首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Memo is a conserved protein that was identified as an essential mediator of tumor cell motility induced by receptor tyrosine kinase activation. Here we show that Memo null mouse embryonic fibroblasts (MEFs) are impaired in PDGF-induced migration and this is due to a defect in sphingosine-1-phosphate (S1P) signaling. S1P is a bioactive phospholipid produced in response to multiple stimuli, which regulates many cellular processes. S1P is secreted to the extracellular milieu where it exerts its function by binding a family of G-protein coupled receptors (S1PRs), causing their activation in an autocrine or paracrine manner. The process, termed cell-autonomous S1PR signaling, plays a role in survival and migration. Indeed, PDGF uses cell-autonomous S1PR signaling to promote cell migration; we show here that this S1P pathway requires Memo. Using vascular endothelial cells (HUVECs) with Memo knock-down we show that their survival in conditions of serum-starvation is impaired. Furthermore, Memo loss in HUVECs causes a reduction of junctional VE-cadherin and an increase in sprout formation. Each of these phenotypes is rescued by S1P or S1P agonist addition, showing that Memo also plays an important role in cell-autonomous S1PR signaling in endothelial cells. We also produced conventional and endothelial cell-specific conditional Memo knock-out mouse strains and show that Memo is essential for embryonic development. Starting at E13.5 embryos of both strains display bleeding and other vascular problems, some of the phenotypes that have been described in mouse strains lacking S1PRs. The essential role of Memo in embryonic vascular development may be due in part to alterations in S1P signaling. Taken together our results show that Memo has a novel role in the S1P pathway and that Memo is needed to promote cell-autonomous S1PR activation.  相似文献   

2.
Sphingosine-1-phosphate (S1P), a bioactive sphingolipid metabolite, is the ligand for five specific G protein-coupled receptors, named S1P(1) to S1P(5). In this study, we found that cross-communication between platelet-derived growth factor receptor and S1P(2) serves as a negative damper of PDGF functions. Deletion of the S1P(2) receptor dramatically increased migration of mouse embryonic fibroblasts toward S1P, serum, and PDGF but not fibronectin. This enhanced migration was dependent on expression of S1P(1) and sphingosine kinase 1 (SphK1), the enzyme that produces S1P, as revealed by downregulation of their expression with antisense RNA and small interfering RNA, respectively. Although S1P(2) deletion had no significant effect on tyrosine phosphorylation of the PDGF receptors or activation of extracellular signal-regulated kinase 1/2 or Akt induced by PDGF, it reduced sustained PDGF-dependent p38 phosphorylation and markedly enhanced Rac activation. Surprisingly, S1P(2)-null cells not only exhibited enhanced proliferation but also markedly increased SphK1 expression and activity. Conversely, reintroduction of S1P(2) reduced DNA synthesis and expression of SphK1. Thus, S1P(2) serves as a negative regulator of PDGF-induced migration and proliferation as well as SphK1 expression. Our results suggest that a complex interplay between PDGFR and S1P receptors determines their functions.  相似文献   

3.
Previous studies have shown that an increased intake of dietary flavonoids is associated with a decreased risk of cardiovascular diseases (CVDs). PDGF is a major mitogen for vascular smooth muscle cell (VSMC) and participates in the pathogenesis of many CVDs. The study investigated whether the flavone chrysin affected PDGF functions in VSMCs and neointma formation in rat artery. We found that chrysin concentration-dependently inhibited PDGF-induced proliferation and chemotaxis and reduced PDGF signaling in VSMCs. Chrysin attenuated H(2)O(2) signaling and PDGF-induced reactive oxygen species production and NADPH oxidase activation but did not interfere with PDGF binding to VSMCs. The further analyses revealed that chrysin relieved PDGF-induced inhibition on activity of protein tyrosine phosphatase (PTP) and reduced PDGF-induced oxidation of PTP cysteinyl active site. Moreover, it inhibited PDGF receptor autophosphorylation induced by low-dose vanadate (an inhibitor for PTP). The effect of chrysin, but not of the flavonoid (-)-epigallocatechin-3-gallate and antioxidant N-acetylcysteine, on PDGF signaling and PTP activity was reversed by depletion of intracellular glutathione (GSH), suggesting an involvement of chrysin on GSH/glutaredoxin system for PTP reactivation. Finally, to demonstrate the effectiveness of chrysin in vivo, we showed that oral administration of chrysin before and after angioplasty could reduce neointima formation in balloon-injured carotid artery in rats. In conclusion, we provide here evidence that chrysin can regulate intracellular PTP activity during PDGF signaling, inhibits PDGF-induced VSMC proliferation and chemotaxis, and reduces arterial intima hyperplasia in vivo.  相似文献   

