首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although orthostatic hypotension is a common clinical syndrome after spaceflight and its ground-based simulation model, 6 degrees head-down bed rest (HDBR), the pathophysiology remains unclear. The authors' hypothesis that a decrease in sympathetic nerve activity is the major pathophysiology underlying orthostatic hypotension after HDBR was tested in a study involving 14-day HDBR in 22 healthy subjects who showed no orthostatic hypotension during 15-min 60 degrees head-up tilt test (HUT) at baseline. After HDBR, 10 of 22 subjects demonstrated orthostatic hypotension during 60 degrees HUT. In subjects with orthostatic hypotension, total activity of muscle sympathetic nerve activity (MSNA) increased less during the first minute of 60 degrees HUT after HDBR (314% of resting supine activity) than before HDBR (523% of resting supine activity, P < 0.05) despite HDBR-induced reduction in plasma volume (13% of plasma volume before HDBR). The postural increase in total MSNA continued during several more minutes of 60 degrees HUT while arterial pressure was maintained. Thereafter, however, total MSNA was paradoxically suppressed by 104% of the resting supine level at the last minute of HUT (P < 0.05 vs. earlier 60 degrees HUT periods). The suppression of total MSNA was accompanied by a 22 +/- 4-mmHg decrease in mean blood pressure (systolic blood pressure <80 mmHg). In contrast, orthostatic activation of total MSNA was preserved throughout 60 degrees HUT in subjects who did not develop orthostatic hypotension. These data support the hypothesis that a decrease in sympathetic nerve activity is the major pathophysiological factor underlying orthostatic hypotension after HDBR. It appears that the diminished sympathetic activity, in combination with other factors associated with HDBR (e.g., hypovolemia), may predispose some individuals to postural hypotension.  相似文献   

2.
The purpose of this study was to examine cardiac hemodynamics during acute head-up tilt (HUT) and calf venous function during acute head-down tilt (HDT) in subjects with paraplegia compared with sedentary nondisabled controls. Nineteen paraplegic males (below T6) and nine age-, height-, and weight-matched control subjects participated. Heart rate, stroke volume, and cardiac output were assessed using the noninvasive acetylene uptake method. Venous vascular function of the calf was assessed using venous occlusion plethysmography. After supine measurements were collected, the table was moved to 10 degrees HDT followed by the three levels of HUT (10, 35, and 75 degrees ) in random order. Cardiac hemodynamics were similar between the groups at all positions. Calf circumference was significantly reduced in the paraplegic group compared with the control group (P < 0.001). Venous capacitance and compliance were significantly reduced in the paraplegic compared with control group at supine and HDT. Neither venous capacitance (P = 0.37) nor compliance (P = 0.19) increased from supine with 10 degrees HDT in the paraplegic group. A significant linear relationship was established between supine venous compliance and supine cardiac output in the control group (r = 0.80, P < 0.02) but not in the paraplegic group. The findings of reduced calf circumference and similar venous capacitance at supine rest and 10 degrees HDT in the paraplegic group imply that structural changes may have limited venous dispensability in individuals with chronic paraplegia. Furthermore, the lack of a relationship between supine venous compliance and supine cardiac output suggests that cardiac homeostasis does not rely on venous compliance in subjects with paraplegia.  相似文献   

