首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human DNA has been fractionated according to base composition by sedimentation equilibrium in an HgCl2/Cs2SO4 density gradient, followed by sedimentation equilibrium in an actinomycin/cesium formate density gradient. The fractions of different base composition resulting from this procedure were subsequently analyzed by sedimentation equilibrium in CsCl, DNA renaturation kinetics, and electron microscopy. All fractions contain similar kinetic classes of repeated DNA sequences as judged by renaturation studies. Short (300 nucleotides) interspersed repeated sequences are found in all fractions with no noticeable enrichment for these sequences in any fraction. Repeated sequences from fractions of different base composition are partially able to cross-hybridize, demonstrating that nearly identical repeated sequences occur in molecules of different base composition. These findings are critically compared to reports of successful density gradient fractionations of different human DNA sequence classes.  相似文献   

2.
A graphical formula is presented for determining the base ratio of melted DNA. By use of this formula, the composition of sequences which melt in different portions of the melting curves of Clostridium DNA, Escherichia coli DNA, and mouse DNA were determined. As the DNA melts, the per cent of adenine and thymine (AT) in the melted sequences decreases linearly with temperature. The average composition of sequences which melt in a given part of the melting curve is proportional to the base ratio of the DNA. The concentration and average composition of sequences were determined for three parts of the melting curves of the DNA samples, and a frequency distribution curve was constructed. The curve is symmetrical and has a maximum at about 56% AT. The distribution of GC-rich sequences on the E. coli chromosome was estimated by shearing, partially melting, and fractionating the DNA on hydroxylapatite. GC-rich sequences appear to occur every thousand base pairs, and have a maximum length of about 180 base pairs. The graphical formula was applied to the determination of the composition of sequences which melt in different parts of the melting curve of chromatin. Throughout the melting curve, the composition of the melting sequences is about 60% AT, which appears to suggest that relatively long sequences are melting simultaneously. Their melting temperature may be a function of the composition of the protein on different parts of the DNA. The problem of light scattering in DNA-protein and DNA was also investigated. A formula is presented which corrects for light scattering by relating the intensity of the scattered light to the rate of change of absorbance of DNA with wavelength.  相似文献   

3.
The sequences flanking a psoralen interstrand cross-link may determine how it is repaired. Our comparison of the Escherichia coli UvrABC endonuclease incision of a variety of specific cross-link sequences in a single natural DNA fragment showed that DNA base composition determines which of two cross-linked DNA strands will be incised. G/C enrichment of the region 6-12 bases 5' of the modified T on the furan-side strand results in preferential incision of the furan-side strand. When the G/C-rich region is on the 3' side, or on neither side, incisions occur on either strand. These effects of DNA base composition suggest that UvrAB can bind in two ways to a psoralen cross-link.  相似文献   

4.
Intramolecular base composition heterogeneity of human DNA.   总被引:1,自引:0,他引:1       下载免费PDF全文
The intramolecular base composition heterogeneity of human DNA has been investigated by electron microscopic observations of partially denatured structures and by equilibrium solution thermal denaturation techniques. DNA sequences having an average length of less than 2000 base pairs are found to be heterogeneous in base composition. These heterogeneous sequences occupy a minimum of 67 to 81% of the human genome.  相似文献   

5.
The composition of repetitive sequences in restriction patterns of nuclear DNA of Physarum polycephalum was determined by high-resolution gel analysis. Three types of repeated DNA fragments in the size range of (0.2-2) X 10(3) base pairs could be identified as discrete spots on the gels and distinguished by their abundance and above-average base composition of either guanine and cytosine (G + C) or adenine and thymidine (A + T). On comparing the DNA composition from exponentially growing plasmodia with that of starved plasmodia, which have become competent to sporulate and have lost 80% of their nuclei, no change was detected among the (A + T)-rich repeat fractions, whereas several of the (G + C)-rich fractions revealed fewer copies in the DNA prepared from starved cells. As shown by hybridization under saturating conditions, the reduction of several (G + C)-rich repeated sequences in the restricted nuclear DNA in sporulation-competent cells can be explained by a 64% elimination of the extrachromosomal nucleolar ribosomal DNA sequences.  相似文献   

