首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conformation of an elastin-mimetic recombinant protein, [(VPGVG)4(VPGKG)]39, is investigated using solid-state NMR spectroscopy. The protein is extensively labeled with 13C and 15N, and two-dimensional 13C-13C and 15N-13C correlation experiments were carried out to resolve and assign the isotropic chemical shifts of the various sites. The Pro 15N, 13Calpha, and 13Cbeta isotropic shifts, and the Gly-3 Calpha isotropic and anisotropic chemical shifts support the predominance of type-II beta-turn structure at the Pro-Gly pair but reject a type-I beta-turn. The Val-1 preceding Pro adopts mostly beta-sheet torsion angles, while the Val-4 chemical shifts are intermediate between those of helix and sheet. The protein exhibits a significant conformational distribution, shown by the broad line widths of the 15N and 13C spectra. The average chemical shifts of the solid protein are similar to the values in solution, suggesting that the low-hydration polypeptide maintains the same conformation as in solution. The ability to measure these conformational restraints by solid-state NMR opens the possibility of determining the detailed structure of this class of fibrous proteins through torsion angles and distances.  相似文献   

2.
Proton nmr parameters are reported for DMSO-d6 solutions of two receptor-selective substance P analogues: Ac[Arg6,Pro9]SP6-11, which is selective for the NK-1 (SP-P) receptor and [pGlu6,N-MePhe8]SP6-11, which selectively activates the NK-3 (SP-N) receptor. Full peak assignments of both analogues were obtained by COSY experiments. The chemical shifts, coupling constants, and temperature coefficients of amide proton chemical shifts as well as NOESY effects and calculated side-chain rotamer populations of Phe side chains are reported for both peptides. Analysis of coupling constants and temperature coefficients together with the nuclear Overhauser enhancement spectroscopy effects suggest that Ac[Arg6,Pro9]SP6-11 has a trans configuration about the Phe8-Pro9 amide bond and the preferred conformation of this analogue has a type I beta-turn. The nmr data for [pGlu6,N-MePhe8]SP6-11 suggest that this peptide exists as a mixture of cis-trans isomers in which the cis isomer can preferably adopt a type VI beta-turn conformation, and the trans isomer can adopt a gamma-turn conformation. There are indications that the two last turns are stabilized by a hydrogen bond between the syn carboxamide proton and the pGlu ring carbonyl.  相似文献   

3.
The X-ray structure of [N-acetyl]-apamin has been solved at 0.95 A resolution. It consists of an 1-7 N-terminal loop stabilized by an Asn-beta-turn motif (2-5 residues) and a helical structure spanning the 9-18 residues tightly linked together by two disulfide bonds. However, neither this accurate X-ray nor the available solution structures allowed us to rationally explain the unusual downfield shifts observed for the Asn(2) and Glu(7) amide signals upon Glu(7) carboxylic group ionization. Thus, apamin and its [N-acetyl], [Glu(7)Gln], [Glu(7)Asp], and [Asn(2)Abu] analogues and submitted to NMR structural studies as a function of pH. We first demonstrated that the Glu(7) carboxylate group is responsible for the large downfield shifts of the Asn(2) and Glu(7) amide signals. Then, molecular dynamics (MD) simulations suggested unexpected interactions between the carboxylate group and the Asn(2) and Glu(7) amide protons as well as the N-terminal alpha-amino group, through subtle conformational changes that do not alter the global fold of apamin. In addition, a structural study of the [Asn(2)Abu] analogue, revealed an essential role of Asn(2) in the beta-turn stability and the cis/trans isomerization of the Ala(5)-Pro(6) amide bond. Interestingly, this proline isomerization was shown to also depend on the ionization state of the Glu(7) carboxyl group. However, neither destabilization of the beta-turn nor proline isomerization drastically altered the helical structure that contains the residues essential for binding. Altogether, the Asn(2) and Glu(7) residues appeared essential for the N-terminal loop conformation and thus for the selective formation of the native disulfide bonds but not for the activity.  相似文献   

