首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Indonesia has experienced rapid land use change over the last few decades as forests and peatswamps have been cleared for more intensively managed land uses, including oil palm and timber plantations. Fires are the predominant method of clearing and managing land for more intensive uses, and the related emissions affect public health by contributing to regional particulate matter and ozone concentrations and adding to global atmospheric carbon dioxide concentrations. Here, we examine emissions from fires associated with land use clearing and land management on the Indonesian island of Sumatra and the sensitivity of this fire activity to interannual meteorological variability. We find ~80% of 2005–2009 Sumatra emissions are associated with degradation or land use maintenance instead of immediate land use conversion, especially in dry years. We estimate Sumatra fire emissions from land use change and maintenance for the next two decades with five scenarios of land use change, the Global Fire Emissions Database Version 3, detailed 1‐km2 land use change maps, and MODIS fire radiative power observations. Despite comprising only 16% of the original study area, we predict that 37–48% of future Sumatra emissions from land use change will occur in fuel‐rich peatswamps unless this land cover type is protected effectively. This result means that the impact of fires on future air quality and climate in Equatorial Asia will be decided in part by the conservation status given to the remaining peatswamps on Sumatra. Results from this article will be implemented in an atmospheric transport model to quantify the public health impacts from the transport of fire emissions associated with future land use scenarios in Sumatra.  相似文献   

2.
Literature on environmental change often highlights the importance of public policies as a key driver of land use and land cover change. However, demonstration of policy impacts in agricultural settings has been hampered by the lack of systematic analysis across landholders, who may not universally adopt government policy incentives, or time periods, which may be associated with differing policy regimes. This paper evaluates the importance of voluntary adoption of policy incentives offered by Peruvian government administrations over two decades for land-use among small farmers in the Peruvian Amazon. The analysis focuses on whether farmers adopted one or more policy incentives in order to observe the effects on land uses including mature forest, agricultural crops, cattle pasture, and secondary growth. We employ multivariate statistical models to estimate the effects of policy adoption while controlling for other factors. The findings show that distinct policies are associated with particular land-uses and largely follow expectations. Specifying policy incentives promulgated by governments and differentiating among adopters and non-adopters advances understanding of the impacts of public policies on land use.  相似文献   

3.
There is considerable interest in understanding the fate of the Amazon over the coming century in the face of climate change, rising atmospheric CO2 levels, ongoing land transformation, and changing fire regimes within the region. In this analysis, we explore the fate of Amazonian ecosystems under the combined impact of these four environmental forcings using three terrestrial biosphere models (ED2, IBIS, and JULES) forced by three bias‐corrected IPCC AR4 climate projections (PCM1, CCSM3, and HadCM3) under two land‐use change scenarios. We assess the relative roles of climate change, CO2 fertilization, land‐use change, and fire in driving the projected changes in Amazonian biomass and forest extent. Our results indicate that the impacts of climate change are primarily determined by the direction and severity of projected changes in regional precipitation: under the driest climate projection, climate change alone is predicted to reduce Amazonian forest cover by an average of 14%. However, the models predict that CO2 fertilization will enhance vegetation productivity and alleviate climate‐induced increases in plant water stress, and, as a result, sustain high biomass forests, even under the driest climate scenario. Land‐use change and climate‐driven changes in fire frequency are predicted to cause additional aboveground biomass loss and reductions in forest extent. The relative impact of land use and fire dynamics compared to climate and CO2 impacts varies considerably, depending on both the climate and land‐use scenario, and on the terrestrial biosphere model used, highlighting the importance of improved quantitative understanding of all four factors – climate change, CO2 fertilization effects, fire, and land use – to the fate of the Amazon over the coming century.  相似文献   

4.
Different components of global change can have interacting effects on biodiversity and this may influence our ability to detect the specific consequences of climate change through biodiversity indicators. Here, we analyze whether climate change indicators can be affected by land use dynamics that are not directly determined by climate change. To this aim, we analyzed three community-level indicators of climate change impacts that are based on the optimal thermal environment and average latitude of the distribution of bird species present at local communities. We used multiple regression models to relate the variation in climate change indicators to: i) environmental temperature; and ii) three landscape gradients reflecting important current land use change processes (land abandonment, fire impacts and urbanization), all of them having forest areas at their positive extremes. We found that, with few exceptions, landscape gradients determined the figures of climate change indicators as strongly as temperature. Bird communities in forest habitats had colder-dwelling bird species with more northern distributions than farmland, burnt or urban areas. Our results show that land use changes can reverse, hide or exacerbate our perception of climate change impacts when measured through community-level climate change indicators. We stress the need of an explicit incorporation of the interactions between climate change and land use dynamics to understand what are current climate change indicators indicating and be able to isolate real climate change impacts.  相似文献   

