PSII. A procedure for preparing low-temperature samples of very high optical quality is developed, allowing detailed optical studies in the S1 and S2 states of the system to be made. Optical absorption, CD, and MCD spectra reveal unprecedented detail, including a prominent, well-resolved feature at 683.5 nm (14630 cm(-1)) with a weaker partner at 187 cm(-1) to higher energy. On the basis of band intensity, CD, and MCD arguments, these features are identified as the exciton split components of P680 in an intact, active reaction center special pair. Comparisons are made with solubilized D1/D2/cyt b559 material and cyanobacterial PSII.  相似文献   

9.
Distribution of phycobilisomes between photosystem I (PSI) and photosystem II (PSII) complexes in the cyanobacterium Spirulina platensis has been studied by analysis of the action spectra of H2 and O2 photoevolution and by analysis of the 77 K fluorescence excitation and emission spectra of the photosystems. PSI monomers and trimers were spectrally discriminated in the cell by the unique 760 nm low-temperature fluorescence, emitted by the trimers under reductive conditions. The phycobilisome-specific 625 nm peak was observed in the action spectra of both PSI and PSII, as well as in the 77 K fluorescence excitation spectra for chlorophyll emission at 695 nm (PSII), 730 nm (PSI monomers), and 760 nm (PSI trimers). The contributions of phycobilisomes to the absorption, action, and excitation spectra were derived from the in vivo absorption coefficients of phycobiliproteins and of chlorophyll. Analyzing the sum of PSI and PSII action spectra against the absorption spectrum and estimating the P700:P680 reaction center ratio of 5.7 in Spirulina, we calculated that PSII contained only 5% of the total chlorophyll, while PSI carried the greatest part, about 95%. Quantitative analysis of the obtained data showed that about 20% of phycobilisomes in Spirulina cells are bound to PSII, while 60% of phycobilisomes transfer the energy to PSI trimers, and the remaining 20% are associated with PSI monomers. A relevant model of organization of phycobilisomes and chlorophyll pigment-protein complexes in Spirulina is proposed. It is suggested that phycobilisomes are connected with PSII dimers, PSI trimers, and coupled PSI monomers.  相似文献   

10.
The thermophilic cyanobacterium Thermosynechococcus elongatus was cultivated under controlled growth conditions using a new type of photobioreactor, allowing us to optimise growth conditions and the biomass yield. A fast large-scale purification method for monomeric and dimeric photosystem II (PSII) solubilized from thylakoid membranes of this cyanobacterium was developed using fast protein liquid chromatography (FPLC). The obtained PSII core complexes (PSIIcc) were analysed for their pigment stoichiometry, photochemical and oxygen evolution activities, as well as lipid and detergent composition. Thirty-six chlorophyll a (Chla), 2 pheophytin a (Pheoa), 9+/- 1 beta-carotene (Car), 2.9+/-0.8 plastoquinone 9 (PQ9) and 3.8+/-0.5 Mn were found per active centre. For the monomeric and dimeric PSIIcc, 18 and 20 lipid as well as 145 and 220 detergent molecules were found in the detergent shell, respectively. The monomeric and dimeric complexes showed high oxygen evolution activity with 1/4 O(2) released per 37-38 Chla and flash in the best cases. Crystals were obtained from dimeric PSIIcc by a micro-batch method. They diffract synchrotron X-rays to a maximum resolution of 2.9-A, resulting in complete data sets of 3.2 A resolution.  相似文献   

11.
The chlorophyll a (Chla) fluorescence of cyanobacteria, which at physiological temperature originates from photosystem (PS) II holochromes, is suppressed in hyperosmotic suspension, and enhanced in hypo-osmotic suspension (G.C. Papageorgiou, A. Alygizaki-Zorba, Biochim. Biophys. Acta 1335 (1997) 1-4). We investigated the mechanism of this phenomenon by comparing Synechococcus sp. PCC 7942 cells that had been treated with N-ethylmaleimide (NEM) in order to inhibit electronic excitation transfers from phycobilisomes (PBS) to Chlas of PSI (A.N. Glazer, Y.M. Gindt, C.F. Chan, K. Sauer, Photosynth. Res. 40 (1994) 167-173) with untreated control cells. The NEM-treated cells were indistinguishable from the control cells with regard to PSII-dependent oxygen evolution, reduction of post-PSII oxidants, and osmotically induced volume changes, but differed in the following properties: (i) they could not photoreduce post-PSI electron acceptors; (ii) they diverted more PBS excitation to PSII; (iii) the rise of Chla fluorescence upon light acclimation of darkened (state 2) cells was smaller; and (iv) the Chla fluorescence of light-acclimated (state 1) cells was insensitive to the cell suspension osmolality. These properties suggest that osmolality regulates the core-mediated excitation coupling between PBS and PSI, possibly by influencing mutual orientation and/or distance between core holochromes (ApcE, ApcD) and PSI holochromes. Thus, in hyper-osmotic suspension, PBS deliver more excitation to PSI (hence less to PSII); in hypo-osmotic cell suspension they deliver less excitation to PSI (hence more to PSII).  相似文献   