4.
Solution conformations of three series of model peptides, homochiral Ac-Pro-L-Xaa-NHCH3 and heterochiral Ac-Pro-D-Xaa-NHCH3 (Xaa = Val, Phe, Leu, Abu, Ala) as well as alpha,beta-unsaturated Ac-Pro-delta Xaa-NHCH3 [delta Xaa = delta Val, (Z)-delta Phe, (Z)-delta Leu, (Z)-delta Abu] were investigated in CDCl3 and CH2Cl2 by 1H-, 13C-NMR, and FTIR spectroscopy. NH stretching absorption spectra, solvent shifts delta delta for NH (Xaa) and NHCH3 on going from CDCl3 to (CD3)2SO, diagnostic interresidue proton NOEs, and trans-cis isomer ratios were examined. These studies performed showed the essential difference in conformational propensities between homochiral peptides (L-Xaa) on the one hand and heterochiral (D-Xaa) and alpha,beta-dehydropeptides (delta Xaa) on the other. Former compounds are conformationally flexible with an inverse gamma-bend, a beta-turn, and open forms in an equilibrium depending on the nature of the Xaa side chain. Conformational preferences of heterochiral and alpha,beta-dehydropeptides are very similar, with the type-II beta-turn as the dominating structure. There is no apparent correlation between conformational properties and the nature of the Xaa side chain within the two groups. The beta-turn formation propensity seems to be somewhat greater in alpha,beta-unsaturated than in heterochiral peptides, but an estimation of beta-folded conformers is risky.  相似文献   

5.
Triple-resonance NMR experiments were used to assign the (13)C(alpha), (13)C(beta), (15)N and NH resonances for all the residues in the denatured state of a destabilized protein L variant in 2 M guanidine. The chemical shifts of most resonances were very close to their random coil values. Significant deviations were observed for G22, L38 and K39; increasing the denaturant concentration shifted the chemical shifts of these residues towards theory random coil values. Medium-range nuclear Overhauser enhancements were detected in segments corresponding to the turn between the first two strands, the end of the second strand through the turn between the second strand and the helix, and the turn between the helix and the third strand in 3D H(1), N(15)-HSQC-NOESY-HSQC experiments on perdeuterated samples. Longer-range interactions were probed by measuring the paramagnetic relaxation enhancement produced by nitroxide spin labels introduced via cysteine residues at five sites around the molecule. Damped oscillations in the magnitude of the paramagnetic relaxation enhancement as a function of distance along the sequence suggested native-like chain reversals in the same three turn regions. The more extensive interactions within the region corresponding to the first beta-turn than in the region corresponding to the second beta-turn suggests that the asymmetry in the folding reaction evident in previous studies of the protein L folding transition state is already established in the denatured state.  相似文献   

6.
The crystal-state conformations of two octapeptides, pBrBz-(D-Iva)8-OtBu (8I) and Ac-[L-(alphaMe)Val]8-OH (8II), the heptapeptide Z-[L-(alphaMe)Val]7-OH (7), the hexapeptide Z-[L-(alphaMe)Leu]6-OtBu (6) and the tetrapeptide alkylamide Z-(Aib)2-L-Glu(OMe)-L-Ala-L-Lol (5) were assessed by x-ray diffraction analyses. Two independent molecules are observed in the asymmetric unit of each L-(alphaMe)Val homo-peptide. All four homo-peptides are folded in a regular 3(10)-helical structure (only the C-terminal H-bonded conformation of the D-Iva octapeptide is distorted to a type-I beta-turn). The hydroxyl groups of the C-terminal carboxyl moieties of the two L-(alphaMe)Val homo-peptides participate in an oxy-analogue of the type-III beta-turn conformation. While the two L-(alphaMe)Val 3(10)-helices are right-handed, the D-Iva and L-(alphaMe)Leu helices are left-handed. The tetrapeptide alkylamide is 3(10)-helical at the N-terminus, but it is mixed 3(10)/alpha-helical at the C-terminus.  相似文献   

