首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The neuronal ceroid lipofuscinoses (NCLs) are severe inherited neurodegenerative disorders affecting children. In this disease, lysosomes accumulate autofluorescent storage material and there is death of neurons. Five types of NCL are caused by mutations in lysosomal proteins (CTSD, CLN1/PPT1, CLN2/TTPI, CLN3 and CLN5), and one type is caused by mutations in a protein that recycles between the ER and ERGIC (CLN8). The CLN6 gene underlying a variant of late infantile NCL (vLINCL) was recently identified. It encodes a novel 311 amino acid transmembrane protein. Antisera raised against CLN6 peptides detected a protein of 30 kDa by Western blotting of human cells, which was missing in cells from some CLN6 deficient patients. Using immunofluorescence microscopy, CLN6 was shown to reside in the endoplasmic reticulum (ER). CLN6 protein tagged with GFP at the C-terminus and expressed in HEK293 cells was also found within the ER. Investigation of the effect of five CLN6 disease mutations that affect single amino acids showed that the mutant proteins were retained in the ER. These data suggest that CLN6 is an ER resident protein, the activity of which, despite this location, must contribute to lysosomal function.  相似文献   

2.
The neuronal ceroid lipofuscinoses (NCL) are a heterogenous group of monogenic autosomal recessive inherited progressive neurodegenerative diseases characterized by brain and retinal atrophy and the intracellular accumulation of autofluorescent lysosomal storage bodies resembling lipofuscin in neurons and other cells. Until today, eight forms of NCL have been classified in humans by clinical criteria, which result from mutations in at least six different genes (TPP1, CLN2, PPT1, CLN5, CLN6, and CLN8). NCL has also been reported in various domestic animal species including cattle, goat, sheep, cat, and certain dog breeds. In this report, the experimental analysis of canine PPT1, CLN5, CLN6, and CLN8 full-length cDNA sequences is described, and the current whole genome sequence assembly was used for gene structure analyses. Characterization of the four canine genes revealed a conserved organization with respect to the human orthologs. In general the gene size in dog is smaller compared to the human sequence due to shorter intron length. Using four individuals of Tibetan terrier with NCL, and a single affected Polish Owczarek Nizinny (PON) dog, we excluded the complete coding region of canine PPT1 and CLN8 and three of four exons of CLN5 and six of seven exons of CLN6 harboring disease-causing mutations.  相似文献   

3.
Neuronal Ceroid Lipofuscinoses (NCLs) have an incidence of 1 in 12,500 live births. These devastating neurodegenerative lysosomal storage diseases are characterized by the lysosomal accumulation of autofluorescent storage material (AFSM) similar to that seen in aging cells. Using patient derived lymphoblasts from three genetically distinct NCLs we report that AFSM for each NCL has distinct spectral properties. Moreover, by using pharmacological inhibitors to disrupt various biochemical pathways in normal control lymphoblasts we have determined that disruptions in microtubule assembly and non-muscle myosin II function results in accumulation of lysosomal AFSM. Interestingly, inhibition of autophagy did not result in AFSM. We conclude that cellular disturbances outside the lysosome in addition to compromised function of this organelle can result in accumulation of lysosomal AFSM in NCLs and possibly as a result of cellular aging.  相似文献   

4.
Elevated lysosomal pH in neuronal ceroid lipofuscinoses (NCLs).   总被引:1,自引:0,他引:1  
We report here the intracellular (pHi) and lysosomal pH in fibroblasts of six forms of neuronal ceroid lipofuscinoses (NCLs). Acid extrusion rate and pH(i) values were measured by the membrane-permeant acetoxymethyl ester of the indicator dye, 2',7'-bis(carboxyethyl)-5-(and-6)-carboxy-fluorescein (BCECF) and lysosomal pH by a spectrofluorometric assay utilizing a novel acidotropic probe, Lysosensor yellow/blue. Intracellular pH was normal in all NCLs. Elevated lysosomal pH was detected in all NCL forms except CLN2 and CLN8. Elevated pH most probably disturbs the catalytic activity of lysosomes and is one important factor in explaining accumulation of ceroid and lipofuscin-like autofluorescent lipopigments characteristic of NCLs. Using the novel spectrofluorometric assay introduced in this study provides a fast and repeatable technique to measure intralysosomal pH from cell suspensions.  相似文献   