12.
Electron paramagnetic resonance (EPR) was used to quantify Photosystem I (PSI) and PSII in vesicles originating from a series of well-defined but different domains of the thylakoid membrane in spinach prepared by non-detergent techniques. Thylakoids from spinach were fragmented by sonication and separated by aqueous polymer two-phase partitioning into vesicles originating from grana and stroma lamellae. The grana vesicles were further sonicated and separated into two vesicle preparations originating from the grana margins and the appressed domains of grana (the grana core), respectively. PSI and PSII were determined in the same samples from the maximal size of the EPR signal from P700(+) and Y(D)( .-), respectively. The following PSI/PSII ratios were found: thylakoids, 1.13; grana vesicles, 0.43; grana core, 0.25; grana margins, 1.28; stroma lamellae 3.10. In a sub-fraction of the stroma lamellae, denoted Y-100, PSI was highly enriched and the PSI/PSII ratio was 13. The antenna size of the respective photosystems was calculated from the experimental data and the assumption that a PSII center in the stroma lamellae (PSIIbeta) has an antenna size of 100 Chl. This gave the following results: PSI in grana margins (PSIalpha) 300, PSI (PSIbeta) in stroma lamellae 214, PSII in grana core (PSIIalpha) 280. The results suggest that PSI in grana margins have two additional light-harvesting complex II (LHCII) trimers per reaction center compared to PSI in stroma lamellae, and that PSII in grana has four LHCII trimers per monomer compared to PSII in stroma lamellae. Calculation of the total chlorophyll associated with PSI and PSII, respectively, suggests that more chlorophyll (about 10%) is associated with PSI than with PSII.  相似文献   

13.
Herein we report the development of a direct and continuous spectrophotometric method for determining transglutaminase (TGase) activity by using N,N-dimethyl-1,4-phenylenediamine (DMPDA) as a gamma-glutamyl acceptor substrate and carbobenzyloxy-l-glutamylglycine (Z-Gln-Gly) as a typical peptide gamma-glutamyl donor substrate. The transamidation activity of TGase can thus be followed by monitoring the increase of absorbance of the resulting anilide product at 278 nm. The extinction coefficient of the authentic, independently synthesized anilide was determined to be epsilon = 8940 +/- 55 M(-1) cm(-1). Using this assay, we determined the apparent K(M) of DMPDA to be 0.25 mM, which compares favorably to the apparent K(M) values determined for other acceptor substrates under conditions where Z-Gln-Gly is also used as the donor substrate, such as N-acetyl-l-lysine methyl ester (9.6 mM) and methylamine (13.1 mM). Finally, the sensitivity of this assay technique was established through the measurement of irreversible inhibition constants for iodoacetamide, determined to be K(I) = 75 +/- 11 nM and k(inact) = (120 +/- 1) x 10(5) M(-1) min(-1).  相似文献   

14.
Chlorophyll a/b light-harvesting complexes (chl a/b LHC) and photosystem II (PSII) cores were isolated from an octyl glucoside-containing sucrose gradient after solubilization of barley thylakoid membranes with Triton X-100 and octyl glucoside. No cation precipitation step was necessary to collect the chl a/b LHC. PAGE under mildly denaturing and fully denaturing conditions showed that the chl a/b LHC fraction contained chlorophyll-protein complexes CP27, CP29, and CP64. The PSII core material contained CP43 and CP47, and little contamination by other nonpigmented polypeptides. Freeze-fracture electron microscopy of the chl a/b LHC after reconstitution into digalactosyldiglyceride (DG) or phosphatidylcholine (PC) vesicles showed that the protein particles (approximately 7.5 +/- 1.6 nm) were approximately 99 and 90% randomly dispersed, respectively, in the liposomes. Addition of Mg++ produced particle aggregation and membrane adhesion in chl a/b LHC-DG liposomes in a manner analogous to that described for LHC-PC liposomes. Reconstitution of PSII cores into DG vesicles also produced proteoliposomes with randomly dispersed particles (approximately 7.5 +/- 1.6 nm). In contrast, PSII-PC mixtures formed convoluted networks of tubular membranes that exhibited very few fracture faces. Most of the protein particles (approximately 7.0 +/- 1.5 nm) were seen trapped between, rather than embedded in, the membranes. The interaction between the zwitterionic head group of the phosphatidyl choline and the negatively charged PSII core may be responsible for the unusual membrane structures observed.  相似文献   

