首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A total of 13 phosphonate analogues of bis(5'-adenosyl) tetraphosphate (AppppA) have been tested as substrates and inhibitors of the asymmetrically cleaving bis(5'-nucleosidyl) tetraphosphatase (NppppNase) from Artemia and the symmetrically cleaving NppppNase from Escherichia coli. With the Artemia enzyme, the substrate efficiency of beta beta'-substituted compounds decreased with decreasing substituent electronegativity (O greater than CF2 greater than CHF greater than CCl2 greater than CHCl greater than CH2) such that AppCF2ppA and AppCH2ppA were hydrolyzed at 70% and 2.5% of the rate of AppppA, respectively. These compounds were competitive inhibitors of this enzyme with Ki values that generally also decreased with electronegativity from 12 microM for AppCF2ppA to 0.4 microM for AppCH2ppA (Km for AppppA = 33 microM). AppCH = CHppA and AppCH2CH2ppA were neither effective substrates nor inhibitors of the Artemia enzyme. Alpha beta,alpha'beta'-Disubstituted analogues were generally less effective inhibitors with Ki values ranging from 23 microM (ApCH2ppCH2pA) to greater than 1.5 mM (ApCH2CH2ppCH2CH2pA). However, they displayed a low and unexpected rate of symmetrical cleavage by the Artemia enzyme: e.g., ApCHFppCHFpA yielded ApCHFp at 3% of the rate of AppppA breakdown. Both sets of analogues were also competitive inhibitors of the E. coli NppppNase with Ki values ranging from 7 microM (AppCH2ppA) to 250 microM (ApCH2CH2ppCH2CH2pA) (Km for AppppA = 28 microM). The only alpha beta,alpha'beta'-disubstituted analogue to be hydrolyzed by the E. coli enzyme was ApCF2ppCF2pA at 0.2% of the rate of AppppA; however, several of the beta beta'-substituted compounds showed a limited degree of asymmetrical cleavage.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Possible effects of various tetrahydroisoquinolines (TIQs) on rat testicular endocrine function were tested in vitro in order to prove whether these compounds, some of which have been claimed to accumulate in alcoholics, may be mediators of the development of Leydig cell insufficiency, a well-known side-effect of ethanol ingestion. TIQ effects on different levels of regulation of testis function were compared in vitro with estrogen effects, since both classes of compounds have structural similarities. Gonadotropin-stimulated testosterone production by testicular Leydig cells was inhibited by tetrahydropapaveroline and isosalsoline, the IC50 values (30 microM) being comparable to those of estradiol (3 microM), 2-hydroxyestradiol (10 microM), and the phytoestrogens, coumestrol (15 microM) and genistein (7 microM); salsolinol (85 microM) and salsoline (240 microM) were less effective, and salsolidine was ineffective. None of these TIQs interacted significantly with testicular estrogen receptor as analyzed by estradiol displacement. However, tetrahydropapaveroline, isosalsoline and salsolinol competitively inhibited (Ki 130-150 microM) substrate binding to cytochrome P450XVII, one key enzyme of androgen biosynthesis, with similar efficiency as the estrogens did (Ki 50-110 microM); salsoline and salsolidine were again much less effective. Since the efficient TIQ concentrations in this system are identical with those reported to generate central-nervous effects, it is concluded that certain TIQs may amplify peripheral inhibitory effects of ethanol on testicular endocrine function by their interaction with at least one enzyme of the androgen biosynthetic pathway.  相似文献   

3.
4.
Potential bisubstrate analogs, with adenosine and thymidine joined at their 5' positions by polyphosphoryl linkages of varying lengths (ApndT, where n = the number of phosphoryl groups), were examined as inhibitors of cytosolic thymidine kinase from blast cells of patients with acute myelocytic leukemia. Ki values were 1.2 microM for Ap3dT, 0.31 microM for Ap4dT, 0.12 microM for Ap5dT, and 0.19 microM for Ap6dT. The best inhibitor of the cytosolic enzyme, Ap5dT, was somewhat less effective as an inhibitor of the mitochondrial enzyme (Ki = 0.50 microM). In addition to their inhibitory modes of binding by the cytosolic enzyme, these compounds were bound at considerably lower concentrations (Kd = 0.029 microM for Ap4dT, 0.0025 microM for Ap5dT, and 0.0027 microM for Ap4dT), in such a way as to protect the cytosolic enzyme from thermal inactivation at 37 degrees C in the absence of substrates.  相似文献   

