首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Initial rates of peptide-bond synthesis catalyzed by poly(ethylene glycol)-modified chymotrypsin in benzene were determined using high-performance liquid chromatography. Enzymatic synthesis of N-benzoyl-L-tyrosyl-L-phenylalanine amide from N-benzoyl-L-tyrosine ethyl ester and L-phenylalanine amide was found to obey Michaelis-Menten kinetics an to be consistent with a ping-pong mechanism modified by a hydrolytic branch. The catalytic activity of modified chymotrypsin was dependent on both water concentration and type of organic solvent, the highest synthesis rate being obtained in toluene. Since the chymotrypsin specificity in the organic phase was actually altered, the enzyme's apparent kinetic parameters were determined for different substrates and compared to those obtained with other serine proteases in benzene. Both N-benzoyl-L-tyrosine ethyl ester and N-alpha-benzoyl-L-lysine methyl ester were comparable acyl donors in benzene and the (kcat/Km)app value of modified chymotrypsin was only 10-fold smaller than that obtained with poly(ethylene glycol)-modified trypsin in the synthesis of N-alpha-benzoyl-L-lysyl-L-phenylalanine amide. The change in chymotrypsin specificity was also confirmed through the binding of trypsin inhibitors in benzene. The overall results suggest that hydrophobic bonding between the enzyme and its substrate should not be taken into account during catalysis in the organic phase. In general, if hydrophobic interactions are involved in the binding of substrates to the active site in aqueous media, the replacement of water by hydrophobic solvents will induce some change in enzyme specificity. Moreover, secondary residues of enzyme-binding sites may also exert a significant influence on specificity since, as observed in this study, chymotrypsin exhibited high affinity for cationic substrates and cationic inhibitors as well in apolar solvents.  相似文献   

2.
Summary Polyethylene glycol-modified thermolysin was found to efficiently catalyze peptide synthesis in organic solvents. As in aqueous media, the reaction occurred through a rapid equilibrium random bireactant mechanism. However, the substrate specificity of modified thermolysin was actually changed since hydrophilic as well as acidic amino acids were better carboxyl group donors than hydrophobic residues, contrary to what is observed in both the enzyme-catalyzed synthesis and hydrolysis of peptide bonds in water.  相似文献   

3.
The substrate specificities of alpha-chymotrypsin and subtilisins for peptide synthesis in hydrophilic organic solvents were investigated. Chymotrypsin exhibited high specificity to aromatic amino acids as acyl donors, while subtilisin Carlsberg and subtilisin BPN' were specific to aromatic and neutral aliphatic amino acids, in accordance with the S1 specificities of the enzymes for peptide hydrolysis in aqueous solutions. On the contrary, chymotrypsin exhibited higher specificities to hydrophilic amino acid amides as acyl acceptors (nucleophiles) for peptide synthesis with N-acetyl-L-tyrosine ethyl ester, in contrast to the S1' specificity for peptide hydrolysis and peptide synthesis in aqueous solutions. Furthermore, nucleophile specificity changed with the change in water-organic solvent composition; the increase in water content led to increase in relative reactivity of leucinamide to that of alaninamide. It was also found that protection of the carboxyl group of alanine by amidation is much preferable to protection by esterification in terms of reactivity as nucleophiles.  相似文献   

4.
Several kinds of modified chymotrypsin were prepared with water-soluble acylating reagents, and their characteristics after hydrolyzing with unmodified chymotrypsin in aqueous-N,N'-dimethylformamide (DMF) media were compared. It was found that chymotrypsin (Csin), of which a 20% amino group was modified with a benzyloxycarbonyl group (Z(20)Csin), had more favorable characteristics than unmodified chymotrypsin with regard to hydrolytic activity in an aqueous DMF media. We also investigated the Z(20)Csin-catalyzed peptide synthesis in two different solution systems. In the one-layer system containing water and DMF, Z(20)Csin catalyzed the peptide bond formation in a higher yield than that by unmodifide chymotrypsin and enabled a synthetic reaction in even an 80% (v/v) DMF media, in which the hydrolytic reaction could not be carried out. Z(20)Csin catalyzed the condensation between some N-acyl amino acids or peptide derivatives and amino acids in 90% ethylacetate, 90% hexane or 50% benzene. This latter method employs a two-layer system, and the modified enzyme may be able to reduce the number of synthetic steps when preparing acyl peptides.  相似文献   

