首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Sheep or guinea pig antisera against the purified Ca++ transport ATPase of sarcoplasmic reticulum inhibit Ca++ transport due to a complement-dependent damage of the membrane, which causes massive leakage of Ca++. The Ca++-activated ATPase activity is only slightly affected even at ten times higher antibody concentration than that required for inhibition of Ca++ transport. Antibodies prepared against the Ca++ binding protein (C1 protein) have no influence upon either ATPase activity or Ca++ transport and ferritin-labeled anti-C1 antibodies do not bind to microsomes.  相似文献   

2.
Instrumentation has been developed for the rapid electronic sizing of large numbers of myofibrils. The response of myofibrils in the presence of ATP to changes in Ca++ concentration was examined. Shortening of myofibrils upon addition of Ca++ was accompanied by an increased protein effective volume of approximately 10-40%. Whereas ATPase activation and increased turbidity of myofibrils upon addition of Ca++ were reversible upon subsequent addition of EGTA, the shortening and swelling were irreversible. It is proposed that the swelling may result from the breaking of hydrophobic bonds within myosin. The ATPase activity and turbidity are measures of the input, while the shortening and swelling are measures of the output of a coupled nonequilibrium process; failure of reversal of the output indicates an uncoupling under the experimental conditions.  相似文献   

3.
Troponin-tropomyosin is known to inhibit the Mg++ATPase activity of muscle actomyosin in the absence, but not in the presence, of Ca++. In contrast, we have now found that muscle troponin-tropomyosin inhibits the Mg++ATPase activity of muscle actin-activated Acanthamoeba myosin both in the presence and the absence of Ca++. Addition of purified tropomyosin and troponins-I, C and T demonstrated that it is troponin-T that acts differently in the two systems which differ only in the source of the myosin. These data suggest that myosin, as well as actin, plays a role in the troponin-tropomyosin control of muscle contraction and make it unlikely that control proteins identical to troponin-tropomyosin function in this amoeba.  相似文献   

4.
The data of the study on Ca2+ sensitivity of ATPase activity of myosin from vertebrate striated muscles in the presence of actin and the conditions of its manifestation and disappearance are presented. The role of Ca2+ sensitivity of actin-activated myosin ATPase in the regulation of contraction of vertebrate striated muscles is discussed.  相似文献   

5.
Summary Electrophoresis of myosin extracts from larvae and adult tissues ofDrosophila melanogaster under non-dissociating conditions indicate that two of the bands seen are myosins. They stain for Ca2+ ATPase activity and when cut and re-run under dissociating conditions are found to contain a myosin heavy chain that co-migrates with rabbit skeletal muscle myosin heavy chain. One of the forms of myosin seen is found primarily in extracts from the leg. The other is common to the adult fibrillar flight muscles and the larval body wall muscles.The electrophoretic evidence for two myosin types is strengthened by the histochemical demonstration of two myofibrillar ATPases on the basis of their lability to acid or alkali preincubation. The myofibrillar ATPase in the leg and the Tergal Depressor of the Trochanter (TDT) are shown to be relatively acid labile and alkali stable. The larval body wall muscles and the adult fibrillar flight muscles have an ATPase which is acid stable and alkali labile. This distribution of the two myofibrillar ATPase coincides with that predicted by electrophoresis of extracts from whole tissue and also locates the two myosins to specific muscle types.  相似文献   

6.
Canine atrial myosin light chains were electrophoretically distinct from myosins of canine ventricles on 5–20% polyacrylamide gradient slab gels (SDS), giving molecular weights of 26,000 and 21,000 as compared to 28,000 and 18,500 for ventricular myosin light chains. While atrial myosin heavy chains were immunologically identical with ventricular myosin heavy chains, in contrast, there was 8.0% relative cross-reactivity of atrial myosin light chains with left ventricular myosin light chains by radioimunoassay. According to charge separation on two-dimensional polyacrylamide urea gels, atrial myosin light chains were different from those of ventricular myosins. Variances in ATPase activities between atrial and ventricular myosins were strongly demonstrated. There was a lower K+ activated ATPase activity in atrial myosin, however the Ca2+ activated ATPase activity, at ATP saturation levels, was higher in atrial myosin as compared to ventricular myosins.  相似文献   

