首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study assesses the effects of starvation and refeeding on 1-[14C]-methyl aminoisobutyric acid (14C-MeAIB) uptake, 14C-total lipids, 14CO2 production from 14C-glycine, 14C-protein synthesis from 14C-leucine and Na+–K+-ATPase activity in jaw muscle of Neohelice granulata previously maintained on a carbohydrate-rich (HC) or high-protein (HP) diet. In N. granulata the metabolic adjustments during starvation and refeeding use different pathways according to the composition of the diet previously offered to the crabs. During starvation, 14CO2 production from 14C-glycine, and 14C-protein synthesis from 14C-leucine were reduced in HC-fed crabs. In crabs maintained on the HP or HC diet, 14C-total lipid synthesis increased after 15 days of starvation. In crabs fed HP diet, 14C-MeAIB uptake and Na+–K+-ATPase activity decreased in refeeding state. In crabs refeeding HC diet, 14C-MeAIB uptake and 14CO2 production decreased during the refeeding. In contrast, the 14C-protein synthesis increased after 120 h of refeeding. In both dietary groups, 14C-total lipid synthesis increased during refeeding. Changes in the carbon amino acid flux between different metabolic pathways in muscle are among the strategies used by this crab to face starvation and refeeding. Protein or carbohydrate levels in the diet administered to this crab modulate the carbon flux between the different metabolic pathways.  相似文献   

2.
The present study assesses the effects of osmotic stress on phosphoenolpyruvate carboxykinase (PEPCK), fructose 1,6-bisphosphatase (FBPase) and glucose 6-phosphatase (G6Pase) activities and (14)C-total lipid synthesis from (14)C-glycine in the anterior and posterior gills, jaw muscle, and hepatopancreas of Neohelice granulata. In posterior gills, 24-h exposure to hyperosmotic stress increased PEPCK, FBPase and G6Pase activities. Increase in (14)C-lipid synthesis was associated to the decrease in PEPCK activity after 72-h exposure to hyperosmotic stress. Hypo-osmotic stress decreased PEPCK and G6Pase activities in posterior gills; however, (14)C-lipids increased after 72-h exposure to stress. In anterior gills, decreases in the G6Pase activity after 72-h of hyperosmotic stress and in (14)C-lipogenesis after 144-h were observed, while PEPCK activity increased after 144 h. Exposure to hypo-osmotic stress increased (14)C-lipid synthesis and PEPCK activity in anterior gills. Muscle G6Pase activity increased after 72-h exposure to hypo-osmotic stress; however, no significant change was observed in the lipogenesis. PEPCK decreased in muscle after 144-h exposure to hyperosmotic, coinciding with increased (14)C-lipid synthesis. In the hepatopancreas, a decrease in the (14)C-lipogenesis occurred after 24-h exposure to hyperosmotic stress, accompanied by increase in (14)C-lipid synthesis. Additionally, PEPCK activity returned to control levels. The hepatopancreatic lipogenesis from amino acids was not involved in the metabolic adjustment during hypo-osmotic stress. However, gluconeogenesis is one of the pathways involved in the adjustment of the intracellular concentration of nitrogenated compounds.  相似文献   

3.
4.
The present study assesses the effects of 1-h anoxia and 3-h post-anoxia recovery period on the activity of pyruvate kinase (PK), 14CO2 produced from 14C-glucose and 14C-lactate, ATP, and glycogen levels in the jaw muscle of Chasmagnathus granulatus fed either a carbohydrate-rich (HC) or high-protein (HP) diet.In the HC control group the jaw muscle PK activity was higher than in HP-fed crabs. In jaw muscle from control HP-fed crabs the lactate oxidation was higher than in HC-fed animals. We observed increased PK activity and ATP concentration and a reduction in the glycogen concentration, 14CO2 production from 14C-lactate in HP-fed crab jaw muscle during anoxia. In crabs fed an HC diet the PK activity decreased in anoxia, the 14CO2 production from 14C-glucose increased, and the 14CO2 production from 14C-lactate did not change.During recovery, a low oxidation capacity for lactate was found in jaw muscle of both dietary groups. PK activity and 14CO2 production from 14C-glucose were high during the recovery period only in the jaw muscle from HP-fed crabs.Recovery decreased the ATP concentration of both dietary groups as compared to anoxia and normoxia, and did not restore the glycogen concentration in the jaw muscle.  相似文献   