4.
Estrogens are known to display significant vasoprotective effects in premenopausal women. PDGF is an important mediator of vascular smooth muscle cell (VSMC) migration and proliferation, and thus atherogenesis. We analyzed the effects of 17beta-estradiol (E2) on beta-PDGF receptor (beta-PDGFR) expression/activation and PDGF-dependent VSMC proliferation, migration, and downstream signaling events. Pretreatment of VSMCs with E2 (0.3 microM-0.1 mM) for 24 h concentration-dependently inhibited PDGF-induced proliferation and migration up to 85.5 +/- 15.8% and 79.4 +/- 9.8%, respectively (both P < 0.05). These effects were prevented by coincubation with the ER antagonist ICI-182780. E2 did not alter beta-PDGFR expression, nor did it impair the ligand-induced tyrosine phosphorylation of the beta-PDGFR and consecutive binding of the receptor-associated signaling molecules Src homology region 2-containing phosphatase-2, PLC-gamma, phosphatidylinositol 3-kinase, and RasGAP. Thus estrogens inhibited PDGF-induced cellular responses at the postreceptor level. Although stimulation of VSMCs with PDGF-BB led to a transient increase of rac-1 activity, pretreatment with E2 for 24 h concentration-dependently inhibited PDGF-induced rac-1 activation. Furthermore, inhibition of rac-1 by Clostridium sordellii lethal toxin or overexpression of dominant-negative rac-1 (rac-N17) significantly inhibited PDGF-induced VSMC migration, indicating that rac-1 activity is essential for PDGF-dependent cellular responses. E2 did not further reduce PDGF-induced migration in rac-N17-overexpressing cells, suggesting that it diminishes VSMC migration by altering rac-1 activity. We conclude that E2 attenuates PDGF-dependent cellular functions of VSMCs downstream of the beta-PDGFR via inhibition of rac-1. These observations offer a molecular explanation for the vasoprotective effects of estrogens.  相似文献   

5.
NRP1 (neuropilin-1) is a co-receptor for members of the VEGF (vascular endothelial growth factor) family in endothelial cells, but is increasingly implicated in signalling induced by other growth factors. NRP1 is expressed in VSMCs (vascular smooth muscle cells), but its function and the mechanisms involved are poorly understood. The present study aimed to determine the role of NRP1 in the migratory response of HCASMCs (human coronary artery smooth muscle cells) to PDGF (platelet-derived growth factor), and to identify the signalling mechanisms involved. NRP1 is highly expressed in HAoSMCs (human aortic smooth muscle cells) and HCASMCs, and modified in VSMCs by CS (chondroitin sulfate)-rich O-linked glycosylation at Ser612. HCASMC migration induced by PDGF-BB and PDGF-AA was inhibited by NRP1 siRNA (small interfering RNA), and by adenoviral overexpression of an NRP1 mutant lacking the intracellular domain (Ad.NRP1ΔC). NRP1 co-immunoprecipitated with PDGFRα (PDGF receptor α), and immunofluorescent staining indicated that NRP1 and PDGFRα co-localized in VSMCs. NRP1 siRNA also inhibited PDGF-induced PDGFRα activation. NRP1-specific siRNA, Ad.NRP1ΔC and removal of CS glycans using chondroitinase all inhibited PDGF-BB and -AA stimulation of tyrosine phosphorylation of the adapter protein, p130Cas (Cas is Crk-associated substrate), with little effect on other major signalling pathways, and p130Cas knockdown inhibited HCASMC migration. Chemotaxis and p130Cas phosphorylation induced by PDGF were inhibited by chondroitinase, and, additionally, adenoviral expression of a non-glycosylatable NRP1S612A mutant inhibited chemotaxis, but not p130Cas phosphorylation. These results indicate a role for NRP1 and NRP1 glycosylation in mediating PDGF-induced VSMC migration, possibly by acting as a co-receptor for PDGFRα and via selective mobilization of a novel p130Cas tyrosine phosphorylation pathway.  相似文献   