7.
The effect of morphine on ATPase of synaptic plasma membranes (SPM) and synaptic vesicles isolated from the mouse brain was studied. The activity of synaptic vesicle Mg++-dependent ATPase from mice rendered morphine tolerant and dependent by pellet implantation was 40% higher than that from placebo implanted mice. However, the activities of Mg++-dependent ATPase and Na+, K+ activated ATPase of SPM of tolerant and nontolerant mice were not significantly different. The activity of synaptic vesicular Mg++-dependet ATPase was dependent on the concentration of Mg++ but not of Ca++; maximum activity was obtained with 2 mM MgCl2. On the other hand, Mg++-dependent ATPase activity of SPM was dependent on both Mg++ and Ca++, activity being maximum using 2 mM MgCl2 and 10?5 M CaCl2. It is suggested that this stimulation of ATPase activity may alter synaptic transmission and may thus be involved in some aspects of morphine tolerance and dependence.  相似文献   

8.
We tested the hypothesis that slowing of shortening velocity generated by type IIB fibers from hindlimb-unweighted (HU) rats resulted from a reduced ATPase activity and/or a reduction in the relative content of myosin light chain 3f isoform content (MLC3f). After 2, 3, and 4 wk of HU, maximal unloaded shortening velocity (Vo) of single permeabilized semimembranosus muscle fibers was determined by the slack test. Subsequently, the myosin heavy chain and the relative content of MLC were determined by SDS-PAGE. The ratio of MLC3f to MLC2f was determined by densitometric analysis. In addition, myofibrils were prepared from permeabilized fibers (soleus and semimembranosus muscles) and assayed for resting myosin ATPase and Ca2+-activated myosin ATPase. After HU, Vo declined by 28–40% and the MLC3f/MLC2f ratio decreased by 32 to 48%. A significant correlation between the relative amount of MLC3f and Vo was found (r = 0.48, P < 0.05). Resting myosin ATPase rates were not different between myofibrils prepared from corresponding muscles of control and HU rats (P = 0.86). Ca2+-activated myosin ATPase activities also were not different between myofibrils prepared from corresponding muscles of control and HU rats (P = 0.13). These data suggest that the slowing of maximal unloaded shortening velocity in type IIB fibers with HU is, at least in part, due to a relative change in the essential light chain composition, a decrease in the relative amount of MLC3f and most likely a concomitant increase in MLC1f. However, this reduction in Vo is independent of myosin ATPase activity. unloading shortening velocity; myosin light chain 3f  相似文献   

9.
The influence of MgATP on the Ga++-activated isometric tension of skinned frog muscle fibers was examined in solutions containing: Mg++ = 5 mM, creatine phosphate (CP) = 14.5 mM, creatinephosphokinase (CPK) = 1 mg/ml, total EGTA = 7 mM, CaCl2, KCl, imidazole ≥ 20 mM so that ionic strength = 0.15, pH = 7.00, and MgATP = 2 mM, 0.1 mM, or 20 µM. CP and CPK were necessary for these experiments as determined experimentally by their effect on the tension-Ca++ relation, which was saturated for CP ≥ 14.5 mM. This was interpreted to mean that sufficient CP was present to effectively buffer MgATP intracellularly. Decreasing MgATP shifts the tension-pCa curve to higher pCa (-log Ca++) so that, for half-maximal tension: pCa1/2 = 4.5 for MgATP = 2 mM, pCa1/2 = 5.1 for MgATP = 0.1 mM, and pCa1/2 = 5.8 for MgATP = 20 µM; maximum isometric tension is the same in all cases, however. If MgATP was decreased to 1 µM, tension at Ga++ > 10–8 M was 84% of the maximum Ca-+-activated tension in 2 mM MgATP and increased only slightly to 90% for pCa = 4.5. Weber (1970, In The Physiology and Biochemistry of Muscle as Food, Volume 2, E. J. Briskey, R. G. Cassens, and B. B. Marsh, University of Wisconsin Press, Madison, Wis.), using similar solutions, observed similar shifts in half-maximal calcium activation of rabbit myofibril ATPase rates. In explanation, Weber and Bremel (1971, In Contractility of Muscle Cells and Related Processes, R. J. Podolsky, editor, Prentice-Hall, Inc., Englewood Cliffs, N.J.; Bremel and Weber, 1972, Nat. New Biol., 238:97) have described a mechanism whereby, at low ATP, "rigor complexes" are formed between myosin and thin filament actin and, in turn, alter the calcium affinity of one class of the two Ca++-binding sites on troponin, so that the thin filament is "turned on" for contraction at lower Ca++ levels. Tension data from skinned fibers substantially supports this hypothesis. A stability constant for CaEGTA of 2.62 x 1010 M–1 was determined, with the help of F. N. Briggs, in solutions similar to those used for skinned fibers and was the same for 100 and 300 mM KCl.  相似文献   