7.
Proton nuclear magnetic resonance parameters are reported for DMSO-d6 solutions of the eosinophil chemotactic tetrapeptides, Val1-Gly2-Ser3-Glu4 and Ala1-Gly2-Ser3-Glu4, as well as three analogues of the Val1 tetrapeptide, D-Val1, Ala2 and Ala3. The synthesis of Val-(S)-[alpha-2 H1] Gly-Ala-Glu, in which the glycine has been stereospecifically deuterated in the H alpha 3 position, has allowed the assignment of the 1H resonances belonging to individual H alpha 2 and H alpha 3 glycine methylene protons. Simulation of the glycine ABX spin system yields two vicinal coupling constants which are consistent with a highly preferred conformation about the glycine HN-C alpha bond. The chemical shifts, coupling constants, temperature coefficients of amide proton chemical shifts and calculated side chain rotamer populations are reported for all peptides. The coupling constant analysis and temperature coefficients of amide proton chemical shifts together suggest that a type I beta-turn conformation is preferred by the Ala3 analogue. The 1H n.m.r. parameters of the other peptides suggest that these can also adopt a beta-turn conformation in DMSO. There are, however, considerable differences in the extent of conformational averaging undergone by the various peptides.  相似文献   

8.
A variety of structural changes were made in the C-terminals of four potent antidiuretic (V2) antagonists. The parent analogs were all derivatives of [1-(beta-mercapto-beta,beta-cyclopentamethylenepropionic acid)]arginine-vasopressin, d(CH2)5AVP, namely d(CH2)5[D-Phe2,Ile4]AVP, d(CH2)5[D-Ile2,Ile4]AVP, d(CH2)5[D-Tyr(Et)2, Val4]AVP and d(CH2)5[D-Tyr(Et)2,Ile4]AVP. A number of amino acid amides were substituted for the C-terminal 9-glycinamide without reducing their V2-antagonistic potencies in rats. Many non-amino acid structures were also tolerated at the C-terminals of these antagonists and this end of these peptides can be prolonged without interfering with antagonistic potencies. Such altered V2-antagonists may be useful for the development of radioactive ligands, affinity labels and in affinity columns for studies on antidiuretic receptors. These C-terminal modifications also provide useful information for the further development of potent and specific V2-antagonists which can be valuable pharmacological tools and also promise to become useful clinically for the treatment of excessive water retention.  相似文献   

9.
Mallik B  Lambris JD  Morikis D 《Proteins》2003,53(1):130-141
Compstatin is a 13-residue cyclic peptide that has the potential to become a therapeutic agent against unregulated complement activation. In our effort to understand the structural and dynamic characteristics of compstatin that form the basis for rational and combinatorial optimization of structure and activity, we performed 1-ns molecular dynamics (MD) simulations. We used as input in the MD simulations the ensemble of 21 lowest energy NMR structures, the average minimized structure, and a global optimization structure. At the end of the MD simulations we identified five conformations, with populations ranging between 9% and 44%. These conformations are as follows: 1) coil with alphaR-alphaR beta-turn, as was the conformation of the initial ensemble of NMR structures; 2) beta-hairpin with epsilon-alphaR beta-turn; 3) beta-hairpin with alphaR-alphaR beta-turn; 4) beta-hairpin with alphaR-beta beta-turn; and 5) alpha-helical. Conformational switch was possible with small amplitude backbone motions of the order of 0.1-0.4 A and free energy barrier crossing of 2-11 kcal/mol. All of the 21 MD structures corresponding to the NMR ensemble possessed a beta-turn, with 14 structures retaining the alphaR-alphaR beta-turn type, but the average minimized structure and the global optimization structures were converted to alpha-helical conformations. Overall, the MD simulations have aided to gain insight into the conformational space sampled by compstatin and have provided a measure of conformational interconversion. The calculated conformers will be useful as structural and possibly dynamic templates for optimization in the design of compstatin using structure-activity relations (SAR) or dynamics-activity relations (DAR).  相似文献   