3.
We tested the hypothesis that differences in sympathetic reflex responses to head-up tilt (HUT) between males (n = 9) and females (n = 8) were associated with decrements in postural vasomotor responses in women. Muscle sympathetic nerve activity (MSNA; microneurography), heart rate, stroke volume (SV; Doppler), and blood pressure (Finapres) were measured during a progressive HUT protocol (5 min at each of supine, 20 degrees, 40 degrees, and 60 degrees ). MSNA and hemodynamic responses were also measured during the cold pressor test (CPT) to examine nonbaroreflex neurovascular control. SV was normalized to body surface area (SV(i)) to calculate the index of cardiac output (Q(i)), and total peripheral resistance (TPR). During HUT, heart rate increased more in females versus males (P < 0.001) and SV(i) and Q(i) decreased similarly in both groups. Mean arterial pressure (MAP) increased to a lesser extent in females versus males in the HUT (P < 0.01) but increases in TPR during HUT were similar. MSNA burst frequency was lower in females versus males in supine (P < 0.03) but increased similarly during HUT. Average amplitude/burst increased in 60 degrees HUT for males but not females. Both males and females demonstrated an increase in MAP as well as MSNA burst frequency, mean burst amplitude, and total MSNA during the CPT. However, compared with females, males demonstrated a greater neural response (DeltaTotal MSNA) due to a larger increase in mean burst amplitude (P < 0.05). Therefore, these data point to gender-specific autonomic responses to cardiovascular stress. The different MSNA response to postural stress between genders may contribute importantly to decrements in blood pressure control during HUT in females.  相似文献   

4.
To examine how long-lasting microgravity simulated by 6 degrees head-down bed rest (HDBR) induces changes in the baroreflex control of muscle sympathetic nerve activity (MSNA) at rest and changes in responses of MSNA to orthostasis, six healthy male volunteers (range 26-42 yr) participated in Valsalva maneuver and head-up tilt (HUT) tests before and after 120 days of HDBR. MSNA was measured directly using a microneurographic technique. After long-term HDBR, resting supine MSNA and heart rate were augmented. The baroreflex slopes for MSNA during Valsalva maneuver (in supine position) and during 60 degrees HUT test, determined by least-squares linear regression analysis, were significantly steeper after than before HDBR, whereas the baroreflex slopes for R-R interval were significantly flatter after HDBR. The increase in MSNA from supine to 60 degrees HUT was not different between before and after HDBR, but mean blood pressure decreased in 60 degrees HUT after HDBR. In conclusion, the baroreflex control of MSNA was augmented, whereas the same reflex control of R-R interval was attenuated after 120 days of HDBR.  相似文献   

5.
Arterial hypocapnia has been associated with orthostatic intolerance. Therefore, we tested the hypothesis that hypocapnia may be detrimental to increases in muscle sympathetic nerve activity (MSNA) and total peripheral resistance (TPR) during head-up tilt (HUT). Ventilation was increased approximately 1.5 times above baseline for each of three conditions, whereas end-tidal PCO(2) (PET(CO(2))) was clamped at normocapnic (Normo), hypercapnic (Hyper; +5 mmHg relative to Normo), and hypocapnic (Hypo; -5 mmHg relative to Normo) conditions. MSNA (microneurography), heart rate, blood pressure (BP, Finapres), and cardiac output (Q, Doppler) were measured continuously during supine rest and 45 degrees HUT. The increase in heart rate when changing from supine to HUT (P < 0.001) was not different across PET(CO(2)) conditions. MSNA burst frequency increased similarly with HUT in all conditions (P < 0.05). However, total MSNA and the increase in total amplitude relative to baseline (%DeltaMSNA) increased more when changing to HUT during Hypo compared with Hyper (P < 0.05). Both BP and Q were higher during Hyper than both Normo and Hypo (main effect; P < 0.05). Therefore, the MSNA response to HUT varied inversely with levels of PET(CO(2)). The combined data suggest that augmented cardiac output with hypercapnia sustained blood pressure during HUT leading to a diminished sympathetic response.  相似文献   

6.
Objectives: To observe the change of pressure-volume relationships of femoral veins of rabbits after simulated weightlessness. Methods: Head-Down Tilt(HDT) -20 degrees rabbit model was used to simulate weightlessness .24 healthy male New-Zealand Rabbits were randomly divided into 21d HDT group, 10d HDT group and control group, with 8 in each. The pressure-volume relationships of rabbits femoral veins were measured. Result: The femoral vein P-V relationship curves of HDT groups were shifted to larger volume change ratio than that of control group. The P-V relationship curve of the 21d HDT group was shifted more obviously than that of HDT-10d. B1 and B2 in quadratic equations of 21d HDT group were significantly higher than these value of 10d HDT group and control group during expansion (inflow) and collapse (outflow) (P<0.01). Conclusions: The femoral venous compliance increased after weightlessness simulation and the femoral venous compliance of 21d-HDT increased more obviously than that of 10d-HDT.  相似文献   