15.
The stability of chlorophyll-protein complexes of photosystem I (PSI) and photosystem II (PSII) was investigated by chlorophyll (Chl) fluorescence spectroscopy, absorption spectra and native green gel separation system during flag leaf senescence of two rice varieties (IIyou 129 and Shanyou 63) grown under outdoor conditions. During leaf senescence, photosynthetic CO(2) assimilation rate, carboxylase activity of Rubisco, chlorophyll and carotenoids contents, and the chlorophyll a/b ratio decreased significantly. The 77 K Chl fluorescence emission spectra of thylakoid membranes from mature leaves had two peaks at around 685 and 735 nm emitting mainly from PSII and PSI, respectively. The total Chl fluorescence yields of PSI and PSII decreased significantly with senescence progressing. However, the decrease in the Chl fluorescence yield of PSI was greater than in the yield of PSII, suggesting that the rate of degradation in chlorophyll-protein complexes of PSI was greater than in chlorophyll-protein complexes of PSII. The fluorescence yields for all chlorophyll-protein complexes decreased significantly with leaf senescence in two rice varieties but the extents of their decrease were significantly different. The greatest decrease in the Chl fluorescence yield was in PSI core, followed by LHCI, CP47, CP43, and LHCII. These results indicate that the rate of degradation for each chlorophyll-protein complex was different and the order for the stability of chlorophyll-protein complexes during leaf senescence was: LHCII>CP43>CP47>LHCI>PSI core, which was partly supported by the green gel electrophoresis of the chlorophyll-protein complexes.  相似文献   

16.
The effects of high temperature (30-52.5 degrees C) on excitation energy transfer from phycobilisomes (PBS) to photosystem I (PSI) and photosystem II (PSII) in a cyanobacterium Spirulina platensis grown at 30 degrees C were studied by measuring 77 K chlorophyll (Chl) fluorescence emission spectra. Heat stress had a significant effect on 77 K Chl fluorescence emission spectra excited either at 436 or 580 nm. In order to reveal what parts of the photosynthetic apparatus were responsible for the changes in the related Chl fluorescence emission peaks, we fitted the emission spectra by Gaussian components according to the assignments of emission bands to different components of the photosynthetic apparatus. The 643 and 664 nm emissions originate from C-phycocyanin (CPC) and allophycocyanin (APC), respectively. The 685 and 695 nm emissions originate mainly from the core antenna complexes of PSII, CP43 and CP47, respectively. The 725 and 751 nm band is most effectively produced by PSI. There was no significant change in F725 and F751 during heat stress, suggesting that heat stress had no effects on excitation energy transfer from PBS to PSI. On the other hand, heat stress induced an increase in the ratio of Chl fluorescence yield of PBS to PSII, indicating that heat stress inhibits excitation energy transfer from PBS to PSII. However, this inhibition was not associated with an inhibition of excitation energy transfer from CPC to APC since no significant changes in F643 occurred at high temperatures. A dramatic enhancement of F664 occurring at 52.5 degrees C indicates that excitation energy transfer from APC to the PSII core complexes is suppressed at this temperature, possibly due to the structural changes within the PBS core but not to a detachment of PBS from PSII, resulting in an inhibition of excitation energy transfer from APC to PSII core complexes (CP47 + CP43). A decrease in F685 and F695 in heat-stressed cells with excitation at 436 nm seems to suggest that heat stress did not inhibit excitation energy transfer from the Chl a binding proteins CP47 and CP43 to the PSII reaction center and the decreased Chl fluorescence yields from CP43 and CP47 could be explained by the inhibition of the energy transfer from APC to PSII core complexes (CP47 + CP43).  相似文献   

17.
A ferredoxin, which functions as an electron acceptor for the CO dehydrogenase complex from Methanosarcina thermophila, was purified from acetate-grown cells. It was isolated as a trimer having a native molecular weight of approximately 16,400 and monomer molecular weight of 4,888 calculated from the amino acid composition. The ferredoxin contained 2.80 +/- 0.56 Fe atoms and 1.98 +/- 0.12 acid-labile sulfide. UV-visible absorption maxima were 395 and 295 nm with monomeric extinction coefficients of epsilon 395 = 12,800 M-1 cm-1 and epsilon 295 = 14,460 M-1 cm-1. The A395/A295 ratio ranged from 0.80 to 0.88. There were 5 cysteines per monomer but no methionine, histidine, arginine, or aromatic amino acids. The N-terminal amino acid sequence showed a 4-cysteine cluster with potential to coordinate a Fe:S center. The protein was stable for 30 min at 70 degrees C, but denatured during incubation at 85 degrees C.  相似文献   