10.
Chemical and photoaffinity cross-linking experiments as well as ligand affinity blotting techniques were used to label the V1 vasopressin receptor. In order to determine the optimal reaction conditions, pig liver membranes were incubated with 5 nM [8-lysine]vasopressin (LVP) labeled with 125I and then cross-linked with the use of DMS (dimethyl suberimidate), EGS [ethylene glycol bis(succinimidyl succinate)] or HSAB (hydroxysuccinimidyl p-azidobenzoate) at different final concentrations. Consistently, EGS was found to label with high yield one band of Mr 60,000 in rat and pig liver membranes when used at a final concentration between 0.05 and 0.25 mM. The protein of Mr 60,000 is labeled in a concentration-dependent manner when pig liver membranes are incubated with increasing concentrations of 125I-LVP and then cross-linked with EGS. The label was displaced by increasing concentrations of unlabeled LVP or d(CH2)5 [Tyr2(Me),-Tyr9(NH2)]AVP (V1/V2 antagonist). A protein band of similar molecular mass was cross-linked with 125I-LVP in rat liver membranes. The reaction was specific since the incorporation of label into the protein of Mr 60,000 was inhibited by LVP, [8-arginine]vasopressin (AVP), the V1/V2-antagonist, and the specific V1-antagonist d(CH2)5 [Tyr2(Me)]AVP, only partially by [des-Gly9]AVP (V2-agonist) and by oxytocin, and not at all by angiotensin II. Incubation of nitrocellulose containing membrane proteins from pig liver with 125I-LVP showed the labeling of a band of Mr 58,000 that is inhibited by an excess of unlabeled LVP. This band of Mr 58,000 seems to correspond with the protein of Mr 60,000 revealed by the cross-linking experiment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The synthesis of Leu-enkephalin selectively 17O-enriched in Gly2 and Gly3 is reported. The 17O-nmr chemical shifts of [17O-Gly2, Leu5]- and [17O-Gly3, Leu5]-enkephalins in H2O are almost identical and independent of the pH. Since hydrogen bonding is the dominant factor governing the chemical shifts of the peptide oxygen, it can be concluded that the hydration state of both oxygens is identical and independent of the pH. The 17O chemical shifts of the [17O-Leu5]-enkephalin terminal carboxyl group at pH approximately 1.9 and 5.6 are very different in H2O but very similar in CH3CN/DMSO (4:1) solution. This suggests that the protonation state of the carboxyl group at both pH values in CH3CN/DMSO solution is the same and consequently that Leu-enkephalin exists in the neutral form at pH approximately 5.6. In this organic mixed solvent system both Gly2 and Gly3 oxygen resonances exhibit a significant shift to high frequency by the same extent (delta delta approximately 30 ppm). It is concluded that both peptide oxygens are not hydrogen bonded to an appreciable extent and that no specific 2----5 hydrogen bonding exists to an appreciable extent. This conclusion is in agreement with the energy of activation for molecular rotation, as determined from T1 measurements, which was found to be almost identical for both [17O-Gly2, Leu5]- and [17O-Gly3, Leu5]-enkephalins in CH3CN/DMSO (4:1) mixed solvent.  相似文献   