10.
Myosin reacted at low ionic strength with NEM forms an actomyosin which is Ca++ insensitive. With HMM S-1 the reaction with NEM causes a marked loss of the actin activated ATPase activity and the Ca++ sensitivity is reduced but not eliminated. The presence of actin during the sulfhydryl reaction does not significantly alter this result. HMM S-1 prepared from myosin previously desensitized by NEM regains Ca++ sensitivity. These results indicate that the conformations of myosin and HMM S-1 are different and could reflect a difference between insoluble (filamentous) myosin and myosin, or its fragments, in solution.  相似文献   

11.
The effect of mersalyl and of antibodies, directed against smooth-muscle myosin and skeletal muscle myosin, on the (Ca2+ + Mg2+)-activated adenosine triphosphatase (Ca,Mg)ATPase) system of mouse liver plasma membranes has been studied. Antismooth-muscle myosin inhibited by 38.6% at optimum substrate concentration the (Ca,Mg)ATPase with a Km of 0.88 × 10?3m. Mersalyl (0.5 mm) also inhibited this enzyme, the percentage inhibition being 44.6% at optimal substrate concentration. These results suggest the presence of a smooth-muscle myosin-like protein in the plasma membrane of mouse liver cells which has an associated (Ca,Mg)ATPase activity.  相似文献   

12.
Summary The histochemical activities of succinic dehydrogenase (SDH) and Ca++-activated ATPase (pHs 7.4 and 9.4) were studied in the larval tail musculature of Rana japonica, Rana catesbeiana and Rana ornativentris. The ATPase reaction product was detected by both light and electron microscopy. Red and white muscle fibres, as distinguished by SDH, showed high and low Ca++-ATPase reaction, respectively, at pHs 7.4, 9.4 and following preincubation in cold K2-EDTA solution. The ultrastructural investigation of CA++-ATPase reaction at pH 7.4 by the Ca++-citrophosphate technique demonstrated electron-dense reaction product in association with A, I and Z bands, intermyofibrillar (SR) compartment and the mitochondrial inner chamber. However, Pb++ precipitation technique demonstrated Mg++-activated myosin ATPase activity at pH 9.2 ultrastructurally. The present histochemical data suggest that the anuran larval tail red muscle fibres are possible slow, and emphasize a possible lack of correlation between the speed of contraction with their ATPase activity. Moreover, red muscle fibres of the anuran tail musculature are not equivalent to Type I fibres of higher chordates.  相似文献   

13.
In order to gain some information regarding Ca2+-dependent ATPase, the enzyme was purified from cardiac sarcolemma and its properties were compared with Ca2+-ATPase activity of myosin purified from rat heart. Both Ca2+-dependent ATPase and myosin ATPase were stimulated by Ca2+ but the maximal activation of Ca2+-dependent ATPase required 4 mM Ca2+ whereas that of myosin ATPase required 10 mM Ca2+. These ATPases were also activated by other divalent cations in the order of Ca2+ > Mn2+ > Sr2+ > Br2+ > Mg2+; however, there was a marked difference in the pattern of their activation by these cations. Unlike the myosin ATPase, the ATP hydrolysis by Ca2+-dependent ATPase was not activated by actin. The pH optima of Ca2+-dependent ATPase and myosin ATPase were 9.5 and 6.5 respectively. Na+ markedly inhibited Ca2+-dependent ATPase but had no effect on the myosin ATPase activity. N-ethylmaleimide inhibited Ca2+-dependent ATPase more than myosin ATPase whereas the inhibitory effect of vanadate was more on myosin ATPase than Ca2+-dependent ATPase. Both Ca2+-dependent ATPase and myosin ATPase were stimulated by K-EDTA and NH4-EDTA. When myofibrils were treated with trypsin and passed through columns similar to those used for purifying Ca2+-ATPase from sarcolemma, an enzyme with ATPase activity was obtained. This myofibrillar ATPase was maximally activated at 3–4 mM Ca2+ and 3 to 4 mM ATP like sarcolemmal Ca2+-dependent ATPase. K+ stimulated both ATPase activities in the absence of Ca2+ and inhibited in the presence of Ca2+. Both enzymes were inhibited by Na+, Mg2+, La3+, and azide similarly. However, Ca2+ ATPase from myofibrils showed three peptide bands in SDS polyacrylamide gel electrophoresis whereas Ca2+ ATPase from sarcolemma contained only two bands. Sarcolemmal Ca2+-ATPase had two affinity sites for ATP (0.012 mM and 0.23 mM) while myofibrillar Ca2+-ATPase had only one affinity site (0.34 mM). Myofibrillar Ca2+-ATPase was more sensitive to maleic anhydride and iodoacetamide than sarcolemmal Ca2+-ATPase. These observations suggest that Ca2+-dependent ATPase may be a myosin like protein in the heart sarcolemma and is unlikely to be a tryptic fragment of myosin present in the myofibrils.  相似文献   