5.
Several kinds of modified chymotrypsin were prepared with water-soluble acylating reagents, and their characteristics after hydrolyzing with unmodified chymotrypsin in aqueous-N,N’ -dimethylformamide (DMF) media were compared. It was found that chymotrypsin (Csin), of which a 20% amino group was modified with a benzyloxycarbonyl group (Z(20)Csin), had more favorable characteristics than unmodified chymotrypsin with regard to hydrolytic activity in an aqueous DMF media. We also investigated the Z(20)Csin-catalyzed peptide synthesis in two different solution systems. In the one-layer system containing water and DMF, Z(20)Csin catalyzed the peptide bond formation in a higher yield than that by unmodifide chymotrypsin and enabled a synthetic reaction in even an 80% (v/v) DMF media, in which the hydrolytic reaction could not be carried out. Z(20)Csin catalyzed the condensation between some N-acyl amino acids or peptide derivatives and amino acids in 90% ethylacetate, 90% hexane or 50% benzene. This latter method employs a two-layer system, and the modified enzyme may be able to reduce the number of synthetic steps when preparing acyl peptides.  相似文献   

6.
The peptide bond formation of N-protected non-coded amino acids having different structures as acyl donor substrates that is catalyzed by thermoase in organic media was investigated. In these reactions, N-protected l--non-coded amino acids, including l-Orn, l-Cit, -aminobutyric acid (l--Abu) and phenylalanine homologues, were used as the acyl donors and phenylalanine derivatives were used as the acyl acceptors. This kind of enzymatic reactions cannot be carried out in an aqueous buffer due to the rigid specificity of proteases to coded amino acids in water. The results demonstrated that the substrate specificity of proteases could be broadened in organic solvents. In addition, the factors that influenced these protease-catalyzed reactions, including structures of the substrates, water content and the bases used, were systematically studied. Our work provided important evidence for broadening the application of protease in organic synthesis.  相似文献   

7.
Various organic solvents are routinely used in peptide synthesis, safe disposal of which are now an important environmental problem. To circumvent this problem, during the last few years we focused on developing an organic solvent-free SPPS method using aqueous solvents. For the SPPS in water, we designed protected amino acids that could be used in the aqueous media. Here we described development of several types of water-soluble protected amino acids and their application to the SPPS in water, and a novel technology that uses water-dispersible protected amino acids for in-water peptide synthesis.  相似文献   

8.
The peptide synthesis from N-acetyl-L-phenylalanine ethyl ester with alaninamide catalyzed by a surfactant-protease complex has been performed in anhydrous hydrophilic organic solvents. Proteases derived from various sources were converted to surfactant-coated complexes with a nonionic surfactant. The surfactant-subtilisin Carlsberg (STC) complex had a higher enzymatic activity than the other protease complexes and the initial reaction rate in tert-amyl alcohol was 26-fold that of STC lyophilized from an optimum aqueous buffer solution. Native STC hardly catalyzed the same reaction. The addition of water to the reaction medium activated the lyophilized STC, however, the reaction rate was much lower than that of the STC complex, and a hydrolysis reaction preferentially proceeded. The STC complex exhibited a high catalytic activity in hydrophilic organic solvents (e.g. tertiary alcohol). The addition of dimethylformamide as a cosolvent improved the solubility of amino acid amides and further activated the STC complex due to the water mimicking effect. When hydrophilic amino acid amides were employed as an acyl acceptor, the peptide formation proceeded efficiently compared to that using hydrophobic substrates. The surfactant-STC complex is a powerful biocatalyst for peptide synthesis because the STC complexes display a high catalytic activity in anhydrous hydrophilic organic solvents and did not require the excess amount of water. Thus the side (hydrolysis) reaction is effectively suppressed and the yield in the dipeptide formation is considerably high.  相似文献   