12.
The interaction of an antagonist of arginine vasopressin (AVP), d(CH2)5-D-Tyr(Et)VAVP, with renal tubular V2 receptors were studied in medullary membrane preparations from kidneys of Sprague-Dawley and Brattleboro rats. In both rat strains, V2 receptors had comparable KD and Bmax values for binding of [3H]AVP. In vitro studies revealed that the V2-antagonist was more potent than cold AVP in displacing [3H]AVP. In vivo treatment of Sprague-Dawley rats with the antagonist over one week resulted only in a transient state of diabetes insipidus (DI). No specific [3H]AVP binding was detectable throughout the period of administration. Chronic treatment of Brattleboro rats resulted in a complete normalization of water intake. This agonistic effect was also associated with undetectable [3H]AVP binding. After stopping the infusion of d(CH2)5-D-Tyr(Et)VAVP, Bmax values tended to rise but had still not reached base line values after 6 days. In contrast, the chronic infusion of AVP in Brattleboro rats resulted in a reduction in water intake which was accompanied by a decreased Bmax. [3H]AVP binding remained detectable during the entire treatment period. Thereafter Bmax was restored to base line values within 2 days of stopping the infusion. These results suggest that d(CH2)5-D-Tyr(Et)VAVP has a high affinity for V2 receptors in both Sprague-Dawley and Brattleboro rats. Its rate of dissociation from the receptor appears to be much slower than that of AVP. In Brattleboro rats, the binding of d(CH2)5-D-Tyr(Et)VAVP leads to an antidiuretic response. In Sprague-Dawley rats, a transient diuretic response is followed by a progressive normalization in water intake. This occurs despite persistent and complete blockade of renal medullary V2 receptors.  相似文献   

13.
Mimetics of beta-turn structures in proteins have been used to calibrate the relative reactivities toward deamidation of asparagine residues in the two central positions of a beta-turn and in a random coil. N-Acetyl-Asn-Gly-6-aminocaproic acid, an acyclic analog of a beta-turn mimic undergoes deamidation of the asparaginyl residue through a succinimide intermediate to generate N-acetyl-Asp-N-Gly-6-aminocaproic acid (6-aminocaproic acid, hereafter Aca) and N-acetyl-L-iso-aspartyl (isoAsp)-Gly-Aca (pH 8.8, 37 degrees C) approximately 3-fold faster than does the cyclic beta-turn mimic cyclo-[L-Asn-Gly-Aca] with asparagine at position 2 of the beta-turn. The latter compound, in turn, undergoes deamidation approximately 30-fold faster than its positional isomer cyclo-[Gly-Asn-Aca] with asparagine at position 3 of the beta-turn. Both cyclic peptides assume predominantly beta-turn structures in solution, as demonstrated by NMR and circular dichroism characterization. The open-chain compound and its isomer N-acetyl-Gly-Asn-Aca assume predominantly random coil structures. The latter isomer undergoes deamidation 2-fold slower than the former. Thus the order of reactivity toward deamidation is: asparagine in a random coil approximately 3x(asparagine) in position 2 of a beta-turn approximately 30x (asparagine) in position 3 of a beta-turn.  相似文献   

14.
The three-dimensional structures of [Cys3,6,Tyr8]-, [Gly2,Cys3,6,Tyr8]- and [DCys3,Cys6]substance P, designed as conformational analogues of substance P, have been studied by 1H-NMR (500 MHz) in different solvents and by energy calculations. As previously observed for substance P and physalaemin, two tachykinins acting via the NK-1 receptor, [Cys3,6,Tyr8]substance P presents an alpha-helical structure of the 4----8 sequence in methanol. This structure is stabilized by a beta-turn III via the formation of three hydrogen bonds involving the Cys-6, Phe-7 and Tyr-8 NH groups. In contrast to substance P, two of these hydrogen bonds are still present in dimethyl sulfoxide and in water the Cys-6 NH hydrogen bond is the only one remaining, such that a beta-turn structure inside the ring can be envisaged. In close agreement with the NMR data, the energy calculations lead to three types of folding for the core of [Cys3,6,Tyr8]substance P: a beta-turn III, a less stable beta-turn I (delta E = 3 kcal), and a beta-turn II (delta E = 4.6 kcal). The structure of Gly-Leu-Met-NH2 is strongly affected by changing the hydrophobicity of the medium. The most stable calculated conformation is the helix; however, numerous unrelated structures are destabilized by about 2-3 kcal/mol. These data are analyzed and discussed in connection with the high potency of [Cys3,6,Tyr8]substance P for both the NK-1 and NK-3 binding sites; that is the internal region of tachykinins (non-homologous amino acids) might present a similar three-dimensional structure when bound to the receptors (which may be at the origin of some lack of selectivity), whereas paradoxically the selectivity may be due to the common C-terminal sequence.  相似文献   

