首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell adhesion mediated by integrin receptors is controlled by intracellular signal transduction cascades. Cytohesin-1 is an integrin-binding protein and guanine nucleotide exchange factor that activates binding of the leukocyte integrin leukocyte function antigen-1 to its ligand, intercellular adhesion molecule 1. Cytohesin-1 bears a carboxyl-terminal pleckstrin homology domain that aids in reversible membrane recruitment and functional regulation of the protein. Although phosphoinositide-dependent membrane attachment of cytohesin-1 is mediated primarily by the pleckstrin homology domain, this function is further strengthened by a short carboxyl-terminal polybasic amino acid sequence. We show here that a serine/threonine motif within the short polybasic stretch of cytohesin-1 is phosphorylated by purified protein kinase C delta in vitro. Furthermore, the respective residues are also found to be phosphorylated after phorbol ester stimulation in vivo. Biochemical and functional analyses show that phosphorylated cytohesin-1 is able to tightly associate with the actin cytoskeleton, and we further demonstrate that phosphorylation of the protein is required for maximal leukocyte function antigen-1-mediated adhesion of Jurkat cells to intercellular adhesion molecule 1. These data suggest that both phosphatidylinositol 3-kinase and protein kinase C-dependent intracellular pathways that stimulate beta(2)-integrin-mediated adhesion of T lymphocytes converge on cytohesin-1 as functional integrator.  相似文献   

2.
Recruitment of intracellular proteins to the plasma membrane is a commonly found requirement for the initiation of signal transduction events. The recently discovered pleckstrin homology (PH) domain, a structurally conserved element found in ~100 signaling proteins, has been implicated in this function, because some PH domains have been described to be involved in plasma membrane association. Furthermore, several PH domains bind to the phosphoinositides phosphatidylinositol-(4,5)-bisphosphate and phosphatidylinositol-(3,4,5)-trisphosphate in vitro, however, mostly with low affinity. It is unclear how such weak interactions can be responsible for observed membrane binding in vivo as well as the resulting biological phenomena. Here, we investigate the structural and functional requirements for membrane association of cytohesin-1, a recently discovered regulatory protein of T cell adhesion. We demonstrate that both the PH domain and the adjacent carboxyl-terminal polybasic sequence of cytohesin-1 (c domain) are necessary for plasma membrane association and biological function, namely interference with Jurkat cell adhesion to intercellular adhesion molecule 1. Biosensor measurements revealed that phosphatidylinositol-(3,4,5)-trisphosphate binds to the PH domain and c domain together with high affinity (100 nM), whereas the isolated PH domain has a substantially lower affinity (2–3 μM). The cooperativity of both elements appears specific, because a chimeric protein, consisting of the c domain of cytohesin-1 and the PH domain of the β-adrenergic receptor kinase does not associate with membranes, nor does it inhibit adhesion. Moreover, replacement of the c domain of cytohesin-1 with a palmitoylation–isoprenylation motif partially restored the biological function, but the specific targeting to the plasma membrane was not retained. Thus we conclude that two elements of cytohesin-1, the PH domain and the c domain, are required and sufficient for membrane association. This appears to be a common mechanism for plasma membrane targeting of PH domains, because we observed a similar functional cooperativity of the PH domain of Bruton’s tyrosine kinase with the adjacent Bruton’s tyrosine kinase motif, a novel zinc-containing fold.  相似文献   

3.
Intracellular signaling pathways, which regulate the interactions of integrins with their ligands, affect a wide variety of biological functions. Here we provide evidence of how cytohesin-1, an integrin-binding protein and guanine-nucleotide exchange factor (GEF) for ARF GTPases, regulates cell adhesion. Mutational analyses of the beta-2 cytoplasmic domain revealed that the adhesive function of LFA-1 depends on its interaction with cytohesin-1, unless the integrin is activated by exogenous divalent cations. Secondly, cytohesin-1 induces expression of an extracellular activation epitope of LFA-1, and the exchange factor function is not essential for this activity. In contrast, LFA-1-mediated cell adhesion and spreading on intercellular cell adhesion molecule 1 is strongly inhibited by a cytohesin-1 mutant, which fails to catalyze ARF GDP-GTP exchange in vitro. Thus, cytohesin-1 is involved in the activation of LFA-1, most probably through direct interaction with the integrin, and induces cell spreading by its ARF-GEF activity. We therefore propose that both direct regulation of the integrin and concomitant changes in the membrane topology of adherent T cells are modulated by dissectable functions of cytohesin-1.  相似文献   