5.
Uses of models of land use change are primary tools for analyzing the causes and consequences of land use changes, assessing the impacts of land use change on ecosystems and supporting land use planning and policy. However, no single model is able to capture all of key processes essential to explore land use change at different scales and make a full assessment of driving factors and impacts. Based on the multi-scale characteristics of land use change, combination and integration of currently existed models of land use change could be a feasible solution. Taken Sangong watershed as a case study, this paper describes an integrated methodology in which the conversion of land use and its effect model (CLUE), a spatially explicit land use change model, has been combined with a system dynamic model (SD) to analyze land use dynamics at different scales. A SD model is used to calculate area changes in demand for land types as a whole while a CLUE model is used to transfer these demands to land use patterns. Without the spatial consideration, the SD model ensures an appropriate treatment of macro-economic, demographic and technology developments, and changes in economic policies influencing the demand and supply for land use in a specific region. With CLUE model the land use change has been simulated at a high spatial resolution with the spatial consideration of land use suitability, spatial policies and restrictions to satisfy the balance between land use demand and supply. The application of the combination of SD and CLUE model in Sangong watershed suggests that this methodology have the ability to reflect the complex behaviors of land use system at different scales to some extent and be a useful tool for analysis of complex land use driving factors such as land use policies and assessment of its impacts on land use change. The established SD model was fitted or calibrated with the 1987–1998 data and validated with the 1998–2004 data; combining SD model with CLUE-S model, future land use scenarios were analyzed during 2004–2030. This work could be used for better understanding of the possible impacts of land use change on terrestrial ecosystem and provide scientific support for land use planning and managements of the watershed.  相似文献   

6.
Disaster is a fruitful field of study for Native scholarship – and Indigenous Studies for disaster scholarship – because it happens in the medium of land, water and air, which is the original medium of oppression, or colonization, for Native people. Using a framework ‘beyond disaster exceptionalism’, this article examines recent changes in US tribal disaster policy to explore implications both for discrete disaster events that occur on reservations and for the ongoing disaster of colonization. I use the case of a recent wildfire on the Northern Cheyenne reservation in Montana to highlight the challenge of materializing government-to-government relations through federal tribal policy. During the course of the wildfire fieldwork, the Sandy Recovery Improvement Act was passed by Congress, giving tribes the right to request a disaster declaration directly of the US president. The events of the Ash Creek fire suggest that sovereignty requires economic justice, and that legislated sovereignty remains an oxymoron.  相似文献   

7.
Research from the Patagonian‐Andean region is used to explore challenges and opportunities related to the integration of research on wildfire activity into a broader earth‐system science framework that views the biosphere and atmosphere as a coupled interacting system for understanding the causes and consequences of future wildfire activity. We examine how research in disturbance ecology can inform land‐use and other policy decisions in the context of probable future increases in wildfire activity driven by climate forcing. Climate research has related recent warming and drying trends in much of Patagonia to an upward trend in the Southern Annular Mode which is the leading pattern of extratropical climate variability in the southern hemisphere. Although still limited in spatial extent, tree‐ring fire history studies are beginning to reveal regional patterns of the top‐down climate influences on temporal and spatial pattern of wildfire occurrence in Patagonia. Knowledge of relationships of fire activity to climate variability in the context of predicted future warming leads to the hypothesis that wildfire activity in Patagonia will increase substantially during the first half of the 21st century. In addition to this anticipated increase in extreme fire events due to climate forcing, we further hypothesize that current land‐use trends will increase the extent and/or severity of fire events through bottom‐up (i.e. land surface) influences on wildfire potential. In particular, policy discussions of how to mitigate impacts of climate warming on fire potential need to consider research results from disturbance ecology on the implications of continued planting of flammable non‐native trees and the role of introduced herbivores in favouring vegetation changes that may enhance landscape flammability.  相似文献   