14.
Summary Incubation for Ca++-activated myosin ATPase reveals three types of muscle fibres in m. parietalis of the Atlantic hagfish (Myxine glutinosa), while m. craniovelaris and m. longitudinalis linguae both contain one type of muscle fibres.The fast twitch white fibres of m. longitudinalis linguae and m. parietalis show relatively high ATPase activity, while the intermediate fibres of m. parietalis show low activity. Despite of being slow non-twitch, the superficial red fibres of m. parietalis and the fibres of m. craniovelaris show an ATPase activity even higher than that of the fast twitch muscle fibres.  相似文献   

15.
1. Tropomyosin preparations of the Bailey type, and those prepared in the presence of dithiothreitol to prevent oxidation of protein thiol groups, inhibit the Ca2+-activated adenosine triphosphatase (ATPase) of desensitized actomyosin by up to 60%. 2. The inhibitory activity of myofibrillar extracts and tropomyosin survives various agents known to denature proteins but to the action of which tropomyosin is unusually stable, namely heating at 100° and mild tryptic digestion. It is destroyed by prolonged treatment with trypsin. 3. The ethylenedioxybis-(ethyleneamino)tetra-acetic acid (EGTA)-sensitizing factor present in extracts of natural actomyosin and myofibrils could be selectively destroyed, leaving unchanged the inhibitory effect on the Ca2+-activated ATPase. There was no correlation between the EGTA-sensitizing and the Ca2+-activated inhibitory activities of tropomyosin prepared under different conditions. 4. Optimum inhibition was achieved when tropomyosin and the myosin of desensitized actomyosin were present in approximately equimolar proportions. Tropomyosin had no effect on the Ca2+-activated ATPase of myosin measured under similar conditions. 5. Evidence is presented showing that the tropomyosin binds to desensitized actomyosin under the conditions in which the ATPase is inhibited.  相似文献   

16.
Summary We have shown that a Ca++-ionophore activity is present in the (Ca+++Mg++)-ATPase of rabbit skeletal muscle sarcoplasmic reticulum (A.E. Shamoo & D.H. MacLennan, 1974.Proc. Nat. Acad. Sci. USA 71:3522). Methylmercuric chloride inhibited the (Ca+++Mg++)-ATPase and Ca++ transport, but had no effect on the activity of the Ca++ ionophore. Mercuric chloride inhibited ATPase, transport and ionophore activity. The ATPase and transport functions were more sensitive to methylmercuric chloride than to mercuric chloride. The two functions were inhibited concomitantly by methylmercuric chloride but slightly lower concentrations of mercuric chloride were required to inhibit Ca++ transport than were required to inhibit ATPase. Methylmercuric chloride and mercuric chloride probably inhibited ATPase and Ca++ transport by blocking essential-SH groups. However, it appears that there are no essential-SH groups in the Ca++ ionophore and that mercuric chloride inhibited the Ca++ ionophore activity by competition with Ca++ for the ionophoric site. Blockage of Ca++ transport by mercuric chloride probably occurs both at sites of essential-SH groups and at sites of ionophoric activity. These data suggest the separate identity of the sites of ATP hydrolysis and of Ca++ ionophoric activity.  相似文献   