7.
Elevated calf compliance may contribute to orthostatic intolerance following space flight and bed rest. Calf venous compliance is measured conventionally with venous occulusion plethysmography in supine subjects. With this well-established technique, subjects undergo inflation of a pressure cuff around the thigh just above the knee, which increases calf venous pressure. A plethysmograph simultaneously measures calf volume elevation. Compliance equals calf volume elevation per mm Hg thigh occlusion (calf venous) pressure in relaxed legs of the supine subjects. Compliance may also be measured during stepwise head-up tilt (HUT) as calf volume elevation per mm Hg gravitational venous pressure elevation produced by HUT. However, during HUT on a tilt table with a footplate, calf muscles activate to counteract gravity: this is an obvious and natural response to gravitational force. Such muscle activation conceivably could reduce calf compliance, yet relatively little calf muscle activation occurs during HUT and orthostasis (<10% of maximal voluntary levels). Also, this activation produces minimal calf volume change (<0.3%). Therefore, we hypothesized that calf compliance measured with HUT equals that measured with supine venous occlusion.  相似文献   

8.
Mechanisms involved in the control of arterial pressure during postural changes were studied by analysis of the dynamic time course of cardiovascular changes during head-up tilt (HUT) and tilt back to supine position (TB). Beat-to-beat values of cardiovascular variables were recorded continuously before, during, and after passive HUT to 30 degrees in seven healthy humans. Left cardiac stroke volume (SV, Doppler ultrasound), mean arterial blood pressure (MAP), heart rate (HR), cardiac output (CO), and total peripheral conductance (TPC) were recorded. During HUT, MAP at the level of the carotid baroreceptors decreased by approximately 5 mmHg. There was a striking asymmetry between the time courses of cardiovascular changes on HUT and on TB. Adjustments generally took up to 30 s after HUT, whereas most changes were completed during the first 10 s after TB. Cardiovascular reflex adjustments of HR and TPC were more symmetrical. After HUT, SV was maintained during the first 4-6 s and then decreased steadily during the next 30 s to a stable level approximately 25% below its pretilt value. However, after TB, SV increased rapidly to its pretilt value in <10 s. This asymmetry in SV dynamics may be explained in part by a more rapid change in left cardiac filling after TB than after HUT. On TB, there must be a rapid inflow of stagnant blood from the legs, whereas venous valves will impede backward filling of veins in the lower body on HUT. In conclusion, we have revealed a characteristic asymmetry in cardiovascular responses to inverse variations in gravity forces in humans. This asymmetry can be explained in part by nonlinear, hydrodynamic factors, such as the one-way effect of venous valves in the lower part of the body.  相似文献   

9.
Reduced orthostatic tolerance following 4 h head-down tilt   总被引:2,自引:0,他引:2  
The cardiovascular responses to a 10-min 1.22 rad (70 degrees) head-up tilt orthostatic tolerance test (OST) was observed in eight healthy men following each of a 5-min supine baseline (control), 4 h of 0.1 rad (6 degrees) head-down tilt (HDT), or 4 h 0.52 rad (30 degrees) head-up tilt (HUT). An important clinical observation was presyncopal symptoms in six of eight subjects following 4 h HDT, but in no subjects following 4 h HUT. Immediately prior to the OST, there were no differences in heart rate, stroke volume, cardiac output, mean arterial pressure and total peripheral resistance for HDT and HUT. However, stroke volume and cardiac output were greater for the control group. Mean arterial pressure for the control group was less than HDT but not HUT. Over the full 10-min period of OST, the mean arterial pressure was not different between groups. Heart rate increased to the same level for all three treatments. Stroke volume decreased across the full time period for control and HDT, but only at 3 and 9 min for HUT. There was a higher total peripheral resistance in the HDT group than control or HUT. The pre-ejection period to left ventricular ejection time ratio was less in HDT than for control or HUT groups. These data indicate a rapid adaptation of the cardiovascular system to 4 h HDT that appears to be inappropriate on reapplication of a head to foot gravity vector. We speculate that the cause of the impaired orthostatic tolerance is decreased tone in venous capacitance vessels so that venous return is inadequate.  相似文献   