9.
The catalytic efficiencies of native subtilisin, its noncovalent complex with polyacrylic acid, and the subtilisin covalently immobilized in a cryogel of polyvinyl alcohol were studied in the reaction of peptide coupling in mixtures of organic solvents with a low water content in dependence on the medium composition, reaction time, and biocatalyst concentration. It was established that, in media with a DMF content > 80%, the synthase activity of modified subtilisins is higher than that of the native subtilisin. The use of N-acylpeptides with a free carboxyl group was found to be possible in organic solvents during the enzymatic synthesis catalyzed by both native and immobilized subtilisin. A series of tetrapeptide p-nitroanilides of the general formula Z-Ala-Ala-Xaa-Yaa-pNA (where Xaa is Leu, or Glu and Yaa is Phe or Asp) was obtained in the presence of immobilized enzyme in yields of 70-98% in DMF-MeCN without any activation of the carboxyl component and without protection of side ionogenic groups of polyfunctional amino acids.  相似文献   

10.
alpha-Chymotrypsin deposited on Celite was used to catalyse peptide synthesis reactions between N-protected amino acid esters and leucine amide in organic media with low water content. The influence of the solvent and the thermodynamic water activity on the reaction kinetics was studied. The substrate specificity in the reactions was shown to be a combination of the substrate specificity of the enzyme in aqueous media and the influence of the solvents. The magnitude of the solvent effects differed greatly depending on the substrates used. In hydrophobic solvents high reaction rates were observed and the competing hydrolysis of the ester substrate occurred to only a minor extent. Reactions occurred at water activities as low as 0.11, but the rate constants increased with increasing water activity and were about two orders of magnitude higher at the highest water activity tested (0.97).  相似文献   

11.
We showed that modified proteases could catalyze synthesis of a wide variety of peptides of various lengths and structures both in solution and on solid phase in organic solvents. The following modified proteases were studied as catalysts for enzymatic peptide synthesis in polar organic solvents (acetonitrile, dimethylformamide, and ethanol): pepsin sorbed on celite, a noncovalent complex of subtilisin with sodium dodecylsulfate, and subtilisin or thermolysin covalently immobilized on a cryogel of polyvinyl alcohol. The use of the noncovalent complex of subtilisin with sodium dodecylsulfate and immobilized subtilisin is especially promising for the segment condensation of peptide fragments containing residues of trifunctional amino acids with unprotected ionogenic groups in side chains, such as Lys, Arg, His, Glu, and Asp.  相似文献   

12.
We showed that modified proteases could catalyze synthesis of a wide variety of peptides of various lengths and structures both in solution and on solid phase in organic solvents. The following modified proteases were studied as catalysts for enzymatic peptide synthesis in polar organic solvents (acetonitrile, dimethylformamide, and ethanol): pepsin sorbed on celite, a noncovalent complex of subtilisin with sodium dodecylsulfate, and subtilisin or thermolysin covalently immobilized on a cryogel of polyvinyl alcohol. The use of the noncovalent complex of subtilisin with sodium dodecylsulfate and immobilized subtilisin is especially promising for the segment condensation of peptide fragments containing residues of trifunctional amino acids with unprotected ionogenic groups in side chains, such as Lys, Arg, His, Glu, and Asp.  相似文献   