5.
The incorporation of [14C]-alanine or [14C]-lactate into glucose was measured in hepatopancreas fractions from Chasmagnathus granulata crabs adapted to a high protein or a carbohydrate-rich diet and submitted or not (control group) to hyposmotic stress. Gluconeogenic capacity and phosphoenolpyruvate carboxykinase (PEPCK) activity increased during acclimation to a dilute medium in C. granulata hepatopancreas. In intact animals, high hemolymph urea levels occurred for the high-protein regimen and for crabs fed both diets and submitted to hyposmotic stress. It could be that the amino acids released during hyposmotic stress are deaminated in the hepatopancreas, and that the carbon chains are used as substrate for gluconeogenesis. Hepatopancreas gluconeogenesis seems to be one of the pathways implicated in the metabolic adjustment of the amino acid pool during hyposmotic stress in C. granulata.  相似文献   

6.
When Paramecium calkinsi encounter hyperosmotic stress, intracellular free alanine increases. In vivo assays indicate that the reaction catalyzed by alanine aminotransferase contributes to the build up of alanine in response to hyperosmotic shock. 14C-pyruvate is converted to 14C-alanine in cells grown axenically at 200 mosm. When shifted to 600 mosm, the rate of conversion of pyruvate to alanine increases, and conversion at either 200 or 600 mosm is blocked by 1 mM aminooxyacetic acid (AOA), an inhibitor of aminotransferase. Intracellular free alanine increase is partially inhibited by AOA, and AOA prevents cells living in fresh water from acclimating to higher salinities, an indication that the increase in intracellular alanine is physiologically significant.  相似文献   

7.
  • 1.1. Glycine, proline, and taurine are the quantitatively most important amino acid osmolytes in Penaeus aztecus postlarvae.
  • 2.2. Taurine dominates the amino acid pool in low salinity, while proline dominates the amino acid pool at higher salinities.
  • 3.3. Although not major contributors to the pool, glutamate and alanine are constitutively synthesized from [14C]glucose and [14C]glutamate under constant salinity and under hyperosmotic stress treatments.
  • 4.4. Proline synthesis from [14C]-precursors is apparent under constant high (but not low) salinity and is significantly induced by hyperosmotic stress.
  • 5.5. No appreciable glycine synthesis was observed from [14C]glucose or [14C]glutamate under any experimental conditions.
  相似文献   

8.
Skeletal myotubes responded to passive stretch by increased amino acid uptake (as measured with [3H]α-aminoisobutyric acid), increased incorporation of amino acids into total cellular protein and myosin heavy chains, and increased accumulation of total cellular protein and myosin heavy chains. These alterations were preceded by an increase in the uptake of ouabain-sensitive rubidium-86 (86Rb+), a potassium tracer used to measure membrane sodium pump activity (Na+K+ATPase). This stretch-induced stimulation of 86Rb+ uptake resulted from a 60-70% increase in the Vmax of the Na pump with little change in the Km. [3H] ouabain binding studies showed no stretch-induced change in the number of membrane Na pumps, indicating that stretch activates the Na pumps that are already present on the cell surface. Since the stretch-induced increases in amino acid transport and amino acid incorporation into proteins were inhibited by ouabain, Na pump activation may be involved in stretch-induced cell growth of skeletal muscle cells by hypertrophy.  相似文献   

