首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many studies have demonstrated that intracellular proteins, which are involved in carcinogenesis, can provoke autoantibody responses. Therefore, autoantibodies can be used clinically for cancer detection and for proteomic analysis in identification of tumor-associated antigens (TAAs) that are potentially involved in malignant transformation. Liver cancer, especially hepatocellular carcinoma (HCC), is one of the most common tumors in the world. The majority of people with HCC will die within 1 year of its detection. This high case fatality rate can partially be attributed to a lack of diagnostic methods that allow early detection. In the present study, sera from 20 patients with HCC, 30 patients with chronic hepatitis (CH), and 30 patients with liver cirrhosis (LC) as well as sera from 10 normal individuals were used in a proteomic approach to identify HCC-related TAAs. Thirty-four immunoreactive protein spots were excised from the two-dimensional gel electrophoresis (2DE), digested with trypsin, and subsequently analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Of 34 immunoreactive protein spots, 28 were identified. Seventeen of them were not only reactive with serum antibodies in HCC but also with antibodies in pre-HCC conditions, and 11 were only reactive with serum antibodies in HCC but not with antibodies in pre-HCC conditions. In the subsequent analysis, two representative proteins, HSP60 and HSP70, were selected as examples for the validation purpose. The results from immunoassay were consistent with the data from proteomic analysis, supporting our hypothesis that proteins identified with autoantibodies that have been present in precancer conditions may be not appropriate to use as TAA markers in cancer detection.  相似文献   

2.
Ahn YH  Shin PM  Oh NR  Park GW  Kim H  Yoo JS 《Journal of Proteomics》2012,75(17):5507-5515
Aberrantly glycosylated proteins related to liver cancer progression were captured with specific lectin and identified from human plasma by multiple reaction monitoring (MRM) mass spectrometry as multiple biomarkers for hepatocellular carcinoma (HCC). The lectin fractionation for fucosylated protein glycoforms in human plasma was conducted with a fucose-specific aleuria aurantia lectin (AAL). Following tryptic digestion of the lectin-captured fraction, plasma samples from 30 control cases (including 10 healthy, 10 hepatitis B virus [HBV], and 10 cirrhosis cases) and 10 HCC cases were quantitatively analyzed by MRM to identify which glycoproteins are viable HCC biomarkers. A1AG1, AACT, A1AT, and CERU were found to be potent biomarkers to differentiate HCC plasma from control plasmas. The AUROC generated independently from these four biomarker candidates ranged from 0.73 to 0.92. However, the lectin-coupled MRM assay with multiple combinations of biomarker candidates is superior statistically to those generated from the individual candidates with AUROC more than 0.95, which can be an alternative to the immunoassay inevitably requiring tedious development of multiple antibodies against biomarker candidates to be verified. Eventually the lectin-coupled, targeted proteomic mass spectrometry (MRM MS) platform was found to be efficient to identify multiple biomarkers from human plasma according to cancer progression.  相似文献   

3.
Associating changes in protein levels with the onset of cancer has been widely investigated to identify clinically relevant diagnostic biomarkers. In the present study, we analyzed sera from 205 patients recruited in the United States and Egypt for biomarker discovery using label‐free proteomic analysis by LC‐MS/MS. We performed untargeted proteomic analysis of sera to identify candidate proteins with statistically significant differences between hepatocellular carcinoma (HCC) and patients with liver cirrhosis. We further evaluated the significance of 101 proteins in sera from the same 205 patients through targeted quantitation by MRM on a triple quadrupole mass spectrometer. This led to the identification of 21 candidate protein biomarkers that were significantly altered in both the United States and Egyptian cohorts. Among the 21 candidates, ten were previously reported as HCC‐associated proteins (eight exhibiting consistent trends with our observation), whereas 11 are new candidates discovered by this study. Pathway analysis based on the significant proteins reveals upregulation of the complement and coagulation cascades pathway and downregulation of the antigen processing and presentation pathway in HCC cases versus patients with liver cirrhosis. The results of this study demonstrate the power of combining untargeted and targeted quantitation methods for a comprehensive serum proteomic analysis, to evaluate changes in protein levels and discover novel diagnostic biomarkers. All MS data have been deposited in the ProteomeXchange with identifier PXD001171 ( http://proteomecentral.proteomexchange.org/dataset/PXD001171 ).  相似文献   