5.
Neuronal ceroid lipofuscinosis (NCL) are a group of progressive neurodegenerative disorders of childhood, characterized by the endo-lysosomal storage of autofluorescent material. Impaired mitochondrial function is often associated with neurodegeneration, possibly related to the apoptotic cascade. In this study we investigated the possible effects of lysosomal accumulation on the mitochondrial compartment in the fibroblasts of two NCL forms, CLN1 and CLN6. Fragmented mitochondrial reticulum was observed in all cells by using the intravital fluorescent marker Mitotracker, mainly in the perinuclear region. This was also associated with intense signal from the lysosomal markers Lysotracker and LAMP2. Likewise, mitochondria appeared to be reduced in number and shifted to the cell periphery by electron microscopy; moreover the mitochondrial markers VDCA and COX IV were reduced following quantitative Western blot analysis. Whilst there was no evidence of increased cell death under basal condition, we observed a significant increase in apoptotic nuclei following Staurosporine treatment in CLN1 cells only. In conclusion, the mitochondrial compartment is affected in NCL fibroblasts invitro, and CLN1 cells seem to be more vulnerable to the negative effects of stressed mitochondrial membrane than CLN6 cells.  相似文献   

6.
Functional biology of the neuronal ceroid lipofuscinoses (NCL) proteins   总被引:3,自引:0,他引:3  
Neuronal ceroid lipofucinoses (NCLs) are a group of severe neurodegenerative disorders characterized by accumulation of autofluorescent ceroid lipopigment in patients' cells. The different forms of NCL share many similar pathological features but result from mutations in different genes. The genes affected in NCLs encode both soluble and transmembrane proteins and are localized to ER or to the endosomes/lysosomes. Due to selective vulnerability of the central nervous system in the NCL disorders, the corresponding proteins are proposed to have important, tissue specific roles in the brain. The pathological similarities of the different NCLs have led not only to the grouping of these disorders but also to suggestion that the NCL proteins function in the same biological pathway. Despite extensive research, including the development of several model organisms for NCLs and establishment of high-throughput techniques, the precise biological function of many of the NCL proteins has remained elusive. The aim of this review is to summarize the current knowledge of the functions, or proposed functions, of the different NCL proteins.  相似文献   

7.
8.
Neuronal ceroid lipofuscinoses (NCLs) are a group of lysosomal storage diseases characterized by neurological impairment and blindness. NCLs are almost always due to single mutations in different genes (CLN1–CLN8). Ubiquitous accumulation of undigested material and of a hydrophobic inner mitochondrial membrane protein, the subunit c of mitochondrial ATP synthase, has been described. Although protein mutation(s) in the endoplasmic reticulum–lysosomes axis can modify the trafficking and the recycling of different molecules, one of the upstream targets in these diseases may be represented by the balance of gene expression. To understand if and how neurons modify the levels of important genes during the first phases of the disease, it is important to characterize the mechanisms of neurodegeneration. Due to the impossibility of performing this analysis in humans, alternative models of investigation are required. In this study, a mouse model of human NCL8, the mnd mouse has been employed. The mnd mice recapitulate many clinical and histopathological features described in NCL8 patients. In this study, we found an altered expression of different genes in both central and peripheral organs associated with lipopigment accumulation. This is a preliminary approach, which could also be of interest in providing new diagnostic tools for NCLs.  相似文献   

