首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Intrauterine herpes simplex virus infection   总被引:6,自引:0,他引:6  
Neonatal herpes simplex virus (HSV) infection usually is the consequence of intrapartum infection, with disease onset between 5 and 15 days of life. More recently, intrauterine HSV infection has been identified. Intrauterine infection is apparent within the first 24-48 hr of life and is associated with skin vesicles/scarring, chorioretinitis, and/or hydraencephaly. The recognition that babies with these findings can have disease caused by HSV should prompt enhanced physician awareness in the evaluation of newborns with suspected intrauterine infection. The frequency of intrauterine infection appears to be about 5% of all babies with neonatal HSV infection.  相似文献   

4.
5.
We showed that the expression of a single protein, glycoprotein D (gD-1), specified by herpes simplex virus type 1 (HSV-1) renders cells resistant to infection by HSV but not to infection by other viruses. Mouse (LMtk-) and human (HEp-2) cell lines containing the gene for gD-1 under control of the human metallothionein promoter II expressed various levels of gD-1 constitutively and could be induced to express higher levels with heavy metal ions. Radiolabeled viruses bound equally well to gD-1-expressing and control cell lines. Adsorbed viruses were unable to penetrate cells expressing sufficient levels of gD-1, based on lack of any cytopathic effects of the challenge virus and on failure to detect either the induction of viral protein synthesis or the shutoff of host protein synthesis normally mediated by a virion-associated factor. The resistance to HSV infection conferred by gD-1 expression was not absolute and depended on several variables, including the amount of gD-1 expressed, the dosage of the challenge virus, the serotype of the challenge virus, and the properties of the cells themselves. The interference activity of gD-1 is discussed in relation to the role of gD-1 in virion infectivity and its possible role in permitting escape of progeny HSV from infected cells.  相似文献   

6.
The latent herpes simplex virus   总被引:5,自引:0,他引:5  
  相似文献   

7.
8.
9.
10.
Immuno-electron microscopy of herpes simplex virus   总被引:1,自引:0,他引:1  
  相似文献   

11.
Uncoating the herpes simplex virus genome   总被引:2,自引:0,他引:2  
Initiation of infection by herpes simplex virus (HSV-1) involves a step in which the parental virus capsid docks at a nuclear pore and injects its DNA into the nucleus. Once "uncoated" in this way, the virus DNA can be transcribed and replicated. In an effort to clarify the mechanism of DNA injection, we examined DNA release as it occurs in purified capsids incubated in vitro. DNA ejection was observed following two different treatments, trypsin digestion of capsids in solution, and heating of capsids after attachment to a solid surface. In both cases, electron microscopic analysis revealed that DNA was ejected as a single double helix with ejection occurring at one vertex presumed to be the portal. In the case of trypsin-treated capsids, DNA release was found to correlate with cleavage of a small proportion of the portal protein, UL6, suggesting that UL6 cleavage may be involved in making the capsid permissive for DNA ejection. In capsids bound to a solid surface, DNA ejection was observed only when capsids were warmed above 4 degrees C. The proportion of capsids releasing their DNA increased as a function of incubation temperature with nearly all capsids ejecting their DNA when incubation was at 37 degrees C. The results demonstrate heterogeneity among HSV-1 capsids with respect to their sensitivity to heat-induced DNA ejection. Such heterogeneity may indicate a similar heterogeneity in the ease with which capsids are able to deliver DNA to the infected cell nucleus.  相似文献   

12.
13.
Some properties of herpes simplex virus   总被引:3,自引:0,他引:3  
  相似文献   

14.
15.
16.
17.
More than 50% of the U.S. population is infected with herpes simplex virus type-I (HSV-1) and global infectious estimates are nearly 90%. HSV-1 is normally seen as a harmless virus but debilitating diseases can arise, including encephalitis and ocular diseases. HSV-1 is unique in that it can undermine host defenses and establish lifelong infection in neurons. Viral reactivation from latency may allow HSV-1 to lay siege to the brain (Herpes encephalitis). Recent advances maintain that HSV-1 proteins act to suppress and/or control the lysosome-dependent degradation pathway of macroautophagy (hereafter autophagy) and consequently, in neurons, may be coupled with the advancement of HSV-1-associated pathogenesis. Furthermore, increasing evidence suggests that HSV-1 infection may constitute a gradual risk factor for neurodegenerative disorders. The relationship between HSV-1 infection and autophagy manipulation combined with neuropathogenesis may be intimately intertwined demanding further investigation.  相似文献   

18.
J C Macnab  A Orr    N B La Thangue 《The EMBO journal》1985,4(12):3223-3228
The cell proteins expressed in rat embryo cells transformed by herpes simplex virus (HSV) have been analysed by immunoprecipitation assays to determine those polypeptides which can be identified by immunoprecipitation with the sera of tumour-bearing animals and also with antisera to herpes simplex infected cells. Cell polypeptides commonly recognised by both these sera have been further characterised using a monoclonal antibody directed against a cellular polypeptide which accumulates on HSV-2 lytic infection. This monoclonal antibody recognises in HSV-transformed cells polypeptides of mol. wts. 90 000, 40 000 and 32 000. Further studies show that the accumulation of these polypeptides in HSV-transformed cells is not HSV specific but is a common feature of transformation or of cells which have been immortalised. We suggest that cellular polypeptides accumulating as a result of HSV infection may be of importance in the initiation of transformation by HSV, i.e., at the level of immortalisation of cells.  相似文献   

19.
The ribonucleotide reductase (ribonucleoside-diphosphate reductase; EC 1.17.4.1) induced by herpes simplex virus type 2 infection of serum-starved BHK-21 cells was purified to provide a preparation practically free of both eucaryotic ribonucleotide reductase and contaminating enzymes that could significantly deplete the substrates. Certain key properties of the herpes simplex virus type 2 ribonucleotide reductase were examined to define the extent to which it resembled the herpes simplex virus type 1 ribonucleotide reductase. The herpes simplex virus type 2 ribonucleotide reductase was inhibited by ATP and MgCl2 but only weakly inhibited by the ATP X Mg complex. Deoxynucleoside triphosphates were at best only weak inhibitors of this enzyme. ADP was a competitive inhibitor (K'i, 11 microM) of CDP reduction (K'm, 0.5 microM), and CDP was a competitive inhibitor (K'i, 0.4 microM) of ADP reduction (K'm, 8 microM). These key properties closely resemble those observed for similarly purified herpes simplex virus type 1 ribonucleotide reductase and serve to distinguish these virally induced enzymes from other ribonucleotide reductases.  相似文献   

20.
Analyses of the herpes simplex virus (HSV) DNA sequences which are present in three HSV thymidine kinase-transformed (HSVtk+) mouse cell lines have revealed that these cells contain relatively large and variable portions of the viral genome. Two of these cell lines do not contain the viral DNA sequences known to encode the early viral genes normally responsible for regulating tk gene expression during lytic HSV infections. This finding suggests that cell-associated viral tk gene expression may be regulated by cellular rather than viral control mechanisms. In addition, we have compared the viral DNA sequences present in one unstable HSVtk+ cell line to those present in tk- revertant and tk+ rerevertant cell lines sequentially derived from it. Our results have shown that within the limits of sensitivity of our mapping approach, these three related cell lines contain the same set of viral DNA sequences. Thus, gross changes in viral DNA content do not appear to be responsible for the different tk phenotypes of these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号