5.
Interaction of non-steroidal antiestrogens with dopamine receptor binding   总被引:1,自引:0,他引:1  
The ability of various estrogen antagonists and agonists to compete with [3H]spiroperidol, [3H]domperidone, [3H]dihydroalprenolol, [3H]dihydroergocryptine, [3H]dopamine or [3H]5-hydroxytryptamine for binding to membrane preparations from rat brain tissue was tested. The non-steroidal triphenylethylene-type antiestrogens with an amine side chain--enclomiphene, nitromifene, tamoxifen and zuclomiphene--were found to be competitive inhibitors of [3H]spiroperidol (Kd = 0.12 nM; Bmax = 101 fmol/mg protein) and [3H]domperidone (Kd = 0.62 nM; Bmax = 86 fmol/mg protein) binding to striatal membranes. The Ki values ranged from 4-12 microM. Estradiol-17 beta (Ki = 480 microM) or diethylstilbestrol (Ki = 63 microM) were much less effective inhibitors exhibiting noncompetitive interaction with the in vitro binding of [3H]spiroperidol. The pharmacological relevance of the antiestrogen interactions with dopamine receptor binding is discussed with respect to adverse effects of the in vivo administered compounds such as nausea and vomiting.  相似文献   

6.
The phosphinic acid isosteres of di-, tetra- and hexapeptides containing a hydrophobic amino acid side chains at the P1-P'1 positions are powerful inhibitors of Human Immunodeficiency Virus protease. Ki's ranged from 0.4 nM to 26 microM at pH 6.5 and were lower at pH 4.5. The compounds showed no activity against trypsin, weak activity against renin at pH 6.5, moderate activity against pepsin at pH 2.0 (Ki values in the microM range) and substantial activity against cathepsin D at pH 3.5 (Ki values from 9 to 300 nM).  相似文献   

7.
The inhibitory potency of four alkylphospholipids: rac-1-O-phosphocholine-2-hydroxy-octadecane (rac-2-OH), rac-1-O-phosphocholine-2-O-acetyl-octadecane (rac-2-O-acetyl), rac-1-O-phosphocholine-2-amino-octadecane (rac-2-NH2) and rac-1-O-phosphocholine-2-N-acetyloctadecane (rac-2-N-acetyl), on the cytochrome P450-dependent monooxygenase activity has been evaluated. The IC50 values of the alkylphosphocholines with 7-ethoxycoumarin as substrate in liver microsomal fractions of PB-treated rats and with a reconstituted CYP2B1: NADPH-P450-reductase system are in the range of 3.2-5.0 microM and 2.8-3.5 microM, respectively. Lineweaver-Burk plots with the inhibitors in concentrations that were found to cause roughly a 50% inhibition and with 7-ethoxycoumarin as substrate revealed for all four alkylphospholipids a competitive inhibition type. The degree of the competitive inhibition is quantified by the Ki values. With liver microsomal fractions of PB-treated rats, the Ki values of rac-2-OH (Ki = 1.36 microM) and rac-2-O-acetyl (Ki = 1.33 microM) differs slightly from those of rac-2-NH2 (Ki = 2.2 microM) and rac-2-N-acetyl (Ki = 2.2 microM), but with the reconstituted CYP2B1: NADPH-P450-reductase system all Ki values are in the small range of 1.8 - 2.6 microM, indicating that the short substituted group at the 2-position (OH; O-acetyl; NH2; N-acetyl) of the long chain octadecanol part of the phosphodiesters exhibit no essential role on the strong inhibitory potency of these alkylphosphocholines on the 7-ethoxycoumarin-O-deethylase activity.  相似文献   