6.
We report here that mouse embryonic fibroblasts (MEF) express a functional PDGFbeta receptor-S1P(1) receptor complex. The S1P(1) receptor is constitutively active and functions to enhance PDGF-stimulated migration of MEF. This was based on three pieces of evidence. Firstly, the S1P(1) receptor and PDGFbeta receptor are co-immunoprecipitated from cell lysates using anti-PDGFbeta receptor antibody. These findings suggest that the receptors form a complex in MEF. Secondly, inverse agonism of the S1P(1) receptor with SB649146 to eliminate the constitutive activity of the S1P(1) receptor reduced the PDGF-induced activation of p42/p44 MAPK in MEF. Thirdly, SB649146 inhibited the migration of MEF in response to the selective S1P(1) receptor agonist, SEW2871 or PDGF. In contrast, S1P inhibited PDGF-stimulated MEF migration, possibly mediated by the inhibitory S1P(2) receptor. These findings resolve an important issue regarding the functional role of the S1P(1) receptor in regulating MEF migration and suggest an important role within the context of PDGFbeta receptor-S1P(1) receptor complex signaling.  相似文献   

7.
In vascular smooth muscle cells (VSMCs), platelet-derived growth factor (PDGF) plays a major role in inducing phenotypic switching from contractile to proliferative state. Importantly, VSMC phenotypic switching is also determined by the phosphorylation state/expression levels of insulin receptor substrate (IRS), an intermediary signaling component that is shared by insulin and IGF-I. To date, the roles of PDGF-induced key proliferative signaling components including Akt, p70S6kinase, and ERK1/2 on the serine phosphorylation/expression of IRS-1 and IRS-2 isoforms remain unclear in VSMCs. We hypothesize that PDGF-induced VSMC proliferation is associated with dysregulation of insulin receptor substrates. Using human aortic VSMCs, we demonstrate that prolonged PDGF treatment led to sustained increases in the phosphorylation of protein kinases such as Akt, p70S6kinase, and ERK1/2, which mediate VSMC proliferation. In addition, PDGF enhanced IRS-1/IRS-2 serine phosphorylation and downregulated IRS-2 expression in a time- and concentration-dependent manner. Notably, phosphoinositide 3-kinase (PI 3-kinase) inhibitor (PI-103) and mammalian target of rapamycin inhibitor (rapamycin), which abolished PDGF-induced Akt and p70S6kinase phosphorylation, respectively, blocked PDGF-induced IRS-1 serine phosphorylation and IRS-2 downregulation. In contrast, MEK1/ERK inhibitor (U0126) failed to block PDGF-induced IRS-1 serine phosphorylation and IRS-2 downregulation. PDGF-induced IRS-2 downregulation was prevented by lactacystin, an inhibitor of proteasomal degradation. Functionally, PDGF-mediated IRS-1/IRS-2 dysregulation resulted in the attenuation of insulin-induced IRS-1/IRS-2-associated PI 3-kinase activity. Pharmacological inhibition of PDGF receptor tyrosine kinase with imatinib prevented IRS-1/IRS-2 dysregulation and restored insulin receptor signaling. In conclusion, strategies to inhibit PDGF receptors would not only inhibit neointimal growth but may provide new therapeutic options to prevent dysregulated insulin receptor signaling in VSMCs in nondiabetic and diabetic states.  相似文献   