4.
Biliary atresia (BA) is a devastating cholestatic liver disease targeting infants. Current diagnosis depends on surgical exploration of the biliary tree. The aim of the present study was to identify potential biomarkers for the diagnosis of biliary atresia (BA). Two-dimensional electrophoresis was utilized for the identification of proteins that were differentially expressed in liver biopsies of 20 BA patients and 12 infants with non-BA neonatal cholestasis (NC) as controls. Using mass spectrometry, we identified 15 proteins with expressions significantly altered. Out of the 15 proteins identified, heat shock protein (HSP) 90 was the most significantly altered and was down-regulated in BA samples compared to NC samples using immunoblotting analysis. Our findings suggest that HSP90 might be a potential biomarker for the diagnosis of BA and may be used for monitoring further development and therapy for BA. This study demonstrated that a comprehensive strategy of proteomic identification combined with further validation should be adopted in biomarker discovery.  相似文献   

5.
Heat shock protein 27 (HSP27), an intracellular molecular chaperone, is involved in the pathogenesis of cancer by promoting both tumor cell proliferation and resistance to therapy. HSP27 is also present in the circulation and circulating HSP27 (sHSP27) can elicit an autoimmune response with production of antibodies. Levels of sHSP27 are enhanced in patients with hepatocellular carcinoma (HCC); it is, however, unknown whether changes in HSP27 antibody levels occur in patients with HCC and can be exploited as a circulating biomarker of HCC. Our aim was to assess the potential association between newly diagnosed HCC and serum anti-HSP27 antibody levels. In this cross-sectional study, anti-HSP27 antibody levels were measured in serum samples from 71 HCC patients, 80 subjects with chronic liver disease, and 38 control subjects by immunoenzymatic assay. Anti-HSP27 antibody levels did not differ significantly among groups. However, in patients with chronic active hepatitis/cirrhosis, anti-HSP27 levels were significantly higher in subjects with a positive history of alcoholism (p = 0.03). Our data do not support the hypothesis that anti-HSP27 antibody levels may help identify patients with HCC among subjects with chronic liver disease. However, our finding that alcohol-related liver disease is associated with higher anti-HSP27 levels is novel and deserves further investigations.  相似文献   

6.
To identify and characterize a serologic glycoprotein biomarker for hepatocellular carcinoma (HCC), multi‐lectin affinity chromatography was used to isolate intracellular N‐linked glycoprotein fractions from five paired non‐tumor and tumor tissues. From the series of 2‐D DIGE targeted differentially expressed N‐linked glycoproteins, we identified human liver carboxylesterase 1 (hCE1), which was remarkably down‐regulated in tumor tissues, a finding confirmed by Western blot, a quantitative real‐time RT‐PCR, and immunohistochemical staining of non‐tumor and tumor tissues from total 58 HCC patients. To investigate whether hCE1 is also present in human plasma, we employed a magnetic bead‐based immunoprecipitation followed by nano‐LC‐MS/MS analysis, and we found for the first time that hCE1 is present in human plasma as opposed to that in liver tissues. That is, from normalization of hCE1 signal by the immunoprecipitation and Western blot analysis, hCE1 levels were increased in plasma specimens from HCC patients than in plasma from other disease patient groups (e.g. liver cirrhosis, chronic hepatitis, cholangiocarcinoma, stomach cancer, and pancreatic cancer). From the receiver operating characteristic analysis in HCC, both sensitivity and specificity were shown to be greater than 70.0 and 85.0%, respectively. Thus, the high‐resolution proteomic approach demonstrates that hCE1 is a good candidate for further validation as a serologic glycoprotein biomarker for HCC.  相似文献   