8.
Using homogenates of catfish whole-brain in an isotonic medium, we observed an accumulation of [3H]GABA that was temperature-sensitive and was dependent on the presence of sodium ions, the optimum concentration of which was 75 mM. A kinetic analysis showed that the [3H]GABA uptake mechanism became saturated with increasing GABA concentrations. A high-affinity system, only, was evident whose Km was calculated as 12 microM. Four structural analogues of GABA were found to be competitive inhibitors of uptake, and Ki values were determined. Nipecotic acid (Ki = 1.8 microM) and guvacine (Ki = 3.9 microM) were the most potent compounds, however 2,4-diaminobutyric acid (Ki = 8.9 microM) and beta-alanine (Ki = 55 microM) also had an effect. The characteristics of the uptake mechanism in catfish brain that we have studied are similar to those reported for uptake by mammalian brain except that in the latter, both a high- and a low-affinity transport processes are present. Our data, taken together with what is already known, strongly suggest that the biochemistry of the GABA system in lower vertebrates does not differ significantly from that in mammals.  相似文献   

9.
The sterols 7 alpha-hydroxycholest-4-en-3-one (I) and 5 alpha-cholestane-3 alpha,7 alpha-diol (II) are competitive inhibitors for rabbit hepatic microsomal preparations of steroid 12 alpha-hydroxylase with apparent Ki values of 56 and 93 microM, respectively. To ascertain the optimum structure for a substrate with maximal enzymic activity, nine sterols or steroidal acids containing the 7 alpha-hydroxy-4-en-3-one or 3 alpha,7 alpha-dihydroxy-5 alpha configuration were prepared and studied as inhibitors with enzyme preparations in the presence of NADPH, oxygen and appropriate cofactors. Although each of these compounds exhibited competitive inhibition, the best inhibitor for sterol (I) was 7 alpha,25-dihydroxycholest-4-en-3-one (IV) (Ki 36 microM). Steroidal acids (3-oxo-7 alpha-hydroxychol-4-enoic acid and 3-oxo-7 alpha-hydroxy-4-cholene-24-carboxylic acid) were poor inhibitors (Ki 1080 and 654 microM, respectively). For sterol (II) the best inhibitors were sterol (IV) (Ki 35 microM) and 5 alpha-cholestane-3 alpha,7 alpha,25-triol (VIII) (Ki 45 microM). The 12 alpha-hydroxylated products of sterols (I) and (IV) were less tightly bound to the enzyme (Ki 88 and 98 microM, respectively) in the presence of sterol (II). Allochenodeoxycholic acid (Ki 495 microM) was not a good inhibitor for sterol (II). 12 alpha-Hydroxylated products of sterols (IV) and (VIII) were isolated from larger scale incubations, separated by HPLC and identified by mass spectrometry.  相似文献   

10.
The Michaelis constant values for the highly purified pyruvate dehydrogenase complex (PDC) from human heart are 25, 13 and 50 microM for pyruvate, CoA and NAD, respectively. Acetyl-CoA produces a competitive inhibition of PDC (Ki = 35 microM) with respect to CoA, whereas NADH produces the same type of inhibition with respect to NAD (Ki = 36 microM). The oxoglutarate dehydrogenase complex (OGDC) from human heart has active sites with two different affinities for 2-oxoglutarate ([S]0.5 of 30 and 120 microM). ADP (1 mM) decreases the [S]0.5 values by a half. The inhibition of OGDC (Ki = 81 microM) by succinyl-CoA is of a competitive type with respect to CoA (Km = 2.5 microM), whereas that of NADH (Ki = 25 microM) is of a mixed type with respect to NAD (Km = 170 microM).  相似文献   