8.
Previous studies showed that the epidermal growth factor receptor (EGFR) can be transactivated by platelet-derived growth factor (PDGF) stimulation and that EGFR transactivation is required for PDGF-stimulated cell migration. To investigate the mechanism for cross talk between the PDGF beta receptor (PDGFbetaR) and the EGFR, we stimulated rat aortic vascular smooth muscle cells (VSMC) with 20 ng of PDGF/ml. Transactivation of the EGFR, defined by receptor tyrosine phosphorylation, occurred with the same time course as PDGFbetaR activation. Basal formation of PDGFbetaR-EGFR heterodimers was shown by coimmunoprecipitation studies, and interestingly, disruption of this receptor heterodimer abolished EGFR transactivation. Breakdown of the heterodimer was observed when VSMC were pretreated with antioxidants or with a Src family kinase inhibitor. Disruption of heterodimers decreased ERK1 and ERK2 activation by PDGF. Although PDGF-induced PDGFbetaR activation was abolished after pretreatment with 1 microM AG1295 (a specific PDGF receptor kinase inhibitor), EGFR transactivation was still observed, indicating that PDGFbetaR kinase activity is not required. In conclusion, our data demonstrate that the PDGFbetaR and the EGFR form PDGFbetaR-EGFR heterodimers basally, and we suggest that heterodimers represent a novel signaling complex which plays an important role in PDGF signal transduction.  相似文献   

9.
Platelet-derived growth factor (PDGF) has been implicated in smooth muscle cell (SMC) proliferation, a key event in the development of myointimal hyperplasia in vascular grafts. Recent evidence suggests that the PDGF receptor (PDGFR) tyrosine kinase inhibitor, imatinib, can prevent arterial proliferative diseases. Because hyperplasia is far more common at the venous anastomosis than the arterial anastomosis in vascular grafts, we investigated whether imatinib also inhibited venous SMC (VSMC) proliferation, and examined possible differences in its mechanism of action between VSMC and arterial SMC (ASMC). Human ASMC and VSMC were stimulated with PDGF-AB, in the presence or absence of imatinib (0.1-10 microM). Proliferation was assayed using the 5-bromo-2'-deoxyuridine (BrdU) incorporation assay, while PDGFR, Akt and ERK1/2-mitogen activated protein kinase (MAPK) signaling pathways were investigated by immunoblotting. The proliferative response to PDGF at 50 and 100 ng/ml was 32 and 43% greater, respectively, in VSMC than in ASMC. Similarly, PDGF-stimulated proliferation was more sensitive to inhibition by imatinib in VSMC than ASMC (IC(50) = 0.05 microM vs. 0.4 microM; P < 0.01). Imatinib also more effectively inhibited PDGF-induced phosphorylation of PDGFRbeta and Akt in VSMC, compared to ASMC. These data highlight inherent pharmacodynamic differences between VSMC and ASMC in receptor and cell signaling functions and suggest that imatinib therapy may be useful for the prevention of venous stenosis in vascular grafts.  相似文献   

10.
Confluent (density-inhibited) human foreskin fibroblasts require a higher concentration of platelet-derived growth factor (PDGF) to elicit a mitogenic response than do sparse (nondensity-inhibited) fibroblasts. The PDGF receptor number and apparent affinity were similar in the two preparations of cells. The intrinsic kinase activity of the PDGF receptor from sparse and confluent fibroblasts was therefore examined in an attempt to explain the differential mitogenic response to PDGF. When membranes from sparse and confluent cells containing equal PDGF binding capacity were incubated with increasing concentrations of PDGF, the putative PDGF receptor (a 180-kD component), was phosphorylated on its tyrosyl residues to a similar extent. The time course of tyrosine phosphorylation of the PDGF receptor from sparse and confluent cell membranes was also found to be similar. To determine whether the phosphorylation of the PDGF receptor from isolated membranes differed from the analogous phosphorylation in intact cells, sparse and confluent fibroblasts were metabolically labeled with [32P]H3PO4, stimulated with PDGF, solubilized, and the cell proteins were immunoprecipitated with a phosphotyrosine-specific antibody. The extent of PDGF-dependent tyrosine phosphorylation of the PDGF receptor from sparse vs. confluent fibroblasts was quite similar. The time course of the tyrosine dephosphorylation of the PDGF receptor was also similar in the two populations. Because comparable extents of PDGF-induced tyrosine phosphorylation of the PDGF receptor were observed despite the differential PDGF-induced mitogenic response of sparse and confluent fibroblasts, we tentatively conclude that 1) PDGF-dependent tyrosine phosphorylation of the PDGF receptor is not tightly coupled to the propagation of the mitogenic signal and 2) density-dependent inhibition of growth does not reflect any measurable change in the quantity of kinase activity of the PDGF receptor.  相似文献   