6.
We have analyzed the effect of base composition at the center of symmetry of inverted repeated DNA sequences on cruciform transitions in supercoiled DNA. For this we have constructed two series of palindromic DNA sequences: one set with differing center and one set with differing center and arm sequences. The F series consists of two 96-base pair perfect inverted repeats which are identical except for the central 10 base pairs which consist of pure AT or GC base pairs. The S series was constructed such that the overall base composition of the inverted repeats was identical but in which the positioning of blocks of AT- and GC-rich sequences varied. The rate of cruciform formation for the inverted repeats in plasmid pUC8 was dramatically influenced by the 8-10 base pairs at the center of the inverted repeat. Inverted repeats with 8-10 AT base pairs in the center were kinetically much more active in cruciform formation than inverted repeats with 8-10 GC base pairs in the center. These experiments show a dominant influence of the center sequences of inverted repeats on the rate of cruciform formation.  相似文献   

7.
Summary DNAs have been isolated from various Oryza species and studied using physical techniques. The percent of guanine plus cytosine has been determined by thermal denaturation. While the base composition varied between the species, no heterogeneity in the base pair distribution was observed. Renaturation kinetics data of DNAs from different species show that the proportion of repeated DNA sequences vary considerably depending on the DNA content per cell, whereas the nonrepetitive DNA component remains relatively constant. These results suggest that in addition to a small range of DNA variation between the species, changes in the base composition and proportion of repeated sequences have accompanied divergence of the species within the genus.  相似文献   

8.
M Hasegawa  T A Yano 《Origins of life》1975,6(1-2):219-227
The entropy of the amino acid sequences coded by DNA is considered as a measure of diversity of variety of proteins, and is taken as a measure of evolution. The DNA or m-RNA sequence is considered as a stationary second-order Markov chain composed of four kinds of bases. Because of the biased nature of the genetic code table, increase of entropy of amino acid sequences is possible with biased nucleotide sequence. Thus the biased DNA base composition and the extreme rarity of the base doublet CpG of higher organisms are explained. It is expected that the amino acid composition was highly biased at the days of the origin of the genetic code table, and the more frequent amino acids have tended to get rarer, and the rarer ones more frequent. This tendency is observed in the evolution of hemoglobin, cytochrome C, fibrinopeptide, immunoglobulin and lysozyme, and protein as a whole.  相似文献   

9.
定义描述DNA序列组分差异性和碱基关联的两个参数,分析了人类加工假基因演化过程中其组分信息和碱基关联信息的变化特征,发现随时间的推移,加工假基因的组分逐步向其侧翼序列漂移,紧邻碱基关联逐步增强。这表明本研究所得参数可很好地用来表征加工假基因的突变信息。  相似文献   

10.
11.
Summary The composition of nuclear DNA in 3 Vicia species are compared. The species V. eriocarpa, V. johannis and V. melanops are from three separate subgeneric sections of Vicia and show a fourfold variation in their amounts of nuclear DNA. DNA melting experiments, buoyant density gradient analysis and Cot reassociation experiments show that the quantitiative change in nuclear DNA between the three species is achieved by changes in the amounts of both repetitive and nonrepetitive DNA sequences. It is suggested that while the increase in the repetitive fraction is achieved by the proliferation of repetitive base sequences the increase in the nonrepetitive fraction is due to the steady accretion of highly diverged base sequences resulting from mutations, deletions, insertions and base sequence rearrangements among families of repetitive sequences.  相似文献   