9.
The effect of water salinity and ions on metallothionein-like proteins (MTLP) concentration was evaluated in the blue crab Callinectes sapidus. MTLP concentration was measured in tissues (hepatopancreas and gills) of crabs acclimated to salinity 30 ppt and abruptly subjected to a hypo-osmotic shock (salinity 2 ppt). It was also measured in isolated gills (anterior and posterior) of crabs acclimated to salinity 30 ppt. Gills were perfused with and incubated in an isosmotic saline solution (ISS) or perfused with ISS and incubated in a hypo-osmotic saline solution (HSS). The effect of each single water ion on gill MTLP concentration was also analyzed in isolated and perfused gills through experiments of ion substitution in the incubation medium. In vivo, MTLP concentration was higher in hepatopancreas than in gills, being not affected by the hypo-osmotic shock. However, MTLP concentration in posterior and anterior gills significantly increased after 2 and 24 h of hypo-osmotic shock, respectively. In vitro, it was also increased when anterior and posterior gills were perfused with ISS and incubated in HSS. In isolated and perfused posterior gills, MTLP concentration was inversely correlated with the calcium concentration in the ISS used to incubate gills. Together, these findings indicate that an increased gill MTLP concentration in low salinity is an adaptive response of the blue crab C. sapidus to the hypo-osmotic stress. This response is mediated, at least in part, by the calcium concentration in the gill bath medium. The data also suggest that the trigger for this increase is purely branchial and not systemic.  相似文献   

10.
11.
Studying the amino acid absorption by higher plants we observed a stimulation of 14C-alanine absorption by wheat roots preloaded with inactive alanine. Within the limits of concentration examined the increase of stimulation is more likely to depend on the free alanine content of the roots than on the alanine concentration of the solutions used for pretreatment. The stimulation is retained even after incubating the pretreated roots in diluted CaSO4 solution before the uptake period. Besides the alanine only the glycine gave stimulation, while pretreatment with valine, arginine or aspartic acid gave an inhibition. (The aspartic acid is likely to cause a general rise in the permeability of cells.) We suppose that the phenomenon of flow driven by counterflow is likely to serve as an explanation to the stimulatory preloading effect observed in the alanine absorption by wheat roots.  相似文献   

12.
Summary Gluconeogenic, lipogenic, glycogenic and oxidative rates were estimated from14C-lactate,14C-alanine and14C-aspartate using a hepatocyte preparation isolated from starved immature American eels,Anguilla rostrata. Lactate gluconeogenesis increased significantly during starvation at 5 and 15°C. Alanine gluconeogenesis generally decreased during starvation. At the 2nd month of the starvation at 5 and 15°C, and the 8th month of starvation at 15°C, however, alanine gluconeogenesis was significantly higher than in the fed control. These increases in alanine gluconeogenesis occurred during a period of high glucose demand. Aspartate gluconeogenesis was quantitatively minor when compared to the other two substrates. Glycerol synthesis and esterification from the three substrates increased until the 5th month at 5 and 15°C followed by a gradual decline thereafter. Significant increases in glycogen synthesis occurred between the 3rd and the 5th months at 15°C, but rates were small compared to glucose synthesis. Rates of substrate oxidation appeared sufficient to provide adequate ATP to sustain gluconeogenesis in both the fed and starved eel hepatocyte. Glucagon stimulated lactate gluconeogenesis, but not amino acid gluconeogenesis in late starved eel hepatyocytes. Major changes in metabolite concentrations that occurred during starvation were increases in plasma glucose and amino acids; a significant liver glycogen depletion at the 2nd month followed by a return to control values at the third month; and, a significant protein depletion in white skeletal muscle at the 3rd month. These data suggest that lactate glucogeogenesis, but not amino acid gluconeogenesis or glycogenolysis, is the major source of tissue carbohydrates during eel starvation.This work was supported from operating grants to TWM from the National Research Council of Canada (A6944)  相似文献   