11.
Previous studies have shown that epidermal growth factor (EGF) synergizes with various extracellular matrix components in promoting the migration of B82L fibroblasts expressing wild-type EGF receptors and that functional EGF receptors are critical for the conversion of B82L fibroblasts to a migratory cell type (). In the present study, we examined the effects of platelet-derived growth factor (PDGF) on the motility of B82L fibroblasts using a microchemotaxis chamber. We found that PDGF can enhance fibronectin-induced migration of B82L fibroblasts expressing wild-type EGF receptors (B82L-clone B3). However, B82L cells that lack the EGF receptor (B82L-parental) or that express an EGF receptor that is kinase-inactive (B82L-K721M) or C-terminally truncated (B82L-c'973) exhibit little PDGF-stimulated migration. In addition, none of these three cell lines exhibit the capacity to migrate to fibronectin alone. These observations indicate that, similar to cell migration toward fibronectin, PDGF-induced cell migration of B82L fibroblasts is augmented by the expression of an intact EGF receptor kinase. The loss of PDGF-stimulated motility in B82L cells that do not express an intact EGF receptor does not appear to result from a gross dysfunction of PDGF receptors, because ligand-stimulated tyrosine phosphorylation of the PDGF-beta receptor and the activation of mitogen-activated protein kinases are readily detectable in these cells. Moreover, an interaction between EGF and PDGF receptor systems is supported by the observation that the EGF receptor exhibits an increase in phosphotyrosine content in a time-dependent fashion upon the addition of PDGF. Altogether, these studies demonstrate that the expression of EGF receptor is critical for PDGF-stimulated migration of murine B82L fibroblasts and suggest a role for the EGF receptor downstream of PDGF receptor activation in the signaling events that lead to PDGF-stimulated cell motility.  相似文献   

12.
alpha11beta1 constitutes the most recent addition to the integrin family and has been shown to display a binding preference for interstitial collagens found in mesenchymal tissues. We have previously observed that when alpha11beta1 integrin is expressed in cells lacking endogenous collagen receptors, it can mediate PDGF-BB-dependent chemotaxis on collagen I in vitro. To determine in which cells PDGF and alpha11beta1 might cooperate in regulating cell migration in vivo, we studied in detail the expression and distribution of alpha11 integrin chain in mouse embryos and tested the ability of PDGF isoforms to stimulate the alpha11beta1-mediated cell migration of embryonic fibroblasts. Full-length mouse alpha11 cDNA was sequenced and antibodies were raised to deduced alpha11 integrin amino acid sequence. In the embryonic mouse head, alpha11 protein and RNA were localized to ectomesenchymally derived cells. In the periodontal ligament, alpha11beta1 was expressed as the only detectable collagen-binding integrin, and alpha11beta1 is thus a major receptor for cell migration and matrix organization in this cell population. In the remainder of the embryo, the alpha11 chain was expressed in a subset of mesenchymal cells including tendon/ligament fibroblasts, perichondrial cells, and intestinal villi fibroblasts. Most of the alpha11-expressing cells also expressed the alpha2 integrin chain, but no detectable overlap was found with the alpha1 integrin chain. In cells expressing multiple collagen receptors, these might function to promote a more stable cell adhesion and render the cells more resistant to chemotactic stimuli. Wild-type embryonic fibroblasts activated mainly the PDGF beta receptor in response to PDGF-BB and migrated on collagens I, II, III, IV, V, and XI in response to PDGF-BB in vitro, whereas mutant fibroblasts that lacked alpha11beta1 in their collagen receptor repertoire showed a stronger chemotactic response on collagens when stimulated with PDGF-BB. In the cellular context of embryonic fibroblasts, alpha11beta1 is thus anti-migratory. We speculate that the PDGF BB-dependent cell migration of mesenchymal cells is tightly regulated by the collagen receptor repertoire, and disturbances of this repertoire might lead to unregulated cell migration that could affect normal embryonic development and tissue structure.  相似文献   