17.
Heavy meromyosin subfragment-1 from human platelets and chicken gizzard exhibited an identical chromatographic pattern on agarose-ATP columns both in the absence and in the presence of Ca2+ and Mg2+. In the presence of Ca2+, the behavior differed from that of rabbit white skeletal muscle subfragment-1. The reaction of lysyl residues of platelet myosin with 2,4,6-trinitrobenzene sulfonate did not affect the K+- or Mg2+-stimulated ATPase activity. A similar behavior was exhibited by chicken gizzard myosin whereas trinitrophenylation of the more active lysyl residues in skeletal muscle myosin caused a marked increase in Mg2+-stimulated and a decrease in K+-stimulated ATPase activity. These features may point to a similar location of the essential lysyl residue in platelet and smooth muscle myosin, which is different from that of skeletal muscle. Alkylation of thiol groups by N-ethyl maleimide in the absence of added nucleotides resulted in a loss of K+-ATPase and in an increase in the Ca2+-ATPase in all three myosins, the increase for the skeletal myosin being much greater than for the platelet and chicken gizzard preparations. Alkylation of myosin in the presence of MgADP led to a decrease in K+-ATPase of all preparations whereas the Ca2+-ATPase as a function of time exhibited a maximum for the platelet and skeletal muscle proteins. These features may point to a certain similarity with respect to the active site of platelet and smooth muscle myosins and a difference between these and skeletal muscle myosin.  相似文献   

18.
R J Altiere  M A Inchiosa 《Life sciences》1980,26(18):1523-1534
An indole metabolite of epinephrine (an isomer of adrenochrome) was shown to be a potent inhibitor (EC50 of 1.50 μM to 1.85 μM) of myosin, actomyosin, and myofibrillar ATPase when assayed at or near physiologic ionic strength and pH. The inhibition of actomyosin ATPase by this epinephrine derivative was demonstrated to be competetive in nature. Complete inhibition of ATPase activity was never achieved under physiological conditions; maximum inhibition was 50% to 60%. It is concluded that the inhibitor reduced ATPase activity by reversibly attaching to sulfhydryl groups associated with ATPase activity. The reduction of ATPase activity by 50% may be explained by the known heterogeneity of the ATPase sites on myosin; only one-half of these sites may be sensitive or accessible to the inhibitor in the state of aggregation of myosin at physiologic ionic strength. The inhibitor was found to have no effect on hog cerebral cortex Na+,K+-activated ATPase, suggesting that it may be selective for contractile protein ATPase. These results further support the hypothesis proposed earlier from this laboratory that this inhibitory indole metabolite of epinephrine (which is formed only in smooth muscles relaxed by epinephrine) may be part of the mechanism by which epinephrine produces relaxation in certain smooth muscles.  相似文献   

19.
J F Hoh 《Biochemistry》1975,14(4):742-747
Mammalian nerves to fast and slow muscles have the remarkable property of changing the speed of contraction of muscles following cross-reinnervation. The biochemical basis of speed transformation is the change in myosin in ATPase activity. This paper provides electrophoretic evidence for structural changes in myosin from cross-reinnervated muscles. A method is described for the separation of intact fast and slow muscle myosins by polyacrylamide gel electrophoresis. This method utilizes the fact that ATP and its analogs prevent the formation of myosin polymers in low ionic strength buffers. In this system, normal fast muscle myosin has a higher electrophoretic mobility than slow muscle myosin. Normal rat soleus myosin has a major slow and a minor fast component due to two populations of muscle fibers. The same muscle cross-reinnervated by a fast muscle nerve shows only the fast component, The normal, homogeneous fast extensor digitorum longus muscle has only the electrophoretically fast myosin, but following cross-reinnervation it shows both fast and slow components. These results suggest that mammalian motor nerves can induce or suppress the expression of genes that code for fast and slow skeletal muscle myosins.  相似文献   

20.
J.L. Daniel  D.J. Hartshorne 《BBA》1974,347(2):151-159
Myosin reacted with N-ethylmaleimide in the presence of ADP lost its ability to be activated by actin. Subfragment 1 behaved similarly. About 2 moles of N-ethylmaleimide per mole of Subfragment 1 were required to eliminate actin activation of the Mg2+-ATPase activity. At the point at which actin activation was lost the K+-EDTA-ATPase activity was also lost, but the Ca2+-activated ATPase activity was increased. Kinetic measurements indicated that the labelling with N-ethylmaleimide in the presence of ADP reduced V (the ATPase activity at infinite actin concentration) but did not effect Kapp (which is related to the dissociation constant of the actin-Subfragment 1 complex). The Mg2+-activated activity of the reacted myosin alone remained unaltered and the ability to bind actin was retained. We propose that the N-ethylmaleimide labelling blocked the actin activation by preventing the accelerated release of hydrolysis products from the myosin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号