9.
The neuronal ceroid lipofuscinoses (NCLs, Batten disease) are a group of inherited childhood-onset neurodegenerative disorders characterized by the lysosomal accumulation of undigested material within cells. To understand this dysfunction, we analysed trafficking of the cation-independent mannose 6-phosphate receptor (CI-MPR), which delivers the digestive enzymes to lysosomes. A common form of NCL is caused by mutations in CLN3, a multipass transmembrane protein of unknown function. We report that ablation of CLN3 causes accumulation of CI-MPR in the trans Golgi network, reflecting a 50% reduction in exit. This CI-MPR trafficking defect is accompanied by a fall in maturation and cellular activity of lysosomal cathepsins. CLN3 is therefore essential for trafficking along the route needed for delivery of lysosomal enzymes, and its loss thereby contributes to and may explain the lysosomal dysfunction underlying Batten disease.  相似文献   

10.
The neuronal ceroid lipofuscinoses (NCLs) are a group of inherited neurodegenerative disorders characterized by the accumulation of autofluorescent lipopigment in neurons and other cell types. Inheritance is autosomal recessive. Three main childhood subtypes are recognized: infantile (Haltia-Santavuori disease; MIM 256743), late infantile (Jansky-Bielschowsky disease; MIM 204500), and juvenile (Spielmeyer-Sjögren-Vogt, or Batten, disease; MIM 204200). The gene loci for the juvenile (CLN3) and infantile (CLN1) types have been mapped to human chromosomes 16p and 1p, respectively, by linkage analysis. Linkage analysis of 25 families segregating for late-infantile NCL has excluded these regions as the site of this disease locus (CLN2). The three childhood subtypes of NCL therefore arise from mutations at distinct loci.  相似文献   

11.
The neuronal ceroid lipofuscinoses (NCLs) are an intriguing group of inherited neurodegenerative disorders characterized by blindness, progressive psychomotor deterioration and death of neocortical neurons. Clinically, four major NCL groups have been identified: infantile, late infantile, juvenile and adult. In recent years, our understanding of the molecular basis of different NCLs has advanced significantly. The accumulation of autofluorescent material in patients' tissues has been shown to be caused by defects in either lysosomal enzymes or in novel membrane proteins of unknown function. Although the accumulated material is biochemically well defined and some of the causative mutations are known, a unifying hypothesis for the molecular basis of the NCLs remains elusive. Further work will be required to characterize the interactiving molecules and metabolic pathways involved in the pathogenesis of NCLs.  相似文献   

12.
The Neuronal Ceroid Lipofuscinoses (NCL), otherwise known as Batten disease, are a group of neurodegenerative diseases caused by mutations in 13 known genes. All except one NCL is autosomal recessive in inheritance, with similar aetiology and characterised by the accumulation of autofluorescent storage material in the lysosomes of cells. Age of onset and the rate of progression vary between the NCLs. They are collectively one of the most common lysosomal storage diseases, but the enigma remains of how genetically distinct diseases result in such remarkably similar pathogenesis. Much has been learnt from cellular studies about the function of the proteins encoded by the affected genes. Such research has utilised primitive unicellular models such as yeast and amoeba containing gene orthologues, cells derived from naturally occurring (sheep) and genetically engineered (mouse) animal models or patient-derived cells. Most recently, patient-derived induced pluripotent stem cell (iPSC) lines have been differentiated into neural cell-types to study molecular pathogenesis in the cells most profoundly affected by disease. Here, we review how cell models have informed much of the biochemical understanding of the NCLs and how more complex models are being used to further this understanding and potentially act as platforms for therapeutic efficacy studies in the future.  相似文献   