11.
Inhibitors of purified, soluble prolyl hydroxylase (K. Majamaa et al. (1984) Eur. J. Biochem. 138, 239-245; K. Majamaa et al. (1986) J. Biol. Chem. 261, 7819-7823) were tested against isolated chick embryo bone microsomes containing intracisternal prolyl hydroxylase and its radiolabeled, unhydroxylated procollagen substrate. Two groups of inhibitors were used which consisted of pyridine-2-carboxylate and 1,2-dihydroxybenzene (catechol) derivatives. The 2,4- and 2,5-pyridine dicarboxylic acids, which are potent inhibitors of the soluble enzyme (Ki values 2 and 0.8 microM, respectively), were effective in the same concentration range against intracisternal prolyl hydroxylase, although their relative affinities were reversed. Inhibition by pyridine-2,4-dicarboxylate in the microsomal system was reversed by increasing the concentration of 2-oxoglutarate. Pyridine-2,4-dicarboxylic acid did not inhibit the uptake of 2-[14C]oxoglutarate into microsomes, so it appears likely that the inhibitor must traverse the microsomal membrane and act directly at the enzyme level. Pyridine-2-carboxylic acid was ineffective in the microsomal system at 1 mM whereas it is a relatively potent inhibitor of the soluble enzyme with a Ki of 25 microM. This finding suggests that the second carboxyl group of the pyridine carboxylate derivatives may be required for their transport into the microsomal lumen. In the soluble system, 3,4-dihydroxybenzoic acid and 1,2-dihydroxybenzene had been found to be competitive inhibitors with relatively low Ki values of 5 and 25 microM, respectively. In the microsomal system, half-maximal inhibition was obtained at approximately 50-100 microM and inhibition was not reversed by increasing the concentrations of either 2-oxoglutarate or ascorbate, alone or together. These results imply that in situ these compounds do not inhibit prolyl hydroxylase directly. Thus, the microsomal system can assess the accessibility of the intracisternal enzyme to potential inhibitors and offers an insight into the in cellulo potential of such compounds.  相似文献   

12.
The inhibition constants (Ki) and modes of inhibition have been determined for a series of dipeptide-hydroxamate compounds with bovine lung parenchyma angiotensin I-converting enzyme (peptidyldipeptide carboxy-hydrolase, E.C. 3.4. 15.1). The hydroxamido function was borne by aspartic, glutamic, or aminoadipic acid and extended by 2, 3 or 4 bond lengths from the proline amide bond. L-glu(NHOH)-L-pro (Ki = 3.4 microM) and D,L-aminoadipicyl (NHOH)-L-pro (Ki = 1.2 microM) were the best competitive inhibitors of the hydrolysis of benzoyl-gly-his-gly but were not effective as affinity ligands for purification of the enzyme.  相似文献   

13.
Phosphonamidates as transition-state analogue inhibitors of thermolysin   总被引:3,自引:0,他引:3  
P A Bartlett  C K Marlowe 《Biochemistry》1983,22(20):4618-4624
Six phosphorus-containing peptide analogues of the form Cbz-NHCH2PO2--L-Leu-Y (Y = D-Ala, NH2, Gly, L-Phe, L-Ala, L-Leu) have been prepared and evaluated as inhibitors of thermolysin. The Ki values for these compounds range from 1.7 microM to 9.1 nM and correlate well with the Km/kcat values for the corresponding peptide substrates [Morihara, K., & Tsuzuki, H. (1970) Eur. J. Biochem. 15, 374-380] but not with the Km values alone. The correlation noted between inhibitor Ki and substrate Km/kcat is the most extensive one of this type, providing strong evidence that the phosphonamidates are transition-state analogues and not simply multisubstrate ground-state analogues. Cbz-NH2CH2PO2--L-Leu-L-Leu (Ki = 9.1 nM) is the most potent inhibitor yet reported for thermolysin.  相似文献   