13.
alpha-Chymotrypsin was immobilized with a high coupling yield (up to 80%) to tresyl chloride activated Sepharose CL-4B.The immobilized enzyme was tested for its ability to synthesize soluble peptides from N-acetylated amino acid esters as acyl donors and amino acid amides as acceptor amines in water-water-miscible organic solvent mixtures. It was found that the yield of peptide increased with increasing concentration of organic cosolvent. Almost complete synthesis (97%) of Ac-Phe-Ala-NH(2) was obtained from Ac-Phe-OMe using a sixfold excess of Ala-NH(2). The rate of peptide formation in aqueous-organic solvent mixtures was good. Thus, 0.1M peptide was formed in less than 2 h in 50 vol% DMF with 0.1 mg immobilized chymotrypsin/mL reaction mixture. The immobilized enzyme distinguished between the L and D configurations of acceptor amino acid amides even in high concentration of nonaqueous component (90% 1,4-butanediol). The effect of temperature was studied. It was found that both the yield of peptide and the stability of immobilized enzyme increased when the temperature was lowered. Experiments could be performed at subzero temperatures in the aqueous-organic solvent mixtures resulting in very high yield of peptide. After three weeks continuous operation at 4 degrees C in 50% DMF, the immobilized enzyme retained 66%of its original synthetic activity. The activity of the immobilized enzyme was better conserved with a preparation made from agarose with a higher tresyl group content compared to a preparation made from a lower activated agarose, indicating that multiple point of attachment has a favorable effect on the stability of the enzyme in aqueous-organic solvent mixtures. The major advantage of using water-miscible instead of water-immiscible organic solvents to promote peptide syntheses appears to be the increased solubility of substrates and products, making continuous operation possible.  相似文献   

14.
Enzymatic catalysis in nonaqueous solvents   总被引:39,自引:0,他引:39  
Subtilisin and alpha-chymotrypsin vigorously act as catalysts in a variety of dry organic solvents. Enzymatic transesterifications in organic solvents follow Michaelis-Menten kinetics, and the values of V/Km roughly correlate with solvent's hydrophobicity. The amount of water required by chymotrypsin and subtilisin for catalysis in organic solvents is much less than needed to form a monolayer on its surface. The vastly different catalytic activities of chymotrypsin in various organic solvents are partly due to stripping of the essential water from the enzyme by more hydrophilic solvents and partly due to the solvent directly affecting the enzymatic process. The rate enhancements afforded by chymotrypsin and subtilisin in the transesterification reaction in octane are of the order of 100 billion-fold; covalent modification of the active center of the enzymes by a site-specific reagent renders them catalytically inactive in organic solvents. Upon replacement of water with octane as the reaction medium, the specificity of chymotrypsin toward competitive inhibitors reverses. Both thermal and storage stabilities of chymotrypsin are greatly enhanced in nonaqueous solvents compared to water. The phenomenon of enzymatic catalysis in organic solvents appears to be due to the structural rigidity of proteins in organic solvents resulting in high kinetic barriers that prevent the native-like conformation from unfolding.  相似文献   

15.
Summary Subtilisin from Bacillus subtilis was modified with polyethylene glycol (PEG), or adsorbed either on celite or porous glass, or directly used as a suspended powder to catalyse peptide synthesis and transesterification reactions in organic solvents. The rather low yield of peptide synthesis probably resulted from the enzyme tendency to catalyse hydrolysis and transesterification side reactions. The kinetics of transesterification catalysed by PEG-subtilisin was consistent with a ping-pong mechanism modified by a hydrolytic branch. Initial rates of transesterification were found to be dependent on alcohol and organic base concentrations in the reaction mixture. The high affinity of benzyloxycarbonyl-l-serine-methyl ester for the enzyme indicated that a change in substrate specificity of subtilisin occurred in organic phase. The 50-fold increase in the rate of synthesis of benzyloxycarbonyl-l-serine-l-phenylalanine amide which was observed when PEG-subtilisin was used instead of immobilized or powdered enzyme, suggested that a higher flexibility of the polypeptide chain modified by the covalent attachment of a number of soluble PEG moieties occurred in organic solvents. This also resulted in a lower stability of PEG-subtilisin at high temperature.Offprint requests to: A. Puigserver  相似文献   