13.
The neuronal ceroid lipofuscinoses (NCLs) are lysosomal storage disorders and together are the most common degenerative brain diseases in childhood. They are a group of disorders linked by the characteristic accumulation of abnormal storage material in neurons and other cell types, and a degenerative disease course. All NCLs are characterized by a combination of dementia, epilepsy, and motor decline. For most childhood NCLs, a progressive visual failure is also a core feature. The characteristics of these symptoms can vary and the age at disease onset ranges from birth to young adulthood. Genetic heterogeneity, with fourteen identified NCL genes and wide phenotypic variability render diagnosis difficult. A new NCL classification system based on the affected gene and the age at disease onset allows a precise and practical delineation of an individual patient's NCL type. A diagnostic algorithm to identify each NCL form is presented here. Precise NCL diagnosis is essential not only for genetic counseling, but also for the optimal delivery of care and information sharing with the family and other caregivers. These aspects are challenging because there are also potential long term complications which are specific to NCL type. Therefore care supported by a specifically experienced team of clinicians is recommended. As the underlying pathophysiological mechanism is still unclear for all NCL forms, the development of curative therapies remains difficult. This article is part of a Special Issue entitled: The neuronal ceroid lipofuscinoses or Batten Disease.  相似文献   

14.
The neuronal ceroid lipofuscinoses (NCLs) are a group of autosomal recessive neurodegenerative diseases characterized by the accumulation of autofluorescent lipopigment in various tissues and by progressive cell death in the brain and retina. The gene for variant late-infantile NCL (vLINCL), CLN6, was previously mapped to chromosome 15q21-23 and is predicted to be orthologous to the genes underlying NCL in nclf mice and in South Hampshire and Merino sheep. The gene underlying this disease has been identified with six different mutations found in affected patients and with a 1-bp insertion in the orthologous Cln6 gene in the nclf mouse. CLN6 encodes a novel 311-amino acid protein with seven predicted transmembrane domains, is conserved across vertebrates and has no homologies with proteins of known function. One vLINCL mutation, affecting a conserved amino acid residue within the predicted third hydrophilic loop of the protein, has been identified, suggesting that this domain may play an important functional role.  相似文献   

15.
Human neuronal ceroid lipofuscinoses (NCLs) are a group of genetic neurodegenerative diseases characterized by progressive death of neurons in the central nervous system (CNS) and accumulation of abnormal lysosomal storage material. Infantile NCL (INCL), the most severe form of NCL, is caused by mutations in the Ppt1 gene, which encodes the lysosomal enzyme palmitoyl-protein thioesterase 1 (Ppt1). We generated mutations in the Ppt1 ortholog of Drosophila melanogaster to characterize phenotypes caused by Ppt1 deficiency in flies. Ppt1-deficient flies accumulate abnormal autofluorescent storage material predominantly in the adult CNS and have a life span 30% shorter than wild type, phenotypes that generally recapitulate disease-associated phenotypes common to all forms of NCL. In contrast, some phenotypes of Ppt1-deficient flies differed from those observed in human INCL. Storage material in flies appeared as highly laminar spherical deposits in cells of the brain and as curvilinear profiles in cells of the thoracic ganglion. This contrasts with the granular deposits characteristic of human INCL. In addition, the reduced life span of Ppt1-deficient flies is not caused by progressive death of CNS neurons. No changes in brain morphology or increases in apoptotic cell death of CNS neurons were detected in Ppt1-deficient flies, even at advanced ages. Thus, Ppt1-deficient flies accumulate abnormal storage material and have a shortened life span without evidence of concomitant neurodegeneration.  相似文献   

16.
Neuronal ceroid lipofuscinoses (NCLs) are heterogenic inherited lysosomal storage diseases that have been described in a number of species including humans, sheep, cattle, cats and a number of different dog breeds, including Salukis. Here we present a novel genetic variant associated with the disease in this particular breed of dog. In a clinical case, a Saluki developed progressive neurological signs, including disorientation, anxiety, difficulties in eating, seizures and loss of vision, and for welfare reasons, was euthanized at 22 months of age. Microscopy showed aggregation of autofluorescent storage material in the neurons of several brain regions and also in the retina. The aggregates showed positive staining with Sudan black B and periodic acid Schiff, all features consistent with NCL. Whole genome sequencing of the case and both its parents, followed by variant calling in candidate genes, identified a new variant in the CLN8 gene: a single bp insertion (c.349dupT) in exon 2, introducing an immediate stop codon (p.Glu117*). The case was homozygous for the insertion, and both parents were heterozygous. A retrospective study of a Saluki from Australia diagnosed with NCL identified this case as being homozygous for the same mutation. This is the fourth variant identified in CLN8 that causes NCL in dogs.  相似文献   