13.
Uptake of 14C-leucine by Moniliformis dubius in 2-min incubations was not linear with respect to substrate concentration and appeared to involve a combination of diffusion and mediated transport. During a 90-min incubation in 1 mM14C-leucine, the total pool of free leucine increased from an initial concentration of 0.46–12.21 mM; less than 2% of the absorbed leucine was metabolized during this time period. The concentrations of leucine in the pseudocoelomic fluid and extracts of body walls, measured before and after incubation, were the same in either case. Uptake of 14C-leucine was insensitive to the external concentration of Na+, Ca2+, Mg2+, K+, and Tris(hydroxymethyl) aminomethane.Uptake of 14C-alanine also appeared to be mediated, however, the alanine pool was not altered after a 30-min incubation in 1 mM14C-alanine. Following a 30-min incubation in 14C-alanine, only 38% of the absorbed radioactivity was present as labeled alanine; the remaining radioactivity was detected in aspartic acid, cysteic acid, taurine, and urea.  相似文献   

14.
Mechanisms have been examined by which hyperosmotic blood plasma might elevate the levels of aspartate and glutamate in the brain of the toadBufo boreas. CO2 fixation was assessed by two in vivo methods using [2-14C]glucose injected intracisternally. Thirty minutes after injection, the14C labeling of glutamate and aspartate was more than 100 times greater in brain than in liver. In brain tissues, 40+% of14C atoms appeared to be incorporated into aspartate via the pyruvate carboxylase pathway. Brain tissues of control toads and toads adapting or adapted to hyperosmotic plasma osmolality revealed no differences in the rate of CO2 fixation as related to glucose utilization or tissue pool sizes of glutamate and aspartate. Elevated levels of these amino acids in blood plasma preceded increases in brain tissues. Carbon atoms required during hyperosmotic adaptation for expansion of amino acid pools in brain tissues may, in part, originate from amino acids in blood but apparently not from CO2 fixation in brain.  相似文献   

15.
The present study assessed the effect of different fasting times on the in vitro gluconeogenic capacity of Chasmagnathus granulata crabs previously adapted to a high-protein (HP) or carbohydrate-rich (HC) diet using the incorporation of [U-(14)C]l-lactate or [U-(14)C]l-alanine into glucose. We also recorded haemolymphatic glucose and hepatopancreatic glycogen levels. In the HP group, on the third day of fasting there were decreases in the synthesis of glucose from (14)C-alanine and in haemolymph glucose. After 15 days of fasting, haemolymph glucose and hepatopancreatic glycogen levels were maintained by an increase in the conversion of (14)C-alanine into glucose. However, after 21 days of fasting the gluconeogenic capacity was decreased and hepatopancreas glycogen concentration was reduced. In the HC group, hepatopancreatic glycogen was the energy source during the first 6 days of fasting. Gluconeogenesis from (14)C-lactate decreased after 6 days of fasting, remaining low until 21 days of fasting. The conversion of (14)C-alanine into glucose was increased after 15 days fasting and hepatopancreatic glycogen was raised in relation to that present after a 6-day fasting. In both dietary groups the stabilization in the levels of haemolymph glucose after 21 days fasting may result from a reduction in metabolic rate during restricted feeding.  相似文献   

16.
1. Lactate dehydrogenase (LDH) activity in the hepatopancreas and abdominal muscle of fiddler crabs, Uca pugilator, was determined after 24 and 48 hr of exposure to 2 ppm cadmium chloride.2. For the cadmium exposed crabs, LDH activity in the hepatopancreas decreased, whereas that in the abdominal muscle increased.3. The increased LDH activity in the abdominal muscle may reflect increased dependence on anaerobic carbohydrate metabolism in fiddler crabs exposed to cadmium in their environment.  相似文献   