18.
《BBA》2014,1837(2):315-325
The spectral global quantum yield (YII, electrons/photons absorbed) of photosystem II (PSII) was measured in sunflower leaves in State 1 using monochromatic light. The global quantum yield of PSI (YI) was measured using low-intensity monochromatic light flashes and the associated transmittance change at 810 nm. The 810-nm signal change was calibrated based on the number of electrons generated by PSII during the flash (4 · O2 evolution) which arrived at the PSI donor side after a delay of 2 ms. The intrinsic quantum yield of PSI (yI, electrons per photon absorbed by PSI) was measured at 712 nm, where photon absorption by PSII was small. The results were used to resolve the individual spectra of the excitation partitioning coefficients between PSI (aI) and PSII (aII) in leaves. For comparison, pigment–protein complexes for PSII and PSI were isolated, separated by sucrose density ultracentrifugation, and their optical density was measured. A good correlation was obtained for the spectral excitation partitioning coefficients measured by these different methods. The intrinsic yield of PSI was high (yI = 0.88), but it absorbed only about 1/3 of quanta; consequently, about 2/3 of quanta were absorbed by PSII, but processed with the low intrinsic yield yII = 0.63. In PSII, the quantum yield of charge separation was 0.89 as detected by variable fluorescence Fv/Fm, but 29% of separated charges recombined (Laisk A, Eichelmann H and Oja V, Photosynth. Res. 113, 145–155). At wavelengths less than 580 nm about 30% of excitation is absorbed by pigments poorly connected to either photosystem, most likely carotenoids bound in pigment–protein complexes.  相似文献   

19.
1-[2-Amino-5-(6-carboxyindol-2-yl)phenoxyl]-2-(2'- amino-5'-methylphenoxy)ethane-N,N,N',N'-tetraacetic acid (indo-1) and 2-[2-(bis(carboxymethyl)amino-5-methylphenoxy) methyl]-6- methyl-8-[bis-(carboxymethyl)amino]quinoline (quin-2) are sensitive, spectral indicators for Zn2+. Additions of subsaturating Zn2+ to 10-80 microM indo-1 or quin-2 at pH 7.0 produce uv difference spectra with isosbestic wavelengths at 342 and 282 nm or at 342, 317, and 252 nm, respectively. Formation of 1:1 Zn2+:indicator complexes at pH 7.0 and 20 degrees C in the absence (presence) of 100 mM KCl gives delta epsilon max = -2.4 +/- 0.2 X 10(4) M-1 cm-1 at 367 nm (-2.1 +/- 0.2 X 10(4) M-1 cm-1 at 365 nm) for indo-1 and delta epsilon max = -2.7 +/- 0.1 X 10(4) M-1 cm-1 at 266 nm (-2.6 +/- 0.1 X 10(4) M-1 cm-1 at 265 nm) for quin-2. Competition experiments at pH 7.0 and 20 degrees C with indo-1 and quin-2 and also 4-(2-pyridylazo)resorcinol (PAR) as the second chelator in the absence (presence) of 100 mM KCl yield apparent affinity constants: K'A = 2.5 +/- 1.0 X 10(10) M-1 (6.2 +/- 0.5 X 10(9) M-1) for indo-1 binding Zn2+ and K'A = 9.4 +/- 3.3 X 10(11) M-1 (2.7 +/- 0.1 X 10(11) M-1) for quin-2 binding Zn2+. The above constants provide the basis for rapid steady-state spectrophotometric determinations of the affinity of a protein for Zn2+ with K'A approximately 10(10) - 10(13) M-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Photosynthetic supercomplexes from the cryptophyte Rhodomonas CS24 were isolated by a short detergent treatment of membranes from the cryptophyte Rhodomonas CS24 and studied by electron microscopy and low-temperature absorption and fluorescence spectroscopy. At least three different types of supercomplexes of photosystem I (PSI) monomers and peripheral Chl a/c(2) proteins were found. The most common complexes have Chl a/c(2) complexes at both sides of the PSI core monomer and have dimensions of about 17x24 nm. The peripheral antenna in these supercomplexes shows no obvious similarities in size and/or shape with that of the PSI-LHCI supercomplexes from the green plant Arabidopsis thaliana and the green alga Chlamydomonas reinhardtii, and may be comprised of about 6-8 monomers of Chl a/c(2) light-harvesting complexes. In addition, two different types of supercomplexes of photosystem II (PSII) dimers and peripheral Chl a/c(2) proteins were found. The detected complexes consist of a PSII core dimer and three or four monomeric Chl a/c(2) proteins on one side of the PSII core at positions that in the largest complex are similar to those of Lhcb5, a monomer of the S-trimer of LHCII, Lhcb4 and Lhcb6 in green plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号