4.
ADP-ribosylation factors (ARFs) are small Ras-like GTPases which play important roles in intracellular vesicle transport and in the remodeling of the actin cytoskeleton. Guanine nucleotide exchange factors (GEFs) for ARFs have recently been identified. One of them, cytohesin-1, a 47-kDa cytoplasmic protein acts as an inside-out signaling molecule and regulates binding of the beta2 integrin leukocyte function antigen 1 (LFA-1) to its ligand intercellular adhesion molecule 1 (ICAM-1). In this study, we address the regulation of the GEF activity of cytohesin-1 by phosphoinositides, using mammalian expression of functional ARF-Ig chimeras. The fusion proteins, which can be quantitatively immunoprecipitated on protein A-Sepharose, target to the expected intracellular compartments, and they are readily induced to bind GTP in vitro. We show that both ARF1-Ig and ARF6-Ig chimeras are activated in vitro by cytohesin-1. However, GEF activity towards ARF6 is strongly suppressed by phosphatidylinositol-(3,4,5)-trisphosphate (PtdInsP3). In contrast, cytohesin-1-dependent GTP binding of ARF1 is significantly enhanced by PtdInsP3. We conclude that the membrane phospholipid PtdInsP3 determines the specificity of the GEF activity of cytohesin-1.  相似文献   

5.
Cytohesin-1 is a regulatory interaction partner of the beta2 integrin alphaLbeta2 (LFA-1) and a guanine exchange factor (GEF) for ADP ribosylation factor (ARF)-GTPases. However, a functional role of cytohesin-1 in leukocyte adhesion to activated endothelium and subsequent transmigration in response to chemokines has not been defined. Overexpression of cytohesin-1 increased LFA-1-dependent arrest of leukocytic cells triggered by chemokines on cytokine-activated endothelium in flow while reducing the fraction of rolling cells. Conversely, a dominant-negative PH domain construct of cytohesin-1 but not a mutant deficient in GEF activity impaired arrest, indicating an involvement of the PH domain while GEF function is not required. Expression of these constructs and a beta2 mutant interrupting the interaction with cytohesin-1 indicated that shape change in flow and transendothelial chemotaxis involve both LFA-1 avidity regulation and GEF activity of cytohesin-1. As a potential downstream target, ARF6 but not ARF1 was identified to participate in chemotaxis. Our data suggest that cytohesin-1 and ARF6 are involved in the dynamic regulation of complex signaling pathways and cytoskeletal remodeling processes governing LFA-1 functions in leukocyte recruitment. Differential effects of cytohesin-1 and ARF6 mutants in our systems reveal that cytohesin-1 with its GEF activity controls both conversion of rolling into firm arrest and transmigration triggered by chemokines, whereas a cyclical activity of ARF6 plays a more important role in diapedesis.  相似文献   

6.
When expressed in epithelial cells, cytohesin-2/ARNO, a guanine nucleotide exchange factor (GEF) for ARF small GTPases, causes a robust migration response. Recent evidence suggests that cytohesin-2/ARNO acts downstream of small the GTPase R-Ras to promote spreading and migration. We hypothesized that cytohesin-2/ARNO could transmit R-Ras signals by regulating the recycling of R-Ras through ARF activation. We found that Eps15-homology domain 1 (EHD1), a protein that associates with the endocytic recycling compartment (ERC), colocalizes with active R-Ras in transiently expressed HeLa cells. In addition, we show that EHD1-positive recycling endosomes are a novel compartment for cytohesin-2/ARNO. Knockdown or expression of GEF-inactive (E156K) cytohesin-2/ARNO causes R-Ras to accumulate on recycling endosomes containing EHD1 and inhibits cell spreading. E156K-ARNO also causes a reduction in focal adhesion size and number. Finally, we demonstrate that R-Ras/ARNO signaling is required for recycling of α5-integrin and R-Ras to the plasma membrane. These data establish a role for cytohesin-2/ARNO as a regulator of R-Ras and integrin recycling and suggest that ARF-regulated trafficking of R-Ras is required for R-Ras–dependent effects on spreading and adhesion formation.  相似文献   