7.
Feng JT  Liu YK  Song HY  Dai Z  Qin LX  Almofti MR  Fang CY  Lu HJ  Yang PY  Tang ZY 《Proteomics》2005,5(17):4581-4588
Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality worldwide and ranks second in China. The prognosis of HCC remains dismal mainly because of its late diagnosis, especially in patients with coexisting chronic liver diseases. To identify serum biomarkers for HCC, sera from 20 healthy volunteers, 20 hepatitis B virus (HBV) infected patients and 20 HCC patients were selected for screening study and same number of sera into the same three groups were used for validation study. A strategy including sonication, albumin and immunoglobulin G (IgG) depletion and desalting was optimized for screening differentially expressed proteins of low abundance in serum. By 2-DE image analysis and MALDI-TOF-MS/MS identification, eight proteins including heat-shock protein 27 (HSP27), alpha-fetoprotein (AFP), alpha-1 antitrypsin, clusterin, caeruloplasmin, haptoglobin alpha2 chain, tranferrin and transthyretin were found significantly changed among the healthy, HBV and HCC groups. Further validation study by Western blot showed the detection of HSP27 in 90% HCC sera and two HBV sera, but in none of normal sera. Thus, 2-DE based serum proteome analysis can be useful in the screening of serum biomarkers for HCC and HSP27 could aid in the diagnosis of HCC though further validation is needed.  相似文献   

8.
9.
For successful therapy, hepatocellular carcinoma (HCC) must be detected at an early stage. Herein, we used a proteomic approach to analyze the secretory/releasing proteome of HCC tissues to identify plasma biomarkers. Serum-free conditioned media (CM) were collected from primary cultures of cancerous tissues and surrounding noncancerous tissues. Proteomic analysis of the CM proteins permitted the identification of 1365 proteins. The enriched molecular functions and biological processes of the CM proteins, such as hydrolase activity and catabolic processes, were consistent with the liver being the most important metabolic organ. Moreover, 19% of the proteins were characterized as extracellular or membrane-bound. For validation, secretory proteins involved in transforming growth factor-β signaling pathways were validated in plasma samples. Alphafetoprotein (AFP), metalloproteinase (MMP)1, osteopontin (OPN), and pregnancy-specific beta-1-glycoprotein (PSG)9 were significantly increased in HCC patients. The overall performance of MMP1 and OPN in the diagnosis of HCC remained greater than that of AFP. In addition, this study represents the first report of MMP1 as a biomarker with a higher sensitivity and specificity than AFP. Thus, this study provides a valuable resource of the HCC secretome with the potential to investigate serological biomarkers. MMP1 and OPN could be used as novel biomarkers for the early detection of HCC and to improve the sensitivity of biomarkers compared with AFP.  相似文献   

10.
11.
12.
Misfolded proteins have enhanced formation of toxic oligomers and nonfunctional protein copies lead to recruiting wild-type protein types. Heat shock protein 90 (HSP90) is a molecular chaperone generated by cells that are involved in many cellular functions through regulation of folding and/or localization of large multi-protein complexes as well as client proteins. HSP90 can regulate a number of different cellular processes including cell proliferation, motility, angiogenesis, signal transduction, and adaptation to stress. HSP90 makes the mutated oncoproteins able to avoid misfolding and degradation and permits the malignant transformation. As a result, HSP90 is an important factor in several signaling pathways associated with tumorigenicity, therapy resistance, and inhibiting apoptosis. Clinically, the upregulation of HSP90 expression in hepatocellular carcinoma (HCC) is linked with advanced stages and inappropriate survival in cases suffering from this kind of cancer. The present review comprehensively assesses HSP90 functions and its possible usefulness as a potential diagnostic biomarker and therapeutic option for HCC.  相似文献   