17.
The neuronal ceroid lipofuscinoses (NCLs) are a group of rare genetic diseases characterised clinically by the progressive deterioration of mental, motor and visual functions and histopathologically by the intracellular accumulation of autofluorescent lipopigment – ceroid – in affected tissues. The NCLs are clinically and genetically heterogeneous and more than 14 genetically distinct NCL subtypes have been described to date (CLN1CLN14) (Haltia and Goebel, 2012 [1]). In this review we will chronologically summarise work which has led over the years to identification of NCL genes, and outline the potential of novel genomic techniques and related bioinformatic approaches for further genetic dissection and diagnosis of NCLs. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.  相似文献   

18.
The neuronal ceroid lipofuscinoses (NCL) are a group of disorders defined by shared clinical and pathological features, including seizures and progressive decline in vision, neurocognition, and motor functioning, as well as accumulation of autofluorescent lysosomal storage material, or ‘ceroid lipofuscin’. Research has revealed thirteen distinct genetic subtypes. Precisely how the gene mutations lead to the clinical phenotype is still incompletely understood, but recent research progress is starting to shed light on disease mechanisms, in both gene-specific and shared pathways. As the application of new sequencing technologies to genetic disease diagnosis has grown, so too has the spectrum of clinical phenotypes caused by mutations in the NCL genes. Most genes causing NCL have probably been identified, underscoring the need for a shift towards applying genomics approaches to achieve a deeper understanding of the molecular basis of the NCLs and related disorders. Here, we summarize the current understanding of the thirteen identified NCL genes and the proteins they encode, touching upon the spectrum of clinical manifestations linked to each of the genes, and we highlight recent progress leading to a broader understanding of key pathways involved in NCL disease pathogenesis and commonalities with other neurodegenerative diseases.  相似文献   

19.
The neuronal ceroid lipofuscinoses (NCLs) are a group of inherited neurodegenerative disorders characterized by the accumulation of autofluorescent storage material in many cell types, including neurons. Most NCL subtypes are inherited in an autosomal recessive manner and characterized clinically by epileptic seizures, progressive psychomotor decline, visual failure, variable age of onset, and premature death. To date, seven genes underlying human NCLs have been identified. Most of the mutations in these genes are associated with specific disease subtypes, while some result in variable disease onset, severity and progression. In addition to these, there are still disease subgroups with unknown molecular genetic backgrounds. Although apparent clinical homogeneity exists within some of these subgroups, actual genetic heterogeneity may complicate gene identification. Additional clues to the identification of these unknown genes may come from animal models of NCL and from functional studies of already known genes which may suggest further candidates.  相似文献   

20.
Molecular genetics of the NCLs -- status and perspectives   总被引:2,自引:0,他引:2  
The neuronal ceroid lipofuscinoses (NCLs) are a group of inherited neurodegenerative disorders characterized by the accumulation of autofluorescent storage material in many cell types, including neurons. Most NCL subtypes are inherited in an autosomal recessive manner and characterized clinically by epileptic seizures, progressive psychomotor decline, visual failure, variable age of onset, and premature death. To date, seven genes underlying human NCLs have been identified. Most of the mutations in these genes are associated with specific disease subtypes, while some result in variable disease onset, severity and progression. In addition to these, there are still disease subgroups with unknown molecular genetic backgrounds. Although apparent clinical homogeneity exists within some of these subgroups, actual genetic heterogeneity may complicate gene identification. Additional clues to the identification of these unknown genes may come from animal models of NCL and from functional studies of already known genes which may suggest further candidates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号