15.
G L Kovacs  A M Baars  D De Wied 《Life sciences》1992,50(21):1625-1630
Intracerebroventricular (i.c.v.) administration of the neurohypophyseal neuropeptide arginine8-vasopressin (AVP) results in a dose-dependent attenuation of endotoxin-induced fever (EIF) in rats. Specific antagonists of the neuropeptided(CH2)5[Tyr(Me)2]AVP for V1 receptors, d(CH2)5[dlle2lle4]AVP for the V2 receptors and Des-Gly,NH2d(CH2)5[Tyr)Me2)Thr4Orn8]vasotocin, an antagonist of the oxytocin receptors (AOXT), failed to modify EIF when administered i.c.v. Relatively high doses (100 ng) of all three peptide antagonists effectively blocked the antipyretic effect of AVP. Administered in smaller doses (10 or 30 ng), however, a more specific interaction was observed, i.e. the V1 antagonist being the only effective compound in preventing the effect of AVP. Although the data indicate that peptide-antagonist interactions should be interpreted carefully, the present experiments confirm previous observations on the involvement of V1-type receptors in the antipyretic action of AVP and suggest additional interactions with V2 vasopressinergic and oxytocinergic receptors.  相似文献   

16.
Vibrational circular dichroism (VCD) spectroscopic features of type II beta-turns were characterized previously, but, criteria for differentiation between beta-turn types had not been established yet. Model tetrapeptides, cyclized through a disulfide bridge, were designed on the basis of previous experimental results and the observed incidence of amino acid residues in the i + 1 and i + 2 positions in beta-turns, to determine the features of VCD spectra of type I and II beta-turns. The results were correlated with electronic circular dichroism (ECD) spectra and VCD spectra calculated from conformational data obtained by molecular dynamics (MD) simulations. All cyclic tetrapeptides yielded VCD signals with a higher frequency negative and a lower frequency positive couplet with negative lobes overlapping. MD simulations confirmed the conformational homogeneity of these peptides in solution. Comparison with ECD spectroscopy, MD, and quantum chemical calculation results suggested that the low frequency component of VCD spectra originating from the tertiary amide vibrations could be used to distinguish between types of beta-turn structures. On the basis of this observation, VCD spectroscopic features of type II and VIII beta-turns and ECD spectroscopic properties of a type VIII beta-turn were suggested. The need for independent experimental as well as theoretical investigations to obtain decisive conformational information was recognized.  相似文献   

17.
Arginine vasopressin (AVP), a nine-amino acid neurohypophyseal hormone, is capable of replacing the helper cell requirement for IFN-gamma production by Lyt-2+ mouse splenic lymphocytes. We present data here showing that the AVP helper signal occurs via interaction with a novel R on splenic lymphocytes and involves primarily the N-terminal six-amino acid cyclic ring (pressinoic acid) with the C-terminal three-amino acid end of AVP playing a minor role. Pressinoic acid was capable of providing help at concentrations similar to those of AVP, whereas oxytocin and isoleucine pressinoic acid were 10- and 100-fold less effective, respectively. Isoleucine pressinoic acid has the same structure as pressinoic acid except for the substitution of isoleucine for phenylalanine in position 3 of the sequence. Consistent with the function data, R binding competitions with splenic lymphocyte membrane preparations showed that AVP and pressinoic acid competed similarly with [3H]AVP, whereas oxytocin and isoleucine pressinoic acid were much less effective competitors. Further characterization of the AVP lymphocyte R was performed using AVP analogues having well defined agonist and antagonist activities on either V1 (vasopressor) R or V2 (antidiuretic) R. The AVP helper signal was blocked by the V1 antagonist [d(CH2)1(5) Tyr(methyl)]AVP but not by another V1 antagonist, [d(CH2)1(5)D-Tyr(ethyl)2Val4]AVP. Both V1-R antagonists were able to block [3H]AVP binding to the V1-R on liver cells, whereas only the V1 antagonist that blocked AVP help was able to compete effectively for the spleen AVP-R. Neither a V2 agonist nor a V2 antagonist had any effect on AVP help in IFN-gamma production. These data strongly indicate the presence of a novel AVP-R on spleen lymphocytes, which is related to the classic V1-R on liver cell membranes.  相似文献   