10.
Orthostatic reflexes were examined at 375 m and after 60 min of exposure in a hypobaric chamber at 3660 m using a 20-min 70 degrees head-up tilt (HUT) test. Mean arterial blood pressure, R wave-R wave interval (RRI), and mean cerebral blood flow velocity (MFV) were examined with coarse-graining spectral analysis. Of 14 subjects, 7 at 375 m and 12 at 3660 m were presyncopal. Immediately on arrival to high altitude, breathing frequency and MFV increased, and endtidal PCO2, RRI, RRI complexity, and the parasympathetic nervous system indicator decreased. MFV was similar in HUT at both altitudes. The sympathetic nervous system indicator increased with tilt at 3660 m, whereas parasympathetic nervous system indicator decreased with tilt at both altitudes. Multiple regression analysis of supine variables from either 375 or 3660 m and the time to presyncope at 3660 m indicated that, after 1 h of exposure, increased presyncope at altitude was the result of 1). ineffective peripheral vasoconstriction, despite increased cardiac sympathetic nervous system activity with HUT, and 2). insufficient cerebral perfusion owing to cerebral vasoconstriction as the result of hypoxic hyperventilation-induced hypocapnia.  相似文献   

11.
Sympathetic outflow increases during head-up tilt (HUT) to stabilize blood pressure in the presence of decreases in venous return and stroke volume (SV). Otherwise, orthostatic hypotension would develop. Gender differences in orthostatic tolerance have been noted but the mechanisms are still uncertain. More recently, Waters et al. reported in a limited sample, greater susceptibility of women to demonstrate orthostatic intolerance following space flight. Therefore, it is important to understand gender differences in reflex blood pressure regulation. Recently, we reported smaller increments in muscle sympathetic nerve activity (MSNA) in healthy women during graded HUT and a non-baroreflex cold pressor test. The purpose of this report is to examine the hypothesis that gender differences in blood pressure control during HUT are related to important variations in MSNA discharge patterns.  相似文献   

12.
We tested the reliability of noninvasive cardiac output (CO) measurement in different body positions by pulse contour analysis (CO(pc)) by using a transmission line model (K. H. Wesseling, B. De Wit, J. A. P. Weber, and N. T. Smith. Adv. Cardiol. Phys. 5, Suppl. II: 16-52, 1983). Acetylene rebreathing (CO(rebr)) was used as a reference method. Twelve subjects (age 21-34 yr) were studied: 1) six in whom CO(rebr) and CO(pc) were measured in the standing and 6 degrees head-down tilt (HDT) postures and 2) six in whom CO was measured in the 30 degrees HDT, supine, 30 degrees head up-tilt (HUT), and 70 degrees HUT postures on a tilt table. The CO(rebr)-to-CO(pc) ratio in (near) the supine position during rebreathing was used as the calibration factor for CO(pc) measurements. Calibrated CO(pc) (CO(cal sup)) consistently overestimated CO in the upright posture. The drop in CO with upright posture was underestimated by approximately 50%. CO(cal sup) and CO(rebr) values did not differ in the 30 degrees HDT position. Changes in the CO(rebr)-to-CO(pc) ratio are highly variable among subjects in response to a change in posture. Therefore, CO(pc) must be recalibrated for each subject in each posture.  相似文献   