7.
CYTIP (cytohesin interacting protein) is an intracellular molecule induced in dendritic cells during maturation. CYTIP modulates the binding intensity of the adhesion molecule LFA-1. If dendritic cells are silenced for CYTIP they keep longer contacts with T-cells resulting in a lower T cell stimulation. We identified Suppressor of cytokine signaling-1 (SOCS-1) as a binding partner for CYTIP in human monocyte derived dendritic cells. In Western blot analyses we found that CYTIP expression is down regulated at later time points, starting at about 72 hours after induction of maturation. To investigate a possible role for SOCS-1 in taking CYTIP to the degradation machinery of the cell we measured endogenous CYTIP protein levels in mature dendritic cells transfected with SOCS-1 encoding plasmid in quantitative Western blot analyses. We observed lower amounts of endogenous CYTIP in mature dendritic cells transfected with SOCS-1 encoding plasmid compared with untransfected dendritic cells. Experiments with the proteasome-inhibitor Bortezomib/Velcade® show stable CYTIP expression levels in dendritic cells. In addition, we show that CYTIP in dendritic cells matured for 48 hours is ubiquitinated and thus ready for degradation. We here describe a newly identified binding partner of CYTIP, SOCS-1, and confirm its function in regulating the degradation of CYTIP by the proteasome.  相似文献   

8.
The formation of primitive adipose tissue is the initial process in adipose tissue development followed by the migration of preadipocytes into adipocyte clusters. Comparatively little is known about the molecular mechanism controlling preadipocyte migration. Here, we show that cytohesin-2, the guanine-nucleotide exchange factor for the Arf family GTP-binding proteins, regulates migration of mouse preadipocyte 3T3-L1 cells through Arf6. SecinH3, a specific inhibitor of the cytohesin family, markedly inhibits migration of 3T3-L1 cells. 3T3-L1 cells express cytohesin-2 and cytohesin-3, and knockdown of cytohesin-2 with its small interfering RNA effectively decreases cell migration. Cytohesin-2 preferentially acts upstream of Arf6 in this signaling pathway. Furthermore, we find that the focal adhesion protein paxillin forms a complex with cytohesin-2. Paxillin colocalizes with cytohesin-2 at the leading edges of migrating cells. This interaction is mediated by the LIM2 domain of paxillin and the isolated polybasic region of cytohesin-2. Importantly, migration is inhibited by expression of the constructs containing these regions. These results suggest that cytohesin-2, through a previously unexplored complex formation with paxillin, regulates preadipocyte migration and that paxillin plays a previously unknown role as a scaffold protein of Arf guanine-nucleotide exchange factor.  相似文献   

9.
Cytohesins are guanine-nucleotide exchange factors (GEF) for the Arf family of GTPases. One member of the Arf family, ARF6, plays an active role in the intracellular trafficking of G protein-coupled receptors. We have previously reported that Gαq signaling leads to the activation of ARF6, possibly through a direct interaction with cytohesin-2/ARNO. Here, we report that Gαq can directly interact with cytohesin-1, another Arf-GEF of the ARNO/cytohesin family. Cytohesin-1 preferentially associated with a constitutively active mutant of Gαq (Gαq-Q209L) compared to wild-type Gαq in HEK293 cells. Stimulation of TPβ, a Gαq-coupled receptor, to activate Gαq resulted in the promotion of a protein complex between Gαq and cytohesin-1. Confocal immunofluorescence microscopy revealed that wild-type Gαq and cytohesin-1 co-localized in intracellular compartments and at or near the plasma membrane. In contrast, expression of Gαq-Q209L induced a drastic increase in the localization of cytohesin-1 at the plasma membrane. Expression of a dominant-negative mutant of cytohesin-1 reduced by 40% the agonist-induced internalization of TPβ, a process that we previously demonstrated to be dependent on Gαq-mediated signaling and Arf6 activation. Using deletion mutants, we show that cytohesin-1 interacts with Gαq through its N-terminal coiled-coil domain. Cytohesin-1 and cytohesin-2/ARNO mutants lacking the coiled-coil domain were unable to relay Gαq-mediated activation of Arf6. This is the first report of an interaction between the coiled-coil domain of the cytohesin/ARNO family of Arf-GEFs and a member of the heterotrimeric G proteins.  相似文献   