13.
The hepatitis B virus X‐protein (HBx), a multifunctional viral regulator, participates in the viral life cycle and in the development of hepatocellular carcinoma (HCC). We previously reported a high incidence of HCC in transgenic mice expressing HBx. In this study, proteomic analysis was performed to identify proteins that may be involved in hepatocarcinogenesis and/or that could be utilized as early detection biomarkers for HCC. Proteins from the liver tissue of HBx‐transgenic mice at early stages of carcinogenesis (dysplasia and hepatocellular adenoma) were separated by 2‐DE, and quantitative changes were analyzed. A total of 22 spots displaying significant quantitative changes were identified using LC‐MS/MS. In particular, several proteins involved in glucose and fatty acid metabolism, such as mitochondrial 3‐ketoacyl‐CoA thiolase, intestinal fatty acid‐binding protein 2 and cytoplasmic malate dehydrogenase, were differentially expressed, implying that significant metabolic alterations occurred during the early stages of hepatocarcinogenesis. The results of this proteomic analysis provide insights into the mechanism of HBx‐mediated hepatocarcinogenesis. Additionally, this study identifies possible therapeutic targets for HCC diagnosis and novel drug development for treatment of the disease.  相似文献   

14.
Aldo-keto reductase 1B10 (AKR1B10) protein is a new tumor biomarker in humans. Our previous studies have shown that AKR1B10 is secreted through a lysosome-mediated nonclassical pathway, leading to an increase in the serum of breast cancer patients. This study illuminates the regulatory mechanism of AKR1B10 secretion. The cytosolic AKR1B10 associates with and is translocated to lysosomes by heat shock protein 90α (HSP90α), a chaperone molecule. Ectopic expression of HSP90α significantly increased the secretion of endogenous AKR1B10 and exogenous GFP-AKR1B10 fusion protein when cotransfected. Geldanamycin, a HSP90α inhibitor, dissociated AKR1B10-HSP90α complexes and significantly reduced AKR1B10 secretion in a dose-dependent manner. We characterized the functional domain in AKR1B10 and found that helix 10 (amino acids 233–240), located at the C terminus, regulates AKR1B10 secretion. Targeted point mutations recognized that amino acids Lys-233, Glu-236, and Lys-240 in helix 10 mediate the interaction of AKR1B10 with HSP90α. Together, our data suggest that HSP90α mediates AKR1B10 secretion through binding to its helix 10 domain. This finding is significant in exploiting the use of AKR1B10 in cancer clinics.  相似文献   

15.
To search for reliable biomarkers and drug targets for management of hepatocellular carcinoma (HCC), we performed a global proteomic analysis of a pair of HCC cell lines with distinct differentiation statuses using 2-DE coupled with MALDI-TOF MS. In total, 106 and 55 proteins were successfully identified from the total cell lysate and the cytosolic, nuclear and membrane fractions in well-differentiated (HepG2) and poorly differentiated (SK-Hep–1) HCC clonal variants, respectively. Among these proteins, nine spots corresponding to proteins differentially expressed between HCC cell types were selected and confirmed by immunofluorescence staining and western blotting. Notably, Annexin 1 (ANX1), ANX–2, vimentin and stress-associated proteins, such as GRP78, HSP75, HSC–70, protein disulfide isomerase (PDI), and heat shock protein–27 (HSP27), were exclusively up-regulated in SK-Hep–1 cells. Elevated levels of ANX–4 and antioxidant/metabolic enzymes, such as MnSOD, peroxiredoxin, NADP-dependent isocitrate dehydrogenase, α-enolase and UDP-glucose dehydrogenase, were observed in HepG2 cells. We functionally demonstrated that ANX1 and HSP27 were abundantly overexpressed only in highly invasive types of HCC cells, such as Mahlavu and SK-Hep–1. Knockdown of ANX1 or HSP27 in HCC cells resulted in a severe reduction in cell migration. The in-vitro observations of ANX1 and HSP27 expressions in HCC sample was demonstrated by immunohistochemical stains performed on HCC tissue microarrays. Poorly differentiated HCC tended to have stronger ANX1 and HSP27 expressions than well-differentiated or moderately differentiated HCC. Collectively, our findings suggest that ANX1 and HSP27 are two novel biomarkers for predicting invasive HCC phenotypes and could serve as potential treatment targets.  相似文献   