12.
13.
The rates of cleavage of DNAs containing substituents at position 5 of thymine or cytosine have been measured for a variety of sequence-specific endonucleases, so as to determine which features in the DNA sequence are being probed. Phage phi e DNA fully substituted with 5-hydroxymethyluracil is cleaved more slowly by enzymes whose recognition sequences contain A-T base pairs than are DNAs containing thymine, but both types of DNA are cleaved at similar rates by enzymes recognizing sequences composed only of G-C base pairs. Phage PBS2 DNA with uracil completely substituted for thymine is cleaved slowly by several enzymes which recognize sequences containing A-T base pairs (endonucleases Hpa I, HindII, and HindIII), while the rates of cleavage by other enzymes (endonucleases EcoRI and BamHI) are not affected. Phage lambda- and P22 DNAs containing 5-bromouracil are cleaved more slowly by several enzymes (endonucleases HindIII, Hpa I, BamHI) than are thymine-containing DNAs. Enzymes that recognize sequence isomers with the composition G:C:2A:2T (endonucleases EcoRI, Hpa I, HindIII) are not equally affected by substitution at position 5 of thymine, suggesting that they differ in their contacts with A-T base pairs. DNA containing glucosylated 5-hydroxymethylcytosine in place of cytosine is resistant to cleavage by all the endonucleases examined.  相似文献   

14.
Detection, sequence patterns and function of unusual DNA structures.   总被引:25,自引:14,他引:11       下载免费PDF全文
Unusual DNA structures were detected by an electrophoretic procedure in which DNA fragments were separated according to size on agarose gels and then by shape on polyacrylamide gels. Fragments from yeast centromeres migrated faster in polyacrylamide than predicted from their base composition and size and this property was attributed to a nonrandom distribution of oligomeric A tracts that exhibited minima at 10-11 base intervals. Fragments from seven loci in 107 kb of DNA migrated anomalously slow and these fragments contained blocks of A2-6 in a 10-11 base periodicity which is indicative of bent DNA. The most pronounced bent sequences were found within yeast ARS1 and centered at 245 and 240 bp from the left and right ends of the adenovirus genome. Each sequence is approximately 150 bp away from a replication origin and the adenovirus sequences are within 50 bp of enhancers. Nuclear matrix attachment sites, which are also adjacent to enhancers, contain sequences characteristic of bent DNA. These results suggest that bent structures reside at the base of DNA loops in chromosomes.  相似文献   

15.
The entropy of the amino acid sequences coded by DNA is considered as a measure of diversity or variety of proteins, and is taken as a measure of evolution. The DNA or m-RNA sequence is corsidered as a stationary second-order Markov chain composed of four kinds of bases. Because of the biased nature of the genetic code table, increase of entropy of amino acid sequences is possible with biased nucleotide sequence. Thus the biased DNA base composition and the extreme rarity of the base doubletC p G of higher organisms are explained. It is expected that the amino acid composition was highly biased at the days of the origin of the genetic code table, and the more frequent amino acids have tended to get rarer, and the rarer ones more frequent. This tendency is observed in the evolution of hemoglobin, cytochrome C, fibrinopeptide, immunoglobulin and lysozyme, and protein as a whole.  相似文献   

16.
To an approximation Chargaff's rule (%A = %T; %G = %C) applies to single-stranded DNA. In long sequences, not only complementary bases but also complementary oligonucleotides are present in approximately equal frequencies. This applies to all species studied. However, species usually differ in base composition. With the goal of understanding the evolutionary forces involved, I have compared the frequencies of trinucleotides in long sequences and their shuffled counterparts. Among the 32 complementary trinucleotide pairs there is a hierarchy of frequencies which is influenced both by base composition (not affected by shuffling the order of the bases) and by base order (affected by shuffling). The influence of base order is greatest in DNA of 50% G + C and seems to reflects a more fundamental hierarchy of dinucleotide frequencies. Thus if TpA is at low frequency, all eight TpA-containing trinucleotides are at low frequency. Mammals and their viruses share similar hierarchies, with intra- and intergenomic differences being mainly associated with differences in base composition (percentage G + C). E. coli and, to a lesser extent, Drosophila melanogaster hierarchies differ from mammalian hierarchies; this is associated with differences both in base composition and in base order. It is proposed that Chargaff's rule applies to single-stranded DNA because there has been an evolutionary selection pressure favoring mutations that generate complementary oligonucleotides in close proximity, thus creating a potential to form stem-loops. These are dispersed throughout genomes and are rate-limiting in recombination. Differences in (G + C)% between species would impair interspecies recombination by interfering with stem-loop interactions.  相似文献   