8.
In this study, we use simulations from seven global vegetation models to provide the first multi‐model estimate of fire impacts on global tree cover and the carbon cycle under current climate and anthropogenic land use conditions, averaged for the years 2001–2012. Fire globally reduces the tree covered area and vegetation carbon storage by 10%. Regionally, the effects are much stronger, up to 20% for certain latitudinal bands, and 17% in savanna regions. Global fire effects on total carbon storage and carbon turnover times are lower with the effect on gross primary productivity (GPP) close to 0. We find the strongest impacts of fire in savanna regions. Climatic conditions in regions with the highest burned area differ from regions with highest absolute fire impact, which are characterized by higher precipitation. Our estimates of fire‐induced vegetation change are lower than previous studies. We attribute these differences to different definitions of vegetation change and effects of anthropogenic land use, which were not considered in previous studies and decreases the impact of fire on tree cover. Accounting for fires significantly improves the spatial patterns of simulated tree cover, which demonstrates the need to represent fire in dynamic vegetation models. Based upon comparisons between models and observations, process understanding and representation in models, we assess a higher confidence in the fire impact on tree cover and vegetation carbon compared to GPP, total carbon storage and turnover times. We have higher confidence in the spatial patterns compared to the global totals of the simulated fire impact. As we used an ensemble of state‐of‐the‐art fire models, including effects of land use and the ensemble median or mean compares better to observational datasets than any individual model, we consider the here presented results to be the current best estimate of global fire effects on ecosystems.  相似文献   

9.
Questions: Most modern fire‐prone landscapes have experienced disruptions of their historic fire regimes. Are the primary tallgrass prairies of the Flint Hills reflective of a history of continuous fire occurrence? Did fire frequency, severity, size and seasonality change in connection with changes in land use? Has fire occurrence been related to drought conditions? Location: Edges of Cross Timbers forest stands at the Tallgrass Prairie Preserve (TGPP) in the Flint Hills of Osage County, Oklahoma, USA. Methods: Cross‐sections of 76 Quercus stellata were collected from Cross Timbers stands at or near the grassland edge in the TGPP. Dendrochronological methods were used to identify years of formation for tree rings and fire scars. Superposed epoch analysis was used to evaluate the effect of drought conditions on fire occurrence. Results: Fires were recorded in 46.6% of the years between 1729 and 2005. In 41 cross‐sections at one site, the mean fire interval between 1759 and 2003 was 2.59 years, with fire interval decreasing from a mean fire interval of 3.76 years in the early part of the record to 2.13 years in modern times. No extended periods without fire were recorded in the study area. Drought conditions had no significant effect on fire occurrence. Conclusions: In contrast with many fire‐prone landscapes worldwide, the prairies of the Flint Hills have experienced no recent fire suppression or exclusion. Changes in fire frequency mark transitions in land use, primarily from being traditionally used by Native Americans to being managed for cattle production.  相似文献   

10.
The dynamic global vegetation model (DGVM) MC2 was run over the conterminous USA at 30 arc sec (~800 m) to simulate the impacts of nine climate futures generated by 3GCMs (CSIRO, MIROC and CGCM3) using 3 emission scenarios (A2, A1B and B1) in the context of the LandCarbon national carbon sequestration assessment. It first simulated potential vegetation dynamics from coast to coast assuming no human impacts and naturally occurring wildfires. A moderate effect of increased atmospheric CO2 on water use efficiency and growth enhanced carbon sequestration but did not greatly influence woody encroachment. The wildfires maintained prairie‐forest ecotones in the Great Plains. With simulated fire suppression, the number and impacts of wildfires was reduced as only catastrophic fires were allowed to escape. This greatly increased the expansion of forests and woodlands across the western USA and some of the ecotones disappeared. However, when fires did occur, their impacts (both extent and biomass consumed) were very large. We also evaluated the relative influence of human land use including forest and crop harvest by running the DGVM with land use (and fire suppression) and simple land management rules. From 2041 through 2060, carbon stocks (live biomass, soil and dead biomass) of US terrestrial ecosystems varied between 155 and 162 Pg C across the three emission scenarios when potential natural vegetation was simulated. With land use, periodic harvest of croplands and timberlands as well as the prevention of woody expansion across the West reduced carbon stocks to a range of 122–126 Pg C, while effective fire suppression reduced fire emissions by about 50%. Despite the simplicity of our approach, the differences between the size of the carbon stocks confirm other reports of the importance of land use on the carbon cycle over climate change.  相似文献   