14.
Effects of acyclovir and its metabolites on purine nucleoside phosphorylase   总被引:5,自引:0,他引:5  
Acyclovir (9-(2-hydroxyethoxymethyl)guanine), the clinically useful antiherpetic agent, is an "acyclic" analogue of 2'-deoxyguanosine. Purine nucleoside phosphorylase partially purified from human erythrocytes did not catalyze detectable phosphorolysis of this drug or any of its metabolites (less than 0.07% of the rate with Guo). However, these compounds were competitive inhibitors of this enzyme with Ino as the variable substrate. Acyclovir per se was a relatively weak inhibitor. Its Ki value (91 microM) was much greater than that for its 8-hydroxy metabolite (Ki = 4.7 microM) but less than that for its carboxylic acid metabolite (9-carboxymethoxy-methylguanine) (K'i = 960 microM). The phosphorylated metabolites of acyclovir were more potent inhibitors than were their guanine nucleotide counterparts. At a phosphate concentration of 50 mM, the apparent Ki values for the mono- (120 microM), di- (0.51 microM), and tri (43 microM)-phosphate esters of acyclovir were 1/2, 1/1200, and 1/26 those for dGMP, dGDP, and dGTP, respectively. The concentration of phosphate did not markedly affect the Ki value of acyclovir but dramatically affected those of its phosphorylated metabolites and their nucleotide counterparts. Decreasing phosphate to a physiological concentration (1 mM) decreased the apparent Ki values for the mono-, di-, and triphosphate esters of acyclovir to 6.6, 0.0087, and 0.31 microM, respectively. Inhibition of the enzyme by acyclovir diphosphate was also influenced by pH. This metabolite of acyclovir is the most potent inhibitor of purine nucleoside phosphorylase reported to date. It has some features of a "multisubstrate" analogue inhibitor.  相似文献   

15.
It is well established that 1-methyl-4-phenylpyridinium (MPP), the neurotoxic bioactivation product of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and most of its analogs are good competitive inhibitors of monoamine oxidase A, with Ki values in the micromolar range, but they inhibit monoamine oxidase B only at much higher concentrations. We report here the finding that alkyl derivatives of MPP+ substituted at the 4' position of the aromatic ring are considerably more effective reversible inhibitors of the A type enzyme, with Ki values in the nanomolar range (0.075-1.6 microM). They inhibit the B type enzyme only at 2 to 3 orders of magnitude higher concentrations (32-374 microM).  相似文献   

16.
The rate of ATP hydrolysis catalyzed by isolated TF1 and reconstituted TF0F1 was measured as a function of the ATP concentration in the presence of inhibitors [ADP, Pi and 3'-O-(1-naphthoyl)ATP]. ATP hydrolysis can be described by Michaelis-Menten kinetics with Km(TF1) = 390 microM and Km (TF0F1) = 180 microM. The inhibition constants are for ADP Ki(TF1) = 20 microM and Ki(TF0F1) = 100 microM, for 3'-O-(1-naphthoyl)ATP Ki(TF1) = 150 microM and Ki(TF0F1) = 3 microM, and for Pi Ki(TF1) = 60 mM. From these results it is concluded that upon binding of TF0 to TF1 the mechanism of ATP hydrolysis catalyzed by TF1 is not changed qualitatively; however, the kinetic constants differ quantitatively.  相似文献   

17.
Aromatase inhibition by flavonoids   总被引:4,自引:1,他引:3  
Several synthetic flavones were found to inhibit the aromatization of androstenedione to estrone catalyzed by human placental microsomes. Twenty-one compounds were tested and the IC50 of the most active were: flavone, 10 microM; 7-hydroxyflavone, 0.5 microM; 7,4'-dihydroxyflavone, 2.0 microM; flavanone, 8.0 microM; and 4'-hydroxyflavanone, 10 microM. Most of the others had IC50 values ranging from 80 to greater than 200 microM. These findings show that 4'-hydroxylation results in either no change or very little change in IC50 for flavanone, isoflavone and isoflavanone as well as other ring A hydroxylated flavones. Derivatives of flavone with a hydroxyl substituent at position 5, 6 and 7 were also screened. 7-Hydroxyflavone (11) was the most effective competitive inhibitor (IC50 = 0.5 microM) with an apparent Ki value of 0.25 microM. Compound 11 also induced a change in the absorption spectrum of the aromatase cytochrome P-450 which is indicative of substrate displacement. The relative binding affinities of the flavonoid analogs were determined and only ring A adn ring B dihydroxylated analogs were found to bind to the estrogen receptor.  相似文献   

