首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose  

The aim of this study was to perform a well-to-pump life cycle assessment (LCA) to investigate the overall net energy balance and environmental impact of bioethanol production using Tall Fescue grass straw as feedstock. The energy requirements and greenhouse gas (GHG) emissions were compared to those of gasoline to explore the potential of bioethanol as sustainable fuel.  相似文献   

2.

Background  

To reduce the production cost of bioethanol obtained from fermentation of the sugars provided by degradation of lignocellulosic biomass (i.e., second generation bioethanol), it is necessary to screen for new enzymes endowed with more efficient biomass degrading properties. This demands the set-up of high-throughput screening methods. Several methods have been devised all using microplates in the industrial SBS format. Although this size reduction and standardization has greatly improved the screening process, the published methods comprise one or more manual steps that seriously decrease throughput. Therefore, we worked to devise a screening method devoid of any manual steps.  相似文献   

3.

Background  

Fermentation of lignocellulosic biomass is an attractive alternative for the production of bioethanol. Traditionally, the yeast Saccharomyces cerevisiae is used in industrial ethanol fermentations. However, S. cerevisiae is naturally not able to ferment the pentose sugars D-xylose and L-arabinose, which are present in high amounts in lignocellulosic raw materials.  相似文献   

4.

Purpose  

Though the development of biofuel has attracted numerous studies for quantifying potential water demand applying life cycle thinking, the impacts of biofuel water consumption still remain unknown. In this study, we aimed to quantify ecological impact associated with corn-based bioethanol water consumption in Minnesota in responding to different refinery expansion scenarios by applying a life cycle impact assessment method.  相似文献   

5.

Background  

Drying is currently the most frequently used conservation method for cereal grain, which in temperate climates consumes a major part of process energy. Airtight storage of moist feed grain using the biocontrol yeast Pichia anomala as biopreservation agent can substantially reduce the process energy for grain storage. In this study we tested the potential of moist stored grain for bioethanol production.  相似文献   

6.

Background  

Sustainable and economically viable manufacturing of bioethanol from lignocellulose raw material is dependent on the availability of a robust ethanol producing microorganism, able to ferment all sugars present in the feedstock, including the pentose sugars L-arabinose and D-xylose. Saccharomyces cerevisiae is a robust ethanol producer, but needs to be engineered to achieve pentose sugar fermentation.  相似文献   

7.

Background  

Bioethanol isolated from lignocellulosic biomass represents one of the most promising renewable and carbon neutral alternative liquid fuel sources. Enzymatic saccharification using cellulase has proven to be a useful method in the production of bioethanol. The filamentous fungi Acremonium cellulolyticus and Trichoderma reesei are known to be potential cellulase producers. In this study, we aimed to reveal the advantages and disadvantages of the cellulase enzymes derived from these fungi.  相似文献   

8.

Background  

Bacteria of the genus Bartonella are responsible for a large variety of human and animal diseases. Serological typing of Bartonella is a method that can be used for differentiation and identification of Bartonella subspecies.  相似文献   

9.

Background  

Lignocellulosic bioethanol technologies exhibit significant capacity for performance improvement across the supply chain through the development of high-yielding energy crops, integrated pretreatment, hydrolysis and fermentation technologies and the application of dedicated ethanol pipelines. The impact of such developments on cost-optimal plant location, scale and process composition within multiple plant infrastructures is poorly understood. A combined production and logistics model has been developed to investigate cost-optimal system configurations for a range of technological, system scale, biomass supply and ethanol demand distribution scenarios specific to European agricultural land and population densities.  相似文献   

10.

Purpose

This study aims to compare the life cycle greenhouse gas (GHG) emissions of two cellulosic bioenergy pathways (i.e., bioethanol and bioelectricity) using different references and functional units. It also aims to address uncertainties associated with a comparative life cycle analysis (LCA) for the two bioenergy pathways.

Methods

We develop a stochastic, comparative life cycle GHG analysis model for a switchgrass-based bioenergy system. Life cycle GHG offsets of the biofuel and bioelectricity pathways for cellulosic bioenergy are compared. The reference system for bioethanol is the equivalent amount of gasoline to provide the same transportation utility (e.g., vehicle driving for certain distance) as bioethanol does. We use multiple reference systems for bioelectricity, including the average US grid, regional grid in the USA according to the North American Electric Reliability Corporation (NERC), and average coal-fired power generation, on the basis of providing the same transportation utility. The functional unit is one unit of energy content (MJ). GHG offsets of bioethanol and bioelectricity relative to reference systems are compared in both grams carbon dioxide equivalents per hectare of land per year (g CO2-eq/ha-yr) and grams carbon dioxide equivalents per vehicle kilometer traveled (g CO2-eq/km). For the latter, we include vehicle cycle to make the comparison meaningful. To address uncertainty and variability, we derive life cycle GHG emissions based on probability distributions of individual parameters representing various unit processes in the life cycle of bioenergy pathways.

Results and discussion

Our results show the choice of reference system and functional unit significantly changes the competition between switchgrass-based bioethanol and bioelectricity. In particular, our results show that the bioethanol pathway produces more life cycle GHG emissions than the bioelectricity pathway on a per unit energy content or a per unit area of crop land basis. However, the bioethanol pathway can offer more GHG offsets than the bioelectricity pathway on a per vehicle kilometer traveled basis when using bioethanol and bioelectricity for vehicle operation. Given the current energy mix of regional grids, bioethanol can potentially offset more GHG emissions than bioelectricity in all grid regions of the USA.