13.
To test the hypothesis that systemic inhibition of nitric oxide (NO) synthase does not alter the regulation of sympathetic outflow during head-up tilt in humans, in eight healthy subjects NO synthase was blocked by intravenous infusion of NG-monomethyl-L-arginine (L-NMMA). Blood pressure, heart rate, cardiac output, total peripheral resistance (TPR), and muscle sympathetic nerve activity (MSNA) were recorded in the supine position and during 60 degrees head-up tilt. In the supine position, infusion of L-NMMA increased blood pressure, via increased TPR, and inhibited MSNA. However, the increase in MSNA evoked by head-up tilt during L-NMMA infusion (change in burst rate: 24 +/- 4 bursts/min; change in total activity: 209 +/- 36 U/min) was similar to that during head-up tilt without L-NMMA (change in burst rate: 23 +/- 4 bursts/min; change in total activity: 251 +/- 52 U/min, n = 6, all P > 0.05). Moreover, changes in TPR and heart rate during head-up tilt were virtually identical between the two conditions. These results suggest that systemic inhibition of NO synthase with L-NMMA does not affect the regulation of sympathetic outflow and vascular resistance during head-up tilt in humans.  相似文献   

14.
The present study was performed to test the hypothesis that application of lower body positive pressure (LBPP) during orthostasis would reduce the baroreflex-mediated enhancement in sympathetic activity in humans. Eight healthy young men were exposed to a 70 degrees head-up tilt (HUT) on application of 30 mmHg LBPP. Muscle sympathetic nerve activity (MSNA) was microneurographically recorded from the tibial nerve, along with hemodynamic variables. We found that in the supine position with LBPP, MSNA remained unchanged (13.4 +/- 3.3 vs. 11.8 +/- 2.3 bursts/min, without vs. with LBPP; P > 0.05), mean arterial pressure was elevated, but arterial pulse pressure and heart rate did not alter. At 70 degrees HUT with LBPP, the enhanced MSNA response was reduced (33.8 +/- 5.0 vs. 22.5 +/- 2.2 bursts/min, without vs. with LBPP; P < 0.05), mean arterial pressure was higher, the decreased pulse pressure was restored, and the increased heart rate was attenuated. We conclude that the baroreflex-mediated enhancement in sympathetic activity during HUT was reduced by LBPP. Application of LBPP in HUT induced an obvious cephalad fluid shift as well as a restoration of arterial pulse pressure, which reduced the inhibition of the baroreceptors. However, the activation of the intramuscular mechanoreflexes produced by 30 mmHg LBPP might counteract the effects of baroreflexes.  相似文献   

15.
The use of symptoms generated by head up tilt (HUT) is not a useful tool in identifying chronic fatigue syndrome (CFS). We investigated whether heart rate variability (HRV) assessed early during HUT might be useful. A sample of 46 female subjects (24 with CFS and 22 sedentary, age-matched healthy controls; CON) who had exhibited no difference in time to syncope during tilt was examined for HRV responses to 10 min of 70 degrees HUT after 5 min of baseline in the supine position. HRV data were analyzed by the method of coarse graining spectral analysis. Variables compared between groups included mean and standard deviation (SD(RRI)) of RR intervals (RRI), amplitudes of low- (A(LF); 0.04-0.15 Hz) and high-frequency (A(HF); >0.15 Hz) harmonic as well as aperiodic, fractal (A(FR); 1/f(beta)) spectral components, the spectral exponent beta, and the difference in these values between baseline and HUT for each subject. In the supine baseline, only mean RRI was significantly (P < 0.01) lower in CFS than in CON. During HUT, however, mean RRI (P < 0.01), SD(RRI) (P < 0.01), A(HF) (P < 0.05), and A(FR) (P < 0.01) were significantly lower in CFS than in CON. When the difference in values between baseline and HUT for each subject was examined, only the difference for A(FR) (deltaA(FR)) was significantly (P < 0.01) lower in CFS than in CON, suggesting that A(FR)is a disease-specific response of HRV to HUT. When a cut-off level was set to deltaA(FR) = -2.7 msec, the sensitivity and the specificity in differentiating CFS from controls were 90% and 72%, respectively. The data suggest that a decrease in aperiodic fractal component of HRV in response to HUT can be used to differentiate patients with CFS from CON.  相似文献   