13.
The platelet-derived growth factor (PDGF) beta receptor mediates mitogenic and chemotactic signals. Like other tyrosine kinase receptors, the PDGF beta receptor is negatively regulated by protein tyrosine phosphatases (PTPs). To explore whether T-cell PTP (TC-PTP) negatively regulates the PDGF beta receptor, we compared PDGF beta receptor tyrosine phosphorylation in wild-type and TC-PTP knockout (ko) mouse embryos. PDGF beta receptors were hyperphosphorylated in TC-PTP ko embryos. Fivefold-higher ligand-induced receptor phosphorylation was observed in TC-PTP ko mouse embryo fibroblasts (MEFs) as well. Reexpression of TC-PTP partly abolished this difference. As determined with site-specific phosphotyrosine antibodies, the extent of hyperphosphorylation varied among different autophosphorylation sites. The phospholipase Cgamma1 binding site Y1021, previously implicated in chemotaxis, displayed the largest increase in phosphorylation. The increase in Y1021 phosphorylation was accompanied by increased phospholipase Cgamma1 activity and migratory hyperresponsiveness to PDGF. PDGF beta receptor tyrosine phosphorylation in PTP-1B ko MEFs but not in PTPepsilon ko MEFs was also higher than that in control cells. This increase occurred with a site distribution different from that seen after TC-PTP depletion. PDGF-induced migration was not increased in PTP-1B ko cells. In summary, our findings identify TC-PTP as a previously unrecognized negative regulator of PDGF beta receptor signaling and support the general notion that PTPs display site selectivity in their action on tyrosine kinase receptors.  相似文献   

14.
Platelet Derived Growth Factor (PDGF) and sphingosine-1-phosphate (S1P) pathways play a key role in mural cell recruitment during tumor growth and angiogenesis. Fingolimod, a S1P analogue, has been shown to exert antitumor and antiangiogenic properties. However, molecular targets and modes of action of fingolimod remain unclear. In this study, we confirmed the antagonizing action of S1P and PDGF-B on rat vascular smooth muscle cell (VSMCs) growth and migration. We then compared siRNA and/or fingolimod (100 nM) treatments on PDGFR-β, S1PR1 S1PR2 and S1PR3 expression. Fingolimod induced a 50% reduction in S1PR3 protein expression which was cumulative with that obtained with anti-S1PR3 siRNA. We found that siRNA-induced inhibition of both PDGFR-β and S1PR3 was the most effective means to block VSMC migration induced by PDGF-B. Finally, we observed that fingolimod treatment associated with anti-S1PR1 siRNA principally inhibited VSMC growth while in combination with anti-S1PR3 siRNA it strongly inhibited VSMC migration. These results suggest that for rat VSMCs, the PDGFR-S1PR1 pathway is predominantly dedicated to cell growth while PDGFR-S1PR3 stimulates cell migration. As an S1P analogue, fingolimod is considered a potent activator of S1PR1 and S1PR3. However, its action on the PDGFR-S1PR platform appears to be dependent on S1PR1 and S1PR3 specific downregulation. Considering that the S1P pathway has already been shown to exert various crosstalks with tyrosine kinase pathways, it seems of great interest to evaluate fingolimod potential in combination with the numerous tyrosine kinase inhibitors used in oncology.  相似文献   

15.
Dexamethasone has been shown to inhibit vascular smooth muscle cell (VSMC) migration, which is required for preventing restenosis. However, the mechanism underlying effect of dexamethasone remains unknown. We have previously demonstrated that peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1 alpha (PGC-1α) can inhibit VSMC migration and proliferation. Here, we investigated the role of PGC-1α in dexamethasone-reduced VSMC migration and explored the possible mechanism. We first examined PGC-1α expression in cultured rat aortic VSMCs. The results revealed that incubation of VSMCs with dexamethasone could significantly elevate PGC-1α mRNA expression. In contrast, platelet-derived growth factor (PDGF) decreased PGC-1α expression while stimulating VSMC migration. Mechanistic study showed that suppression of PGC-1α by small interfering RNA strongly abrogated the inhibitory effect of dexamethasone on VSMC migration, whereas overexpression of PGC-1α had the opposite effect. Furthermore, an analysis of MAPK signal pathways showed that dexamethasone inhibited ERK and p38 MAPK phosphorylation in VSMCs. Overexpression of PGC-1α decreased both basal and PDGF-induced p38 MAPK phosphorylation, but it had no effect on ERK phosphorylation. Finally, inhibition of PPARγ activation by a PPARγ antagonist GW9662 abolished the suppressive effects of PGC-1α on p38 MAPK phosphorylation and VSMC migration. These effects of PGC-1α were enhanced by a PPARγ agonist troglitazone. Collectively, our data indicated for the first time that one of the anti-migrated mechanisms of dexamethasone is due to the induction of PGC-1α expression. PGC-1α suppresses PDGF-induced VSMC migration through PPARγ coactivation and, consequently, p38 MAPK inhibition.  相似文献   