10.
The Gβγ subunits of heterotrimeric G proteins transmit signals to control many cellular processes, including leukocyte migration. Gβγ signaling may regulate and be regulated by numerous signaling partners. Here, we reveal that WDR26, a member of the WD40 repeat protein family, directly bound free Gβγ in vitro, and formed a complex with endogenous Gβγ in Jurkat T cells stimulated by the chemokine SDF1α. Suppression of WDR26 by siRNAs selectively inhibited Gβγ-dependent phospholipase Cβ and PI3K activation, and attenuated chemotaxis in Jurkat T cells and differentiated HL60 cells in vitro and Jurkat T cell homing to lymphoid tissues in scid mice. Similarly, disruption of the WDR26/Gβγ interaction via expression of a WDR26 deletion mutant impaired Gβγ signaling and Jurkat T cell migration, indicating that the function of WDR26 depends on its binding to Gβγ. Additional data show that WDR26 also controlled RACK1, a negative regulator, in binding Gβγ and inhibiting leukocyte migration. Collectively, these experiments identify WDR26 as a novel Gβγ-binding protein that is required for the efficacy of Gβγ signaling and leukocyte migration.  相似文献   

11.
CD47 is a ubiquitously expressed plasma membrane protein, also known as Integrin Associated Protein, that modulates cell adhesion both through alteration of the avidity of integrin binding and through interaction with its own ligands, the extracellular matrix protein thrombospondin (TSP) and the plasma membrane response regulator SIRPalpha1. We now show that CD47 expression on fibroblasts can induce intercellular adhesion resulting in cell aggregation in the absence of active integrins, SIRPalpha1 binding, and detectable TSP. CD47-expressing cells preferentially bind to other CD47-expressing cells, and intercellular adhesion requires stimulation by serum or a CD47-binding peptide from TSP. Cell-cell adhesion is inhibited by pertussis toxin and C. difficile toxin B, and both adherent and aggregating CD47-expressing fibroblasts have more rac in the GTP bound state than CD47-deficient cells. Spontaneous migration of Jurkat lymphocytes through a fibroblast monolayer is decreased by fibroblast expression of CD47, consistent with an increased barrier function of the CD47 expressing cells. The lymphocyte chemoattractant SDF-1alpha stimulates migration of Jurkat cells through this monolayer only if both the lymphocytes and fibroblasts express CD47, and the inhibition of migration by a CD47-interacting peptide from TSP similarly requires CD47 expression on both cell types. Thus, signaling dependent on both heterotrimeric and rho family GTPases can induce CD47 to participate in cell-cell interactions independent of known ligands that enhance intercellular adhesion and modulate cell migration.  相似文献   

12.
Leukocyte recruitment to lymph nodes or inflammatory sites is regulated by adhesion and activation. L-selectin (CD62L) is expressed on leukocytes and mediates tethering and rolling of leukocytes on endothelial cells. Upon stimulation L-selectin is down-regulated by proteolytic cleavage but the molecular mechanisms regulating this shedding step are poorly defined. To study intracellular mechanisms, we induced shedding of L-selectin by cross-linking with an immobilized L-selectin antibody (Dreg56) in Jurkat cells. The loss of surface expression was quantitated by flow cytometry and the increase of soluble L-selectin was determined by Western blot analysis. We find that Jurkat and p56(lck)-deficient JCaM1.6 cells released L-selectin to similar extent (18+/-4% and 17+/-3%, respectively) and revealed comparable inhibition with the src-tyrosine kinase inhibitor PP2. Glutathione (GSH), an inhibitor of the neutral sphingomyelinase, PD98059, a MAP-kinase (MAP-K) inhibitor and metalloprotease inhibitors (MPI) (TAPI, Ro 31-9790, and BB-3103) reduced significantly L-selectin-induced shedding by 60-80%. In Jurkat cells, L-selectin was present in Triton X-100 insoluble membrane rafts and was constitutively tyr-phosphorylated. Dreg56 cross-linking enhanced phosphorylation and recruitment of L-selectin into rafts which was significantly decreased by pretreatment of cells with PD98059. We conclude, that the metalloproteinase-mediated cleavage of L-selectin from cell surface is triggered by intracellular signaling pathways that are independent of p56(lck) tyrosine kinase activity, but require other tyrosine kinases and the neutral sphingomyelinase. The cleavage of L-selectin might involve membrane rafts as signaling platform.  相似文献   