11.
袁贞贞  王秋红  王勇  李维杰  高洁  程先  朱大运 《生态学报》2023,43(20):8279-8291
模拟多情景下区域土地利用变化引起生态系统健康状况改变,对优化用地格局和保障区域生态安全具有重要意义。基于重庆市2000-2020年土地利用和生态系统健康动态演变特征,运用生态系统健康模型和斑块生成土地利用模拟(PLUS)模型模拟自然发展(ND)、生态保护(EP)和城镇发展(UD)三种情景下土地利用变化对生态系统健康的影响程度。结果表明:(1)2000-2020年建设用地扩张迅速,耕地面积减少最多,主要向林地和建设用地转移;生态系统健康状况整体呈现向好趋势,但区域差异显著。(2)2030年土地利用类型仍以耕地、林地为主,ND、EP和UD情景的建设用地规模较2020年分别增加63.59%、44.54%和100.13%,中心城区成为建设用地扩张集聚地。(3)2030年ND和UD情景的生态系统健康值较2020年均减小,建设用地增加和林地减少成为其健康退化的重要原因;而EP情景的健康值呈上升趋势,与反映生态系统健康对土地利用变化响应弹性结果相反,可见EP情景下的土地利用优化是实现区域生态系统健康可持续发展的有效途径。研究结果可为研究区生态系统保护管理与土地利用政策优化提供参考依据。  相似文献   

12.
Grassy woodlands have been extensively cleared for agricultural land uses; land managers need to know whether restoration of biodiversity on such sites requires further interventions beyond simply stopping agricultural land use. Cumberland Plain Woodland occurs on shale‐derived soils in western Sydney; former Cumberland Plain Woodland sites can range from grasslands cleared for agricultural use to regenerated woodlands. An experiment was established in Scheyville National Park to determine what effect repeated burning would have in this system. Four blocks were established (three in grassy areas, one in woodland) and plots in each block were either burnt in 2001 and 2005 or left unburnt. Native plant species richness was initially lower in the grassy blocks than in the woodland, and this ranking remained on unburnt plots over time. The first fire increased species richness of both natives and exotics on the grassy blocks, with the largest increases observed for native and exotic forbs, and lesser increases for grasses (native only), gramminoids and shrubs. Native species richness changed very little with burning in the woodland. Fire effects on species richness were still apparent 3 years later on the grassy blocks; the difference between the grassy blocks and the woodland was not significant on burnt plots at this stage. Changes in native species richness were far less after the second fire on the grassy blocks, with grasses and gramminoids showing increases; native species richness remained higher in the burnt treatment. The first fire reduced the initial differences in native species richness between the grassy blocks and the woodland, and the second fire maintained the benefit through time. Fire also increased exotic species richness; the proportion of total species as natives was not altered by the two fires. On unburnt grassy plots, native species richness and prior cumulative rainfall were positively related; a decline in native species richness on unburnt plots corresponded to increasingly drier conditions over the study.  相似文献   

13.
Global change includes multiple stressors to natural ecosystems ranging from direct climate and land‐use impacts to indirect degradation processes resulting from fire. Humid tropical forests are vulnerable to projected climate change and possible synergistic interactions with deforestation and fire, which may initiate a positive feedback to rising atmospheric CO2. Here, we present results from a multifactorial impact analysis that combined an ensemble of climate change models with feedbacks from deforestation and accidental fires to quantify changes in Amazon Basin carbon cycling. Using the LPJmL Dynamic Global Vegetation Model, we modelled spatio‐temporal changes in net biome production (NBP); the difference between carbon fluxes from fire, deforestation, soil respiration and net primary production. By 2050, deforestation and fire (with no CO2 increase or climate change) resulted in carbon losses of 7.4–20.3 Pg C with the range of uncertainty depending on socio‐economic storyline. During the same time period, interactions between climate and land use either compensated for carbon losses due to wetter climate and CO2 fertilization or exacerbated carbon losses from drought‐induced forest mortality (?20.1 to +4.3 Pg C). By the end of the 21st century, depending on climate projection and the rate of deforestation (including its interaction with fire), carbon stocks either increased (+12.6 Pg C) or decreased (?40.6 Pg C). The synergistic effect of deforestation and fire with climate change contributed up to 26–36 Pg C of the overall decrease in carbon stocks. Agreement between climate projections (n=9), not accounting for deforestation and fire, in 2050 and 2098 was relatively low for the directional change in basin‐wide NBP (19–37%) and aboveground live biomass (13–24%). The largest uncertainty resulted from climate projections, followed by implementation of ecosystem dynamics and deforestation. Our analysis partitions the drivers of tropical ecosystem change and is relevant for guiding mitigation and adaptation policy related to global change.  相似文献   