16.
Grb2-associated binder-1 (Gab1) is an adapter protein related to the insulin receptor substrate family. It is a substrate for the insulin receptor as well as the epidermal growth factor (EGF) receptor and other receptor-tyrosine kinases. To investigate the role of Gab1 in signaling pathways downstream of growth factor receptors, we stimulated rat aortic vascular smooth muscle cells (VSMC) with EGF and platelet-derived growth factor (PDGF). Gab1 was tyrosine-phosphorylated by EGF and PDGF within 1 min. AG1478 (an EGF receptor kinase-specific inhibitor) failed to block PDGF-induced Gab1 tyrosine phosphorylation, suggesting that transactivated EGF receptor is not responsible for this signaling event. Because Gab1 associates with phospholipase Cgamma (PLCgamma), we studied the role of the PLCgamma pathway in Gab1 tyrosine phosphorylation. Gab1 tyrosine phosphorylation by PDGF was impaired in Chinese hamster ovary cells expressing mutant PDGFbeta receptor (Y977F/Y989F: lacking the binding site for PLCgamma). Pretreatment of VSMC with (a specific PLCgamma inhibitor) inhibited Gab1 tyrosine phosphorylation as well, indicating the importance of the PLCgamma pathway. Gab1 was tyrosine-phosphorylated by phorbol ester to the same extent as PDGF stimulation. Studies using antisense protein kinase C (PKC) oligonucleotides and specific inhibitors showed that PKCalpha and PKCepsilon are required for Gab1 tyrosine phosphorylation. Binding of Gab1 to the protein-tyrosine phosphatase SHP2 and phosphatidylinositol 3-kinase was significantly decreased by PLCgamma and/or PKC inhibition, suggesting the importance of the PLCgamma/PKC-dependent Gab1 tyrosine phosphorylation for the interaction with other signaling molecules. Because PDGF-mediated ERK activation is enhanced in Chinese hamster ovary cells that overexpress Gab1, Gab1 serves as an important link between PKC and ERK activation by PDGFbeta receptors in VSMC.  相似文献   

17.
Hyperinsulinemia plays a major role in the pathogenesis of vascular disease. Restenosis occurs at an accelerated rate in hyperinsulinemia and is dependent on increased vascular smooth muscle cell movement from media to neointima. PDGF plays a critical role in mediating neointima formation in models of vascular injury. We have reported that PDGF increases the levels of protein tyrosine phosphatase PTP1B and that PTP1B suppresses PDGF-induced motility in cultured cells and that it attenuates neointima formation in injured carotid arteries. Others have reported that insulin enhances the mitogenic and motogenic effects of PDGF in cultured smooth muscle cells and that hyperinsulinemia promotes vascular remodeling. In the present study, we tested the hypothesis that insulin amplifies PDGF-induced cell motility by suppressing the expression and function of PTP1B. We found that chronic but not acute treatment of cells with insulin enhances PDGF-induced motility in differentiated cultured primary rat aortic smooth muscle cells and that it suppresses PDGF-induced upregulation of PTP1B protein. Moreover, insulin suppresses PDGF-induced upregulation of PTP1B mRNA levels, PTP1B enzyme activity, and binding of PTP1B to the PDGF receptor-beta, and it enhances PDGF-induced PDGF receptor phosphotyrosylation. Treatment with insulin induces time-dependent upregulation of phosphatidylinositol 3-kinase (PI3-kinase)-delta and activation of Akt, an enzyme downstream of PI3-kinase. Finally, inhibition of PI3-kinase activity, or its function, by pharmacological or genetic means rescues PTP1B activity in insulin-treated cells. These observations uncover novel mechanisms that explain how insulin amplifies the motogenic capacity of the pivotal growth factor PDGF.  相似文献   