18.
The polyphemusins present in the hemocytes of the horsechoe crab and their structurally modified analogs have been shown to exhibit activity against HIV-1. Among the many variants, T22 ([Tyr(5,12), Lys(7)]-polyphemusin II), and its shorter and more potent analog, T140 [Arg(1)-Arg-2-Nal-Cys-Tyr(5)-Arg-Lys-D-Lys-Pro-Tyr(10)-Arg-Cit-Cys-Arg(14)] (Polyphemusin II-derived peptide), affect the HIV-cell fusion process and inhibit the T-cell line-tropic (T-tropic) HIV-1 infection. Conformational studies of polyphemusin II derived peptide have been carried out by (1)H and (13)C 2D-NMR and MD simulations in water and HFA (40%). The NMR parameters of chemical shift, temperature coefficients of the NH chemical shifts, (3)JNHalpha coupling constants and the pattern of nOe's were used to deduce the structural characteristics. Solution structures were generated using dihedral and distance restraints by MD simulations. The structures are characterized by a dominant family possessing an anti-parallel beta-pleated sheet that is constrained by the disulphide bridge between Cys4 and Cys13. The two strands of the beta-sheet are joined by a Type II' beta-turn spanning the residues Lys(7)-D-Lys(8)-Pro(9)-Tyr(10). This conformation is present in both water and HFA. The only difference in the two structures is that the beta-strands are more cohesive in HFA being firmly held by H-bonds. The solution structures generated from MD simulations were refined by MARDIGRAS to R-factors of 0.44 and 0.57 in water and HFA respectively. The conformation deduced for T140 is very similar to that reported for T22 and is thought to be associated with their anti HIV activity.  相似文献   

19.
A radioiodinated vasopressin antagonist, d(CH2)5[Tyr(NH2)9]AVP has been prepared. Iodination was carried out at the phenyl moiety of the tyrosylamide residue at position 9, followed by HPLC purification. Non-radiolabelled monoiodinated antagonist was used as a reference for identification. 125I-d(CH2)5[Tyr(Me)2, Tyr(NH2)9]AVP binding appeared to take place with a dissociation constant of 0.28 +/- 0.09 nM (Kd +/- SD) to V1 vasopressin receptors on rat liver membranes.  相似文献   

20.
Des-pentapeptide-insulin (DPI), a monomeric analogue which lacks the C-terminal five residues of the B-chain, provides a tractable model for 2D-NMR studies of insulin under a variety of solvent conditions. In this paper we present the sequential assignment of DPI at pH 1.8 and 25 degrees C in 10% deuterated DMSO/90% H2O; the chemical shifts are in general similar to those recently described in the absence of an organic cosolvent [1], in 20% acetic acid [2] and (for intact insulin) in 35% acetonitrile [3]. Under each of these solvent conditions qualitative analysis of the 2D-NMR data indicates that the major elements of secondary structure observed in the crystal state (three alpha-helices and B-chain beta-turn) are retained in solution. However, there is disagreement in the literature regarding the stability of the insulin fold, as monitored by amide-proton exchange rates and long-range nuclear Overhauser enhancements [1-3]. In contrast to a previous study [1], we observe slowly exchanging amide resonances (in freshly prepared D2O solutions) and nonlocal NOEs under each of the solvent conditions described, implying the existence of a stably folded secondary structure and hydrophobic core. The slowly-exchanging resonances are assigned to the central alpha-helix of the B-chain, the ends of the adjoining beta-turn, and the two A-chain alpha-helices. Qualitative analysis of long-range NOEs indicates that the major features of the crystal state are retained under these solvent conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号