16.
Aldo-keto reductase family 1 B10 (AKR1B10, also designated aldose reductase-like-1, ARL-1) is a novel protein identified from human hepatocellular carcinoma (HCC). This protein belongs to aldo-keto reductase superfamily, a group of proteins implicated in intracellular detoxification, cell carcinogenesis, and cancer therapeutics. AKR1B10 is primarily expressed in the colon and small intestine with low levels in the liver, thymus, prostate, and testis but overexpressed in the liver and lung cancer, making it a potential cancer diagnostic and/or prognostic marker. AKR1B10 could reduce retinals to retinols eliminating intracellular retinoic acid, a signaling molecule regulating cell proliferation and differentiation. AKR1B10 may impact the carcinogenesis process through controlling retinoic acid signaling.  相似文献   

17.
The involvement of aldo–keto reductases (AKRs) in tumorigenesis is widely reported, but their roles in the pathological process are not generally recognized due to inconsistent measurements of their expression. To overcome this problem, we simultaneously employed real-time PCR to examine gene expression and multiple reaction monitoring (MRM) of mass spectrometry (MS) to examine the protein expression of AKRs in five different hepatic cell lines. These include one relatively normal hepatic cell line, L-02, and four hepatocellular carcinoma (HCC) cell lines, HepG2, HuH7, BEL7402 and SMMC7721. The results of real-time PCR showed that expression of genes encoding the AKR1C family members rather than AKR1A and AKR1B was associated with tumor, and most of genes encoding AKRs were highly expressed in HuH7. Similar observations were obtained through MRM. Different from HuH7, the protein abundance of AKR1A and AKR1B was relatively consistent among the other four hepatic cell lines, while protein expression of AKR1C varied significantly compared to L-02. Therefore, we conclude that the abundant distribution of AKR1C proteins is likely to be associated with liver tumorigenesis, and the AKR expression status in HuH7 is completely different from other liver cancer cell lines. This study, for the first time, provided both overall and quantitative information regarding the expression of AKRs at both mRNA and protein levels in hepatic cell lines. Our observations put the previous use of AKRs as a biomarker into question since it is only consistent with our data from HuH7. Furthermore, the data presented herein demonstrated that quantitative evaluation and comparisons within a protein family at both mRNA and protein levels were feasible using current techniques.  相似文献   

18.
Shen H  Cheng G  Fan H  Zhang J  Zhang X  Lu H  Liu C  Sun F  Jin H  Xu X  Xu G  Wang S  Fang C  Bao H  Wang Y  Wang J  Zhong H  Yu Z  Liu Y  Tang Z  Yang P 《Proteomics》2006,6(2):528-537
We report for the first time an expressed proteome for human hepatocellular carcinoma (HCC) in nude mice model. Most cases of human liver cancer are HCC with highly metastatic ability. Therefore, the early prediction or diagnosis and effective treatment are the key points of research. We have previously successfully established a human HCC nude mice model (LCI-D20) with high metastasis potential. To understand better the tumor biology of HCC it is worth to explore the relativity of all expressed protein profiles in the LCI-D20 HCC nude mice model. With advanced proteomics technologies, we have carried out a proteomic analysis with following stages: protein sample preparation of cancer tissue, including total cellular extraction and sequential fractionation, 2-DE and 2-D LC separation, ESI/MALDI-MS/MS identification, as well as data-dependent bioinformatics. The identified proteins were classified bioinformatically respective to their function, biological process and intracellular localization. Some important proteins found in HCC, e.g. metabolism enzymes, proteins regulating cell motility, signaling proteins, and heat shock proteins, are discussed in terms of their metastasis.  相似文献   