18.
Activation of the PDGF receptor on human arterial smooth muscle cells (SMC) induces migration and proliferation via separable signal transduction pathways. Sphingosine-1-phosphate (Sph-1-P) can be formed following PDGF receptor activation and therefore may be implicated in PDGF-receptor signal transduction. Here we show that Sph-1-P does not significantly affect PDGF-induced DNA synthesis, proliferation, or activation of mitogenic signal transduction pathways, such as the mitogen-activated protein (MAP) kinase cascade and PI 3-kinase, in human arterial SMC. On the other hand, Sph-1-P strongly mimics PDGF receptor-induced chemotactic signal transduction favoring actin filament disassembly. Although Sph-1-P mimics PDGF, exogenously added Sph-1-P induces more prolonged and quantitatively greater PIP2 hydrolysis compared to PDGF-BB, a markedly stronger calcium mobilization and a subsequent increase in cyclic AMP levels and activation of cAMP-dependent protein kinase. This excessive and prolonged signaling favors actin filament disassembly by Sph-1-P, and results in inhibition of actin nucleation, actin filament assembly and formation of focal adhesion sites. Sph-1-P-induced interference with the dynamics of PDGF-stimulated actin filament disassembly and assembly results in a marked inhibition of cell spreading, of extension of the leading lamellae toward PDGF, and of chemotaxis toward PDGF. The results suggest that spatial and temporal changes in phosphatidylinositol turnover, calcium mobilization and actin filament disassembly may be critical to PDGF-induced chemotaxis and suggest a possible role for endogenous Sph-1-P in the regulation of PDGF receptor chemotactic signal transduction.  相似文献   

19.
The phosphatidylinositol 3-kinase (PI3K) signaling pathway(s) is activated by a variety of agonists to regulate cell migration. Here, we show that the stimulation of mouse embryonic fibroblasts with platelet-derived growth factor (PDGF) induces migration in a PI3K-dependent manner. Cells lacking Akt1/PKBalpha exhibit impaired migration and peripheral ruffling in response to PDGF stimulation, whereas cells lacking Akt2/PKBbeta are normal. In addition, over-expression of Akt1/PKBalpha but not Akt2/PKBbeta is sufficient to restore PDGF-induced cell migration in an Akt1/PKBalpha and Akt2/PKBbeta deficient background. In response to PDGF stimulation, Akt1/PKBalpha selectively translocates to membrane ruffles, however, this localization is abrogated by substituting the linker region of Akt2/PKBbeta. Similarly, expression of an Akt2/PKBalpha chimera containing the linker region of Akt1/PKBalpha restored PDGF-induced migration in cells lacking both Akt1/PKBalpha and Akt2/PKBbeta. Finally, over-expression of constitutively active Rac rescues PDGF-induced migration defects in cells lacking Akt1/PKBalpha. Given these results, we suggest that Akt1/PKBalpha controls cell migration by selectively translocating to the leading edge and activating Rac.  相似文献   

20.
Platelet-derived growth factor (PDGF) has been shown to be essential in the activation of hepatic stellate cells (HSCs), contributing to the onset and development of hepatic fibrosis. Recently, sphingosine-1-phosphate (S1P) has been shown to be a mitogen and stimulator of chemotaxis also for HSCs. Since it has been demonstrated in several cell types that cross-talk between PDGF and S1P signalling pathways occurs, our aim was to investigate the potential antifibrotic effect of FTY720, whose phosphorylated form acts as a potent S1P receptor (S1PR) modulator, on HSCs. FTY720 inhibits cell proliferation and migration after PDGF stimulation on HSCs in a concentration range between 0.1 and 1 muM. By using compounds that block S1P signalling (PTX and VPC23019), we assessed that FTY720 also acts in an S1P receptor-independent way by decreasing the level of tyrosine phosphorylation of PDGF receptor, with subsequent inhibition of the PDGF signalling pathway. In addition, inhibition of sphingosine kinase2 (SphK2), which is responsible for FTY720 phosphorylation, by DMS/siRNA unveils a mechanism of action irrespective of its phosphorylation, in particular decreasing the level of S1P(1) on the plasma membrane. These findings led us to hypothesize a potential use of FTY720 as a potential antifibrotic drug for further clinical application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号