16.
Effect of posture on arterial baroreflex control of heart rate in humans   总被引:1,自引:0,他引:1  
Altered baroreflex function may contribute to the cardiovascular changes associated with weightlessness. Since central blood volume (CBV) increases during simulated weightlessness we have examined the possibility that acute changes in CBV may modify baroreceptor function. We used graded head-up tilt (HUT) and head-down tilt (HDT) to induce changes in CBV, and neck suction to stimulate carotid baroreceptors, in 6 subjects. The increase in pulse interval induced by a negative pressure of 8.2 kPa (62 mm Hg) imposed for 10 s while supine was compared with the increase while tilted for 8 min at +/- 15 degrees, +/- 30 degrees and +/- 45 degrees. During HDT at 15 degrees the pulse interval over the first 5 cardiac cycles following suction onset was 51 +/- (SEM) 18 ms longer (p less than 0.05), at 30 degrees it was 61 +/- 20 ms longer (p less than 0.05), and at 45 degrees it was 74 +/- 35 ms longer (p less than 0.01), compared with supine. During HUT at 15 degrees the pulse interval was 25 +/- 9 ms shorter (p less than 0.05) than when supine, but was not significantly different at 30 degrees and 45 degrees. These responses occurred independently of changes in brachial blood pressure. Attenuation was also observed after 5 min (56 +/- 17 ms; less than 0.05), and after 40 min (25 +/- 9 ms; p less than 0.05) of 60 degrees HUT compared with supine. We conclude that posture does modify arterial baroreflex control of heart rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The purpose of this study was to assess the endocrine status, thoracic impedance, blood concentration, and hemodynamic dose-responses using different angles of passive head-up tilt (HUT) ranging from 12 degrees to 70 degrees in the same subjects. Measurements were performed during 20 min supine position (pre-HUT), 30 min upright (HUT12, HUT30, HUT53, or HUT70), and 20 min supine (post-HUT); subjects 70 min in the supine position only (HUT0) served as resting controls. Norepinephrine increased above resting control values by 19, 44, 80, and 102%; epinephrine by 30, 41, 64, and 68%; aldosterone by 29, 62, 139, and 165%; plasma renin activity n. s., 41, 91, and 89%; vasopressin n.s., 27, 47, and 59%; thoracic bioimpedance n. s., 8, 13, and 16%; heart rate n. s., 5, 26, and 45%, and mean arterial pressure n. s., 5, 7, and 10%; at min 27 of HUT12, HUT30, HUT53, and HUT70, respectively. Pulse pressure decreased with HUT53 and HUT70 by 4 and 10%. Hematocrit increased by 0.2, 1.7, 6.3, and 7.2%, respectively. Blood density increased by 2.3 and 3.0 g/l, plasma density by 1.7 and 1.8 g/l with HUT53 and HUT70. After finishing HUT, heart rate fell to values which stayed below pre-HUT, and also below resting control levels for > or = 5 min ("post-orthostatic bradycardia") even after the lowest orthostatic load (HUT12). Thoracic impedance and arterial pressure remained increased after terminating HUT30, HUT53, and HUT70. In conclusion, passive orthostatic loading of different extent produces specific dose-responses of different magnitude in the endocrine system, blood composition, thoracic impedance, and hemodynamic variables. The heart rate is depressed even after HUT12, while arterial blood pressure and thoracic impedance exceed pre-stimulus levels after greater head-up tilt, indicating altered cardiovascular response after passive orthostasis.  相似文献   