13.
The induction of a transformed cellular phenotype by viruses requires the modulation of signaling pathways through viral proteins. We show here that the phenotypic changes induced by the kaposin A protein of human herpesvirus 8 are mediated through its direct interaction with cytohesin-1, a guanine nucleotide exchange factor for ARF GTPases and regulator of integrin-mediated cell adhesion. Focus formation, stress fiber dissolution, and activation of the ERK-1/2 MAP kinase signal cascade were reverted by the cytohesin-1 E157K mutant, which is deficient in catalyzing guanine nucleotide exchange. Furthermore, liposome-embedded kaposin A specifically stimulates cytohesin-1 dependent GTP binding of myristoylated ARF1 in vitro. These results suggest a previously unknown involvement of ARF GTPases in the control of cellular functions by herpesviruses.  相似文献   

14.
Activation of protein kinase C (PKC) triggers cellular signals that inhibit Fas/CD95-induced cell death in Jurkat T-cells by poorly defined mechanisms. Previously, we have shown that one effect of PKC on Fas/CD95-dependent cell death occurs through inhibition of cell shrinkage and K(+) efflux (Gómez-Angelats, M., Bortner, C. D., and Cidlowski, J. A. (2000) J. Biol. Chem. 275, 19609-19619). Here we report that PKC alters Fas/CD95 signaling from the plasma membrane to the activation of caspases by exerting a profound action on survival/cell death decisions. Specific activation of PKC with 12-O-tetradecanoylphorbol-13-acetate or bryostatin-1 induced translocation of PKC from the cytosol to the membrane and effectively inhibited cell shrinkage and cell death triggered by anti-Fas antibody in Jurkat cells. In contrast, inhibition of classical PKC isotypes with G?6976 exacerbated the effect of Fas activation on both apoptotic volume decrease and cell death. PKC activation/inhibition did not affect anti-Fas antibody binding to the cell surface, intracellular levels of FADD (Fas-associated protein with death domain), or c-FLIP (cellular FLICE-like inhibitory protein) expression. However, processing/activation of both caspase-8 and caspase-3 and BID cleavage were markedly blocked upon PKC activation and, conversely, were augmented during PKC inhibition, suggesting a role for PKC upstream of caspase-8 processing and activation. Analysis of death-inducing signaling complex (DISC) formation was carried out to examine the influence of PKC on recruitment of both FADD and procaspase-8 to the Fas receptor. PKC activation blocked FADD recruitment and caspase-8 activation and thus DISC formation in both type I and II cells. In contrast, inhibition of classical PKCs promoted the opposite effect on the Fas pathway by rapidly increasing FADD recruitment, caspase-8 activation, and DISC formation. Together, these data show that PKC finely modulates Fas/CD95 signaling by altering the efficiency of DISC formation.  相似文献   

15.
During development of the peripheral nervous system (PNS), Schwann cells migrate along neuronal axons before initiating myelination of the axons. While intercellular signals controlling migration, between Schwann cells and peripheral neurons, are established, how their intracellular transduction of the signals into Schwann cells still remains to be clarified. Here, we show that cytohesin-1, a guanine-nucleotide exchange factor (GEF), and the effector Arf6 are required for migration of primary Schwann cells. Knockdown of cytohesin-1 or Arf6 in Schwann cells, as well as treatment with the chemical cytohesin inhibitor SecinH3 or knockout of cytohesin-1, inhibits peripheral neuronal conditioned medium-mediated migration. Similar effects are also observed following stimulation with each of growth factors contained in a conditioned medium, suggesting that cytohesin-1 plays a role in transducing soluble ligand signals from neurons. Reintroduction of small interfering (si)RNA-resistant cytohesin-1 into Schwann cells reverses blunted migration in the siRNA-transfected Schwann cells, illustrating the importance of cytohesin-1 in migration. On the other hand, introduction of cytohesin-1 that harbors the Tyr-382 mutation, which is an amino acid that is important for its activation, failed to reverse the reduction in primary Schwann cell migration. These results suggest that signaling through cytohesin-1 is required for Schwann cell migration, revealing a novel mechanism for Schwann cell migration.  相似文献   