19.
Hepatocellular carcinoma (HCC) is a heterogeneous cancer and usually diagnosed at late advanced tumor stages of high lethality. The present study attempted to obtain a proteome-wide analysis of HCC in comparison with adjacent non-tumor liver tissues, in order to facilitate biomarkers' discovery and to investigate the mechanisms of HCC development. A cohort of 66 Chinese patients with HCC was included for proteomic profiling study by two-dimensional gel electrophoresis (2-DE) analysis. Artificial neural network (ANN) and decision tree (CART) data-mining methods were employed to analyze the profiling data and to delineate significant patterns and trends for discriminating HCC from non-malignant liver tissues. Protein markers were identified by tandem MS/MS. A total of 132 proteome datasets were generated by 2-DE expression profiling analysis, and each with 230 consolidated protein expression intensities. Both the data-mining algorithms successfully distinguished the HCC phenotype from other non-malignant liver samples. The detection sensitivity and specificity of ANN were 96.97% and 87.88%, while those of CART were 81.82% and 78.79%, respectively. The three biological classifiers in the CART model were identified as cytochrome b5, heat shock 70 kDa protein 8 isoform 2, and cathepsin B. The 2-DE-based proteomic profiling approach combined with the ANN or CART algorithm yielded satisfactory performance on identifying HCC and revealed potential candidate cancer biomarkers.  相似文献   

20.
Sun Y  Mi W  Cai J  Ying W  Liu F  Lu H  Qiao Y  Jia W  Bi X  Lu N  Liu S  Qian X  Zhao X 《Journal of proteome research》2008,7(9):3847-3859
Hepatocellular carcinoma (HCC) is one of the most common diseases worldwide, with extremely poor prognosis due to failure in diagnosing it early. Alpha-fetoprotein (AFP) is the only available biomarker for HCC diagnosis; however, its use in the early detection of HCC is limited, especially because about one-third of patients afflicted with HCC have normal levels of serum AFP. Thus, identifying additional biomarkers that may be used in combination with AFP to improve early detection of HCC is greatly needed. A quantitative proteomic analysis approach using stable isotope labeling with amino acids in cell culture (SILAC) combined with LTQ-FT-MS/MS identification was used to explore differentially expressed protein profiles between normal (HL-7702) and cancer (HepG2 and SK-HEP-1) cells. A total of 116 proteins were recognized as potential markers that could distinguish between HCC and normal liver cells. Certain proteins, such as AFP, intercellular adhesion molecule-1 (ICAM-1), IQ motif containing GTPase activating protein 2 (IQGAP2), claudin-1 (CLDN1) and tissue transglutaminase 2 (TGM2), were validated both in multiple cell lines and in 61 specimens of clinical HCC cases. TGM2 was overexpressed in some of the AFP-deficient HCC cells (SK-HEP-1 and Bel-7402) and in about half of the tumor tissues with low levels of serum AFP (17/32, AFP-negative HCC). Trace amounts of TGM2 were found to be expressed in the samples with high serum AFP (26/29, AFP-positive HCC). Moreover, TGM2 expression in liver tissues showed an inverse correlation with the level of serum AFP in HCC patients. Notably, TGM2 existed in the supernatant of the AFP-deficient SK-HEP-1, SMMC-7721 and HLE cells, and it was found to be induced in AFP-producing cells (HepG2) by specific siRNA silence assay. Serum TGM2 levels of 109 HCC patients and 42 healthy controls were further measured by an established ELISA assay; the levels were significantly higher in HCC patients, and they correlated with the histological grade and tumor size. These data suggest that TGM2 may serve as a novel histological/serologic candidate involved in HCC, especially for the individuals with normal serum AFP. These novel findings may provide important clues to identify new biomarkers of HCC and indirectly improve early detection of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号