Conclusions

The reference and functional unit can change bioenergy pathway choices. The comparative LCA of bioenergy systems is most useful for decision support only when it is spatially explicit to address regional specifics and differences. The difference of GHG offsets from bioethanol and bioelectricity will change as the grid evolves. When the grids get cleaner over time, the favorability of bioethanol for GHG offsets increases.  相似文献   

11.

Background  

Despite a remarkable success in the computational prediction of genes in Bacteria and Archaea, a lack of comprehensive understanding of prokaryotic gene structures prevents from further elucidation of differences among genomes. It continues to be interesting to develop new ab initio algorithms which not only accurately predict genes, but also facilitate comparative studies of prokaryotic genomes.  相似文献   

12.

Background  

This paper is an attempt to trace the evolution of the ribosome through the evolution of the universal P-loop GTPases that are involved with the ribosome in translation and with the attachment of the ribosome to the membrane. The GTPases involved in translation in Bacteria/Archaea are the elongation factors EFTu/EF1, the initiation factors IF2/aeIF5b + aeIF2, and the elongation factors EFG/EF2. All of these GTPases also contain the OB fold also found in the non GTPase IF1 involved in initiation. The GTPase involved in the signal recognition particle in most Bacteria and Archaea is SRP54.  相似文献   

13.

Background  

The cystatin superfamily comprises cysteine protease inhibitors that play key regulatory roles in protein degradation processes. Although they have been the subject of many studies, little is known about their genesis, evolution and functional diversification. Our aim has been to obtain a comprehensive insight into their origin, distribution, diversity, evolution and classification in Eukaryota, Bacteria and Archaea.  相似文献   

14.
15.

Background, aim, and scope  

The availability of fossil resources is predicted to decrease in the near future: they are a non-renewable source, they cause environmental concerns, and they are subjected to price instability. Utilization of biomass as raw material in a biorefinery is a promising alternative to fossil resources for production of energy carriers and chemicals, as well as for mitigating climate change and enhancing energy security. This paper focuses on a biorefinery concept which produces bioethanol, bioenergy, and biochemicals from switchgrass, a lignocellulosic crop. Results are compared with a fossil reference system producing the same products/services from fossil sources.  相似文献   

16.
A simple method for determining bioethanol content in gasoline containing bioethanol (denoted as E-gasoline in this study) is urgently required. Liquid scintillation counting (LSC) was employed based on the principle that 14C exists in bioethanol but not in synthetic ethanol. Bioethanol was extracted in two steps by water from E-gasoline containing 3% (E3) or 10% (E10) bioethanol. The 14C radioactivity was measured by LSC and converted to the amount of bioethanol. The bioethanol content in E-gasoline was determined precisely from the partition coefficient in the extraction and the amount of bioethanol in the water phases: 2.98 ± 0.10% for E3 and 10.0 ± 0.1% for E10 (means ± SD; n = 3). It appears that this method can be used to determine bioethanol content in E-gasoline quickly and easily.  相似文献   

17.

Background  

Exposure to nickel (Ni) and its chemical derivatives has been associated with severe health effects in human. On the contrary, poor knowledge has been acquired on target physiological processes or molecular mechanisms of this metal in model organisms, including Bacteria and Archaea. In this study, we describe an analysis focused at identifying proteins involved in the recovery of the archaeon Sulfolobus solfataricus strain MT4 from Ni-induced stress.  相似文献   

18.

Background  

Bacteria belonging to Planctomycetes display several unique morphological and genetic features and are found in a wide variety of habitats on earth. Their ecological roles in these habitats are still poorly understood. Planctomycetes have previously been detected throughout the year on surfaces of the kelp Laminaria hyperborea from southwestern Norway. We aimed to make a detailed investigation of the abundance and phylogenetic diversity of planctomycetes inhabiting these kelp surfaces.  相似文献   

19.

Background  

Pretreatment is an essential step in the enzymatic hydrolysis of biomass and subsequent production of bioethanol. Recent results indicate that only a mild pretreatment is necessary in an industrial, economically feasible system. The Integrated Biomass Utilisation System hydrothermal pretreatment process has previously been shown to be effective in preparing wheat straw for these processes without the application of additional chemicals. In the current work, the effect of the pretreatment on the straw cell-wall matrix and its components are characterised microscopically (atomic force microscopy and scanning electron microscopy) and spectroscopically (attenuated total reflectance Fourier transform infrared spectroscopy) in order to understand this increase in digestibility.  相似文献   

20.

Background  

Lignocellulosic materials are abundant and among the most important potential sources for bioethanol production. Although the pretreatment of lignocellulose is necessary for efficient saccharification and fermentation, numerous by-products, including furan derivatives, weak acids, and phenolic compounds, are generated in the pretreatment step. Many of these components inhibit the growth and fermentation of yeast. In particular, vanillin is one of the most effective inhibitors in lignocellulose hydrolysates because it inhibits fermentation at very low concentrations. To identify the genes required for tolerance to vanillin, we screened a set of diploid yeast deletion mutants, which are powerful tools for clarifying the function of particular genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号