18.
Postural orthostatic tachycardia syndrome (POTS) is characterized by excessive tachycardia during orthostasis. To test the hypothesis that patients with POTS have decreased sympathetic neural responses to baroreflex stimuli, we measured heart rate (HR) and muscle sympathetic nerve activity (MSNA) responses to three baroreflex stimuli including vasoactive drug boluses (modified Oxford technique), Valsalva maneuver, and head-up tilt (HUT) in POTS patients and healthy control subjects. The MSNA response to the Valsalva maneuver was significantly greater in the POTS group (controls, 26 +/- 7 vs. POTS, 48 +/- 6% of baseline MSNA/mmHg; P = 0.03). POTS patients also had an exaggerated MSNA response to 30 degrees HUT (controls, 123 +/- 24 vs. POTS, 208 +/- 30% of baseline MSNA; P = 0.03) and tended to have an exaggerated response to 45 degrees HUT (controls, 137 +/- 27 vs. POTS, 248 +/- 58% of baseline MSNA; P = 0.10). Sympathetic baroreflex sensitivity calculated during administration of the vasoactive drug boluses also tended to be greater in the POTS patients; however, this did not reach statistical significance (P = 0.15). Baseline MSNA values during supine rest were not different between the groups (controls, 23 +/- 4 vs. POTS, 16 +/- 5 bursts/100 heartbeats; P = 0.30); however, resting HR was significantly higher in the POTS group (controls, 58 +/- 3 vs. POTS, 82 +/- 4 beats/min; P = 0.0001). Our results suggest that POTS patients have exaggerated MSNA responses to baroreflex challenges compared with healthy control subjects, although resting supine MSNA values did not differ between the groups.  相似文献   

19.
Experiments were undertaken to determine the effects of hydration status on a) orthostatic responses, and on b), relative changes in intravascular volume and protein content, during 70 degrees head-up tilt (HUT). Six men underwent 45 min of HUT, preceded by 45 min supine, first dehydrated, and again 105 min later after rehydration with water. Heart rate was consistently lower following rehydration (p less than 0.01), while supine diastolic pressure was higher (p less than 0.02). Systolic pressure fell during dehydrated HUT (p less than 0.01), but not during rehydrated HUT. Postural haemoconcentration, which was reduced after rehydration (p less than 0.001), was accompanied by a decrease in intravascular albumin content (p less than 0.05). Two subjects experienced severe presyncopal symptoms during dehydrated HUT, but not during rehydrated HUT. Thus, it appears that rehydration after fluid restriction improves orthostatic tolerance. Furthermore, extravascular hydration status may be more important than intravascular hydration status in determining orthostatic tolerance.  相似文献   

20.
We tested the hypothesis that women have blunted sympathetic neural responses to orthostatic stress compared with men, which may be elicited under hypovolemic conditions. Muscle sympathetic nerve activity (MSNA) and hemodynamics were measured in eight healthy young women and seven men in supine position and during 6 min of 60 degrees head-up tilt (HUT) under normovolemic and hypovolemic conditions (randomly), with approximately 4-wk interval. Acute hypovolemia was produced by diuretic (furosemide) administration approximately 2 h before testing. Orthostatic tolerance was determined by progressive lower body negative pressure to presyncope. We found that furosemide produced an approximately 13% reduction in plasma volume, causing a similar increase in supine MSNA in men and women (mean +/- SD of 5 +/- 7 vs. 6 +/- 5 bursts/min; P = 0.895). MSNA increased during HUT and was greater in the hypovolemic than in the normovolemic condition (32 +/- 6 bursts/min in normovolemia vs. 44 +/- 15 bursts/min in hypovolemia in men, P = 0.055; 35 +/- 9 vs. 45 +/- 8 bursts/min in women, P < 0.001); these responses were not different between the genders (gender effect: P = 0.832 and 0.814 in normovolemia and hypovolemia, respectively). Total peripheral resistance increased proportionately with increases in MSNA during HUT; these responses were similar between the genders. However, systolic blood pressure was lower, whereas diastolic blood pressure was similar in women compared with men during HUT, which was associated with a smaller stroke volume or stroke index. Orthostatic tolerance was lower in women, especially under hypovolemic conditions. These results indicate that men and women have comparable sympathetic neural responses during orthostatic stress under normovolemic and hypovolemic conditions. The lower orthostatic tolerance in women is predominantly because of a smaller stroke volume, presumably due to less cardiac filling during orthostasis, especially under hypovolemic conditions, which may overwhelm the vasomotor reserve available for vasoconstriction or precipitate neurally mediated sympathetic withdrawal and syncope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号