14.
Global change pressures on soils from land use and management   总被引:9,自引:0,他引:9       下载免费PDF全文
Soils are subject to varying degrees of direct or indirect human disturbance, constituting a major global change driver. Factoring out natural from direct and indirect human influence is not always straightforward, but some human activities have clear impacts. These include land‐use change, land management and land degradation (erosion, compaction, sealing and salinization). The intensity of land use also exerts a great impact on soils, and soils are also subject to indirect impacts arising from human activity, such as acid deposition (sulphur and nitrogen) and heavy metal pollution. In this critical review, we report the state‐of‐the‐art understanding of these global change pressures on soils, identify knowledge gaps and research challenges and highlight actions and policies to minimize adverse environmental impacts arising from these global change drivers. Soils are central to considerations of what constitutes sustainable intensification. Therefore, ensuring that vulnerable and high environmental value soils are considered when protecting important habitats and ecosystems, will help to reduce the pressure on land from global change drivers. To ensure that soils are protected as part of wider environmental efforts, a global soil resilience programme should be considered, to monitor, recover or sustain soil fertility and function, and to enhance the ecosystem services provided by soils. Soils cannot, and should not, be considered in isolation of the ecosystems that they underpin and vice versa. The role of soils in supporting ecosystems and natural capital needs greater recognition. The lasting legacy of the International Year of Soils in 2015 should be to put soils at the centre of policy supporting environmental protection and sustainable development.  相似文献   

15.
Human activities affect fire in many ways, often unintentionally or with considerable time‐lags before they manifest themselves. Anticipating these changes is critical, so that insidious impacts on ecosystems, their biodiversity and associated goods and services can be avoided, mitigated or managed. Here we explore the impact of anthropogenic land cover change on fire and biodiversity in adjacent ecosystems on the hyperdiverse Cape Peninsula, South Africa. We develop a conceptual framework based on the notion of an ignition catchment, or the spatial extent and temporal range where an ignition is likely to result in a site burning. We apply this concept using fire models to estimate spatial changes in burn probability between historical and current land cover. This change layer was used to predict the observed record of fires and forest encroachment into fire‐dependent Fynbos ecosystems in Table Mountain National Park. Urban expansion has created anthropogenic fire shadows that are modifying fire return intervals, facilitating a state shift to low‐diversity, non‐flammable forest at the expense of hyperdiverse, flammable Fynbos ecosystems. Despite occurring in a conservation area, these ecosystems are undergoing a hidden collapse and desperately require management intervention. Anthropogenic fire shadows can be caused by many human activities and are likely to be a universal phenomenon, not only contributing to the observed global decline in fire activity but also causing extreme fires in ecosystems where there is no shift to a less flammable state and flammable fuels accumulate. The ignition catchment framework is highly flexible and allows detection or prediction of changes in the fire regime, the threat this poses for ecosystems or fire risk and areas where management interventions and/or monitoring are required. Identifying anthropogenic impacts on ignition catchments is key for both understanding global impacts of humans on fire and guiding management of human‐altered landscapes for desirable outcomes.  相似文献   

16.
Question: What are the main forces driving natural regeneration in burned mature Mediterranean forests in the medium‐long term and what are the likely successional trajectories of unmanaged vegetation? Location: Valencia Region, eastern Spain. Methods: A wildfire burned 33 000 ha of Pinus halepensis and P. pinaster forest in 1979, and subsequent smaller wildfires took place between 1984 and 1996. The study was designed to sample the range of environmental and disturbance (fire recurrence and land use) conditions. The territory was classified into 17 different geomorphological and fire‐recurrence units. Vegetation cover and floristic composition were measured on a total of 113 plots (1000 m2 each) randomly selected within these units. Results: The results show that 23 years after the fire the regenerated vegetation consists of successional shrublands, and that forest ecosystem resilience can be very low. The vegetation presents a strong correlation with most of the environmental variables, but fire (one or two fires), soil type and land use (in that order) are the main drivers of vegetation composition. Quercus coccifera shrublands persist on limestone soils while diverse types of other shrublands (dominated by seeder species) are found on marl soils. Conclusions: The results of this study indicate that disturbance factors strongly coupled to human activities, such as land use and fire, play a critical role in the current state of vegetation. Fire creates vegetation patches in different successional states while land use and soil type define the different types of shrubland in terms of their specific composition.  相似文献   