17.
Abstract. This study assessed the effects of long (LD) or short (SD) days on the conversion of [14C]-glycerol to [14C]-glucose and total lipid concentration in organs of the crab Neohelice granulata challenged by a change in external salinity. In the 20‰-acclimated crabs, no difference was found in the concentration of total lipids in the muscle, hepatopancreas, gills, or hemolymph between crabs acclimated to SD or LD. In SD crabs, the total lipid levels in the anterior and posterior gills did not decrease during an osmotic challenge. Only in the posterior gills did the total lipid levels decrease during acclimation to the 34‰ medium in LD animals. The total lipid concentration in the hemolymph decreased after 1 d of osmotic stress in SD, and increased in the hepatopancreas. In LD crabs, the lipid contents decreased gradually in muscle, and in the hepatopancreas on day 3 after transfer to 34‰ medium. In 20‰-acclimated crabs, the gluconeogenesis activity in both sets of gills was higher in LD than in SD animals. The gluconeogenesis capacity decreased in both sets of gills on the first day of osmotic challenge in SD, and in the posterior gills on the third day in LD crabs. These results suggest that in organs of N. granulata , photoperiod affects the metabolic adjustments to an osmotic challenge.  相似文献   

18.
Specimens of Oscar Astronotus ocellatus from a fish farm were abruptly submitted to salt stress of 14 ppt and 20 ppt, for 3 and 8 h to determine their plasma osmolality. Muscle wet body mass change in vitro was analyzed from control freshwater animals. Fish in 14 ppt presented no osmolality distress even after 8 h. In 20 ppt, a slight increase (10%) in plasma osmolality was observed for both times of exposure when compared to control fish. Muscle slices submitted in vitro to hyper-osmotic saline displayed decreased body mass after 75 min, and slices submitted to hypo-osmotic saline displayed increased body mass after 45 min when compared to control (isosmotic saline). These results reinforce A. ocellatus’s euryhalinity. The fish were able to regulate its internal medium and tolerate 14 ppt, but presented an intense osmotic challenge and low muscle hydration control when facing salinities of 20 ppt.  相似文献   

19.
A reovirus (tentatively designated as Callinectes sapidus reovirus, CsRV) was found in the blue crabs C. sapidus collected in Chesapeake Bay in 2005. Histological examination of hepatopancreas and gill from infected crabs revealed eosinophilic to basophilic, cytoplasmic, inclusions in hemocytes and in cells of connective tissue. A cDNA library was constructed from total RNA extracted from hemolymph of infected crabs. One clone (designated as CsRV-28) with a 532-bp insert was 75% identical in nucleotide sequence (and 95% similar in translated amino acid sequence) to the quanylytransferase gene of the Scylla serrata reovirus (SsRV). The insert of CsRV-28 was labeled with digoxigenin-11-dUTP and hybridized to sections of hepatopancreas and gill of infected C. sapidus, this probe reacted to hemocytes and cells in the connective tissue. No reaction was seen in any of the tissues prepared from uninfected crabs. Thus, this in situ hybridization procedure can be used to diagnose CsRV.  相似文献   

20.
Lipids seem to be the major energy store in crustaceans. Moreover, they are extremely important in maintaining structural and physiological integrity of cellular and sub cellular membranes. During salinity adaptation, energy-demanding mechanisms for hemolymph osmotic and ionic regulation are activated. Thus, the main goal of this work was to verify the possible involvement of lipids as an energy source in the osmotic adaptation process. The estuarine crab Chasmagnathus granulata was captured and acclimated to salt water at 20 per thousand salinity and 20 +/- 2 degrees C, for 30 days. After acclimation, crabs were divided into groups of ten and transferred to fresh water (0 per thousand ), salt water at 40 per thousand salinity, or maintained in salt water at 20 per thousand salinity (control group), without feeding. Before and seven days after the salinity change, wet weight and lipid concentration in gills, muscle, hepatopancreas, and hemolymph were determined according to the colorimetric assay of sulphophosphovanilin. Results show that hepatopancreas lipids were not mobilized during osmotic stress regulation. Gill and muscle lipids were significantly lower in crabs subjected to hypo-osmotic stress than those subjected to the hyper-osmotic stress or maintained at the control salinity. Our results point to the occurrence of lipid mobilization and involvement of these compounds in the osmotic acclimation process in C. granulata, but with differences between tissues and the osmotic shock (hypo or hyper) considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号