18.
Onion and garlic essential oils were previously shown to inhibit mouse skin tumor promotion, as were the enzymes, lipoxygenase, and cyclooxygenase. In the present study, the inhibition of soybean lipoxygenase (EC 1.13.11.12) by onion and garlic components and related compounds was investigated. The IC50 values as well as the kinetic inhibition constants were determined for the most active compounds. Di-(1-propenyl) sulfide, an analog of the substrate moiety required for oxygenase action, was the only irreversible inhibitor observed with Ki = 59 microM and k3 = 0.53/min. Inhibition in the presence of substrate was uncompetitive at 88 and 132 microM linoleic acid with Ki = 129 microM. At 173 microM linoleic acid, however, inhibition was competitive with Ki = 66 microM. Dially trisulfide, allyl methyl trisulfide, and diallyl disulfide were competitive inhibitors, while 1-propenylpropyl sulfide and (E, Z)-4,5,9-trithiadodeca-1,6,11-triene 9-oxide (ajoene) were mixed inhibitors. Nordihydroguaiaretic acid (NDGA), the most potent lipoxygenase inhibitor, was a competitive inhibitor with Ki = 0.29 microM. The results indicate a relative potency of inhibition for structural features in the following order: di(1-propenyl) sulfide greater than an alkenyl trisulfide greater than an alkenyl disulfide. Di(n-propyl) disulfide, a major onion oil component, inhibited neither lipoxygenase nor promotion. Di(1-propenyl) sulfide and ajoene inhibited both. This suggests that the inhibition of lipoxygenase may be involved in antipromotion.  相似文献   

19.
Sodium salts of four n-alkyl xanthate compounds, C2H5OCS2Na (I), C3H7OCS2Na (II), C4H9OCS2Na (III), and C6H13OCS2Na (IV) were synthesized and examined for inhibition of both cresolase and catecholase activities of mushroom tyrosinase (MT) in 10 mM sodium phosphate buffer, pH 6.8, at 293 K using UV spectrophotometry. 4-[(4-Methylbenzo)azo]-1,2-benzendiol (MeBACat) and 4-[(4-methylphenyl)azo]-phenol (MePAPh) were used as synthetic substrates for the enzyme for catecholase and cresolase reactions, respectively. Lineweaver-Burk plots showed different patterns of mixed, competitive or uncompetitive inhibition for the four xanthates. For the cresolase activity, I and II showed uncompetitive inhibition but III and IV showed competitive inhibition pattern. For the catecholase activity, I and II showed mixed inhibition but III and IV showed competitive inhibition. The synthesized compounds can be classified as potent inhibitors of MT due to their Ki values of 13.8, 11, 8 and 5 microM for the cresolase activity, and 1.4, 5, 13 and 25 microM for the catecholase activity for I, II, III and IV, respectively. For the catecholase activity both substrate and inhibitor can be bound to the enzyme with negative cooperativity between the binding sites (alpha > 1) and this negative cooperativity increases with increasing length of the aliphatic tail of these compounds. The length of the hydrophobic tail of the xanthates has a stronger effect on the Ki values for catecholase inhibition than for cresolase inhibition. Increasing the length of the hydrophobic tail leads to a decrease of the Ki values for cresolase inhibition and an increase of the Ki values for catecholase inhibition.  相似文献   

20.
A [3H]glycine recognition site in rat brain synaptic plasma membranes (SPM) has been identified, having characteristics expected of a modulatory component of the N-methyl-D-aspartate receptor complex. Incubation of SPM with [3H]glycine for 10 min at 2 degrees C results in saturable, reversible binding with a KD of 0.234 microM and a Bmax of 9.18 pmol/mg. A pharmacological analysis of this binding site indicates that D-serine (Ki = 0.27 microM), D-alanine (Ki = 1.02 microM), and D-cycloserine (Ki = 2.33 microM) are potent inhibitors of binding, whereas the corresponding L isomers have significantly less activity (Ki = 25.4 microM, 15.9 microM, and greater than 100 microM, respectively). Inactive at concentrations of up to 100 microM were strychnine, L-valine, N,N-dimethylglycine, aminomethylphosphonate, and aminomethylsulfonate. The active compounds were analyzed further for their ability to stimulate [3H]1-[1-(2-thienyl)cyclohexyl]piperidine [( 3H]TCP) binding to Triton X-100-washed SPM. Results indicate that the affinity of the compounds for the [3H]glycine recognition site correlates with the ability of these analogues to stimulate [3H]TCP binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号