17.
The impact of fire use and hazard in frontier settlement is a critical environmental concern that has been historically overshadowed by deforestation issues- and thus underexamined at local and regional scales by social scientists. Consequently, conceptual frameworks of LUCC change consider fire use as an outcome of land use decisions and neglect the capacity of burning choices to influence these decisions and subsequent land cover change. This paper examines the relationship of settlement, land use, and fire use. It considers recent LUCC frameworks, and then uses household surveys on fire use practices to discuss how the study of fire use can contribute to understanding frontier landscape change. Planting decisions, settlement history, location desires, and burning logistics work in combination to influence burning choices and thus LUCC.  相似文献   

18.
This paper addresses the use of impact indicators with respect to climate change in the 2007–2013 Rural Development Programme (RDP) of the European Union, with particular reference to the Scotland Rural Development Programme (SRDP). It concludes that the policy context has highlighted the need for the rural land use sector to respond to climate change but that the associated Common Monitoring and Evaluation Framework (CMEF) did not develop suitable indicators to assess the impact of SDRP measures on GHG emission mitigation. It suggests improved impact indicators based on the relationship between rural land use and greenhouse gas (GHG) emissions: first, an indicator based on net GHG emissions per holding; and a second based on net GHG emissions per unit volume of output. The paper points out the challenges in measuring land-based emissions accurately. It further proposes screening of RDP measures to ensure that climate change mitigation impacts are properly appraised. It is recognised that climate change policy in relation to rural land use is still at an early stage of development but greater sophistication of policy instrument design and evaluation will be required if the RDP is to contribute significantly to climate change policy objectives.  相似文献   

19.
This study focuses on community-based knowledge to analyze the impacts of range enclosures, crop farming, fire suppression and bush encroachment on the communal rangelands of Borana, southern Ethiopia. The knowledge of local herders is the basis for decision making in the utilization and management of grazing lands. We used Borana oral history associated with the period of the gada system to reconstruct environmental change that spans a period of 48 years. Our results show that the use of communities’ perceptions as a basis for evaluating the impacts of land use change on the environment makes an important methodological contribution. Communities’ responses to changing land use resulted in the development of range enclosures, the expansion of crop farming and the fragmentation of the communal rangelands, while the suppression of fire contributed to the expansion of bush encroachment. The overall impact was forage scarcity and greater vulnerability of stock during drought years. We conclude that policymakers could use communities’ knowledge of environmental change to improve the use of the rangelands. We propose that sustainable use of the southern rangelands in the future will require a greater focus on regulating the expansion of enclosures, crop farming and ranching, as well as reintroducing fire where necessary, to control the expansion of bush cover.
Gufu ObaEmail:
  相似文献   

20.
Efficient management of biodiversity requires a forward‐looking approach based on scenarios that explore biodiversity changes under future environmental conditions. A number of ecological models have been proposed over the last decades to develop these biodiversity scenarios. Novel modelling approaches with strong theoretical foundation now offer the possibility to integrate key ecological and evolutionary processes that shape species distribution and community structure. Although biodiversity is affected by multiple threats, most studies addressing the effects of future environmental changes on biodiversity focus on a single threat only. We examined the studies published during the last 25 years that developed scenarios to predict future biodiversity changes based on climate, land‐use and land‐cover change projections. We found that biodiversity scenarios mostly focus on the future impacts of climate change and largely neglect changes in land use and land cover. The emphasis on climate change impacts has increased over time and has now reached a maximum. Yet, the direct destruction and degradation of habitats through land‐use and land‐cover changes are among the most significant and immediate threats to biodiversity. We argue that the current state of integration between ecological and land system sciences is leading to biased estimation of actual risks and therefore constrains the implementation of forward‐looking policy responses to biodiversity decline. We suggest research directions at the crossroads between ecological and environmental sciences to face the challenge of developing interoperable and plausible projections of future environmental changes and to anticipate the full range of their potential impacts on biodiversity. An intergovernmental platform is needed to stimulate such collaborative research efforts and to emphasize the societal and political relevance of taking up this challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号