17.
Nuclear DNA content, chromatin structure, and DNA composition were investigated in four Agave species: two diploid, Agave tequilana Weber and Agave angustifolia Haworth var. marginata Hort., and two pentaploid, Agave fourcroydes Lemaire and Agave sisalana Perrine. It was determined that the genome size of pentaploid species is nearly 2.5 times that of diploid ones. Cytophotometric analyses of chromatin structure were performed following Feulgen or DAPI staining to determine optical density profiles of interphase nuclei. Pentaploid species showed higher frequencies of condensed chromatin (heterochromatin) than diploid species. On the other hand, a lower frequency of A-T rich (DAPI stained) heterochromatin was found in pentaploid species than in diploid ones, indicating that heterochromatin in pentaploid species is made up of sequences with base compositions different from those of diploid species. Since thermal denaturation profiles of extracted DNA showed minor variations in the base composition of the genomes of the four species, it is supposed that, in pentaploid species, the large heterochromatin content is not due to an overrepresentation of G-C repetitive sequences but rather to the condensation of nonrepetitive sequences, such as, for example, redundant gene copies switched off in the polyploid complement. It is suggested that speciation in the genus Agave occurs through point mutations and minor DNA rearrangements, as is also indicated by the relative stability of the karyotype of this genus. Key words : Agave, DNA cytophotometry, DNA melting profiles, chromatin structure, genome size.  相似文献   

18.
19.
The base composition of peanut (var. NC-17) DNA determined from thermal denaturation profiles showed an average guanine plus cystosine content of 34% which was in close approximation to 36% guanine plus cytosine calculated from the buoyant density. Buoyant density also indicated the absence of satellite DNA. The genome size, 2.0 × 109 base pairs, as determined by reassociation kinetics of the single copy DNA was close to the genome size determined by cytophotometry, 2.1 × 109 base pairs. Peanut DNA averaging 450 to 600 base pairs long, reassociated in phosphate buffer and fractionated by hydroxylapatite, indicated a DNA genome composition of 36% nonrepetitive or single copy DNA; reassociation in formamide and followed by optical methods indicated the repetitive DNA possesses highly repeated, intermediately repeated and rarely repeated components of DNA with DNA sequences repeated on the average about 38,000, 6,700, and 200 times each. Different criteria of reassociation in formamide revealed further subdivisions of these four separate components of DNA. The DNA of above mentioned NC-17 variety compared to Florigiant variety showed no differences in thermal denaturation profiles, buoyant density, or in genome size.  相似文献   

20.
A nonhomogeneous, nonstationary stochastic model of DNA sequence evolution allowing varying equilibrium G + C contents among lineages is devised in order to deal with sequences of unequal base compositions. A maximum-likelihood implementation of this model for phylogenetic analyses allows handling of a reasonable number of sequences. The relevance of the model and the accuracy of parameter estimates are theoretically and empirically assessed, using real or simulated data sets. Overall, a significant amount of information about past evolutionary modes can be extracted from DNA sequences, suggesting that process (rates of distinct kinds of nucleotide substitutions) and pattern (the evolutionary tree) can be simultaneously inferred. G + C contents at ancestral nodes are quite accurately estimated. The new method appears to be useful for phylogenetic reconstruction when base composition varies among compared sequences. It may also be suitable for molecular evolution studies.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号