16.
We have cloned a previously undescribed adhesion molecule, VCAM-1, which is induced by cytokines on human endothelial cells and binds lymphocytes. Using a novel method requiring neither monoclonal antibodies nor purified protein, VCAM-1-expressing clones were selected by adhesion to human lymphoid cell lines. VCAM-1 mRNA is present in endothelial cells at 2 hr after treatment with IL-1 or TNF-alpha and is maintained for at least 72 hr; leukocyte binding activity parallels mRNA induction. Cells transfected with VCAM-1 bind the human leukemia lines Jurkat, Ramos, Raji, HL60, and THP1, but not peripheral blood neutrophils. VCAM-1, which belongs to the immunoglobulin gene super-family, may be central to recruitment of mononuclear leukocytes into inflammatory sites in vivo.  相似文献   

17.
Integrin-dependent leukocyte adhesion is modulated by alterations in receptor affinity or by post-receptor events. Pretreatment of Jurkat T-cells with the 3-hydroxymethylglutaryl-coenzyme A reductase inhibitor, lovastatin, markedly reduced (IC(50) approximately 1-2 microM) alpha(4)beta(1)-dependent adhesion to fibronectin (FN) stimulated by phorbol 12-myristate 13-acetate (PMA) which modulates post-receptor events. In contrast, lovastatin did not inhibit Jurkat cell adhesion to FN induced by the beta(1) integrin-activating monoclonal antibody (mAb) 8A2, which directly modulates beta(1) integrin affinity. Similarly, pretreatment of U937 cells with lovastatin inhibited PMA-stimulated, but not mAb 8A2-stimulated, alpha(6)beta(1)-dependent leukocyte adhesion to laminin. The inhibition of lovastatin on PMA-stimulated leukocyte adhesion was not mediated by mitogen-activated protein kinase or phosphatidylinositol 3-kinase pathway. The inhibitory effect of lovastatin on PMA-stimulated leukocyte adhesion was reversed by co-incubation with geranylgeraniol, but not with farnesol, with concurrent reversal of the inhibition of protein prenylation as shown by protein RhoA geranylgeranylation. The selective inhibition of protein geranylgeranylation by the specific protein geranylgeranyltransferase-I inhibitor, GGTI-298, blocked PMA-stimulated leukocyte adhesion but not mAb 8A2-induced leukocyte adhesion. The protein farnesyltransferase inhibitor, FTI-277, had no effect on leukocyte adhesion induced by either stimulus. These results demonstrate that protein geranylgeranylation, but not farnesylation, is required for integrin-dependent post-receptor events in leukocyte adhesion.  相似文献   

18.
The intracellular Src homology 2 (SH2) domain-containing protein tyrosine phosphatase (SHP-1) is a negative regulator of cell signaling and contributes to the establishment of TCR signaling thresholds in both developing and mature T lymphocytes. Although there is much functional data implicating SHP-1 as a regulator of TCR signaling, the molecular basis for SHP-1 activation in T lymphocytes is poorly defined. A modification of the yeast two-hybrid system was employed to identify in T cells phosphotyrosine-containing proteins capable of binding the SH2 domains of SHP-1. From this yeast tri-hybrid screen, the p85beta subunit of phosphatidylinositol 3-kinase and the immunoreceptor tyrosine-based inhibitory motif-containing receptors, leukocyte-associated Ig-like receptor-1 (LAIR-1) and programmed death-1 (PD-1), were identified. Coimmunoprecipitation studies demonstrated that the exclusive phosphotyrosine-containing protein associated with SHP-1 in Jurkat T cells under physiological conditions is LAIR-1. Significantly, this interaction is constitutive and was detected only in the membrane-enriched fraction of cell lysates. Ligand engagement of the SH2 domains of SHP-1 is a prerequisite to activation of the enzyme, and, consistent with an association with LAIR-1, SHP-1 was found to be constitutively active in unstimulated Jurkat T cells. Importantly, a constitutive interaction between LAIR-1 and SHP-1 was also detected in human primary T cells. These results illustrate the sustained recruitment and activation of SHP-1 at the plasma membrane of resting human T cells by an inhibitory receptor. We propose that this mechanism may exert a constitutive negative regulatory role upon T cell signaling.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号