16.
The catalytic efficiencies of native subtilisin, its noncovalent complex with polyacrylic acid, and the subtilisin covalently immobilized in a cryogel of polyvinyl alcohol were studied in the reaction of peptide coupling in mixtures of organic solvents with a low water content in dependence on the medium composition, reaction time, and biocatalyst concentration. It was established that, in media with a DMF content >80%, the synthase activity of modified subtilisins is higher than that of the native subtilisin. The use of N-acylpeptides with a free carboxyl group was found to be possible in organic solvents during the enzymatic synthesis catalyzed by both native and immobilized subtilisin. A series of tetrapeptide p-nitroanilides of the general formula Z-Ala-Ala-Xaa-Yaa-pNA (where Xaa is Leu, Lys, or Glu and Yaa is Phe or Asp) was obtained in the presence of immobilized enzyme in yields of 70–98% in DMF–MeCN without any activation of the carboxyl component and without protection of side ionogenic groups of polyfunctional amino acids.  相似文献   

17.
A new approach in biotechnological processes is to use enzymes modified with polyethylene glycol which has both hydrophilic and hydrophobic properties. The modified enzymes are soluble in organic solvents such as benzene, toluene and chlorinated hydrocarbons and exhibit high enzymic activities in these organic solvents. Modified hydrolytic enzymes catalysed the reverse reaction of hydrolysis in organic solvents: formation of acid—amide bonds by modified chymotrypsin, and ester synthesis and ester exchange reactions by modified lipase. Modified catalase and modified peroxidase efficiently catalyse their respective reactions in organic solvents. The results of this research indicate great potential for applications in the fields of biotechnology and enzymology.  相似文献   

18.
The synthesis of peptide bonds catalysed by subtilisin Carlsberg was studied in different hydrophilic organic solvents with variable H2O concentration. Z-Val-Trp-OMe and Z-Ala-Phe-OMe were used as acyl donors, and a series of amino acid derivatives, di- and tripeptides of the general structure Xaa-Gly, Gly-Xaa, Gly-Gly-Xaa (Xaa represents all natural L-amino acids except cysteine) and other peptides were used as nucleophiles. A comparative study of the enzymatic synthesis in aqueous DMF (50%, v/v) and acetonitrile containing 10% (v/v) of H2O demonstrated that the yields of peptide products were higher in most cases when acetonitrile with low H2O concentration was used. The acylation of weak nucleophiles was improved in organic solvents with very low H2O concentration (2%). The reactions in anhydrous Bu(t)-OH proceeded with substantially lower velocity. Generally, the restricted nucleophile specificity of the enzyme for glycine and hydrophilic amino acid residues in P1' position, as well as numerous side reactions, limit the utilization of subtilisin in peptide synthesis, especially in the case of the segment condensations. Contrary to the published data, we have proved that proline derivatives were not acylated in any media with the help of subtilisin Carlsberg. Effective ester hydrolysis of a protected nonapeptide corresponding to the N-terminal sequence of dicarba-eel-calcitonin catalysed by subtilisin was achieved.  相似文献   

19.
Regulatory pressure has compelled the chemical manufacturing industry to reduce the use of organic solvents in synthetic chemistry, and there is currently a strong focus on replacing these solvents with water. Here, we describe an efficient in‐water solution‐phase peptide synthesis method using Boc‐amino acids. It is based on a coupling reaction utilizing suspended water‐dispersible nanoparticle reactants. Using this method, peptides were obtained in good yield and with high purity. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
The peptide synthesis from N-acetyl-L-tyrosine ethyl ester and amino acid amides was realized using α-chymotrypsin as a catalyst in ethanol or acetonitrile containing small amounts of water. In these reaction systems, the precipitates of phosphate salt, which was used as a component of buffer solution, are considered to act as carriers of chymotrypsin. It was found that peptide formation is competitive with hydrolysis of the substrate ester, but the secondary synthesis of the peptide from the hydrolysate was also considered to proceed. The yield of the peptide after 24 h reaction was strongly dependent on the water concentration; maximum yields of the peptide were obtained at water concentrations below 10% (v/v). The addition of tertiary amines, such as triethyl amine, markedly increased the peptide yield, probably due to the increase in the concentration of the nucleophilic amine components by neutralization of hydrohalides of amino acid amides. The effect of reaction temperature and the reactions with CT immobilized on PVA, chitosan, or TEAE-cellulose are also described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号