首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Rhizobium sp. isolated from the root nodules of Clitoria ternatea L., a leguminous twiner, produced a high amount of IAA (16.4 μg/ml) from tryptophan in an unsupplemented basal medium. The production of IAA started simultaneously with the growth and had no different growth and production phase. The growth and production were parallel and increased up to 45–50 h. The IAA production by the Rhizobium sp. was increased by 520% when the medium was supplemented with fructose (1.5%), MnSO4 (1.0 μg/ml), riboflavin (0.10 μg/ml) and Triton X-100 (0.01%). The possible role of the rhizobial production of IAA on the rhizobia-legume symbiosis is discussed.  相似文献   

2.
Bradyrhizobium sp. isolated from the root nodules of a leguminous shrub, Crotalaria retusa L., produced a high amount of indole acetic acid (IAA) from tryptophan in the culture. The bacteria preferred D-isomer to the DL- or L-isomer of tryptophan for the IAA production. The IAA production could be increased up to 153.6% over control by supplementing the medium with arabinose (0.5%), ZnSO4(0.01 μg/ml), KNO3 (0.1%), thiamine-HCl (0.01 μg/ml) and EDTA (5 μg/ml). The possible role of the rhizobial production of IAA with the rhizobia-legume symbiosis is discussed.  相似文献   

3.
We evaluated the production of indole-3-acetic acid (IAA) by Azospirillum brasilense strains in vitro (cell culture supernatants) and in vivo (stems and roots of maize seedlings) to clarify the role of this phytohormone as a signaling and effector molecule in the symbiotic interaction between maize and A. brasilense. The three strains all showed IAA production when cultured in NFb medium supplemented with 100 μg/ml L-tryptophan. The level of IAA production was 41.5 μg/ml for Yu62, 12.9 μg/ml for Az39, and 0.15 μg/ml for ipdC-. The release of IAA into culture medium by the bacteria appeared to be the main activator of the early growth promotion observed in the inoculated maize seedlings. The application of supernatants with different IAA contents caused significant differences in the seedling growth. This observation provides the basis for novel technological tools for effective quality control procedures on inoculants. The approach described can be incorporated into different inoculation methods, including line sowing, downspout, and foliar techniques, and increase the sustainability of symbiotic plant-bacteria systems.  相似文献   

4.
The Rhizobium sp. When isolated form the root nodules of a leguminous climbing shrub Derris scandens produced a high amount of indole acetic acid (IAA) (135.2 μg/ml) from the tryptophan-supple-mented basal medium. Growth and IAA production started simultaneously, and the maximum amount of IAA was produced as a secondary metabolite in the stationary phase of growth. The IAA production by the Rhizobium sp. was increased by 503% when the medium was supplemented with mannitol (2%), KNO3 (0.2%), nicotinic acid (0.1 μg/ml) and MnSO4 (1 μg/ml) in addition to tryptophan (4 mg/ml)/ The possible role of the rhizobial production of IAA on the rhizobia-legume symbiosis is also discussed.  相似文献   

5.
The root nodules of Melilotus alba DESR ., a fodder legume, contained high amounts of IAA. A tryptophan pool present in the nodule might serve as a source of IAA production. Presence of IAA oxidase and peroxidase in the nodules indicated the metabolism of IAA, at least in part, in the nodules. The Rhizobium species isolated from the root nodules produced a high amount of IAA (190 μg/ml) from L-tryptophan supplemented basal medium. IAA production and microbial growth were coincident. The production of IAA by the Rhizobium sp. was increased by 315% when the medium was supplemented with lactose (1%), NiCl2 (10 μg/ml), cetyl pyridinium chloride (0.5 μg/ml) and glutamic acid (0.4%), in addition to L-tryptophan (3 mg/ml). The possible role of the rhizobial production of IAA on the rhizobia-legume symbiosis is discussed.  相似文献   

6.
A total of 40 endophytic bacterial isolates obtained from banana tree roots were characterized for their biotechnological potential for promoting banana tree growth. All isolates had at least one positive feature. Twenty isolates were likely diazotrophs and formed pellicles in nitrogen-free culture medium, and 67% of these isolates belonged to the genus Bacillus sp. The isolates EB-04, EB-169, EB-64, and EB-144 had N fixation abilities as measured by the Kjeldahl method and by an acetylene reduction activity assay. Among the 40 isolates, 37.5% were capable of solubilizing inorganic phosphate and the isolates EB-47 and EB-64 showed the highest solubilization capacity. The isolate EB-53 (Lysinibacillus sp.) had a high solubilization index, whereas 73% of the isolates had low solubilization indices. The synthesis of indole-3-acetic acid (IAA) in the presence of L-tryptophan was detected in 40% of the isolates. The isolate EB-40 (Bacillus sp.) produced the highest amount of IAA (47.88 μg/ml) in medium supplemented with L-tryptophan and was able to synthesize IAA in the absence of L-tryptophan. The isolates EB-126 (Bacillus subtilis) and EB-47 (Bacillus sp.) were able to simultaneously fix nitrogen, solubilize phosphate and produce IAA in vitro. The results of this study demonstrated that the isolates analyzed here had diverse abilities and all have the potential to be used as growth-promoting microbial inoculants for banana trees.  相似文献   

7.
Endophytic actinomycetes have shown unique plant growth promoting as well as antagonistic activity against fungal phytopathogens. In the present study forty-two endophytic actinomycetes recovered from medicinal plants were evaluated for their antagonistic potential and plant growth-promoting abilities. Twenty-two isolates which showed the inhibitory activity against at least one pathogen were subsequently tested for their plant-growth promoting activities and were compared genotypically using DNA based fingerprinting, including enterobacterial repetitive intergenic consensus (ERIC) and BOX repetitive elements. Genetic relatedness based on both ERIC and BOX-PCR generates specific patterns corresponding to particular genotypes. Exponentially grown antagonistic isolates were used to evaluate phosphate solubilization, siderophores, HCN, ammonia, chitinase, indole-3-acetic acid production, as well as antifungal activities. Out of 22 isolates, the amount of indole-3-acetic acid (IAA) ranging between 10–32 μg/ml was produced by 20 isolates and all isolates were positive for ammonia production ranging between 5.2 to 54 mg/ml. Among 22 isolates tested, the amount of hydroxamate-type siderophores were produced by 16 isolates ranging between 5.2 to 36.4 μg/ml, while catechols-type siderophores produced by 5 isolates ranging from 3.2 to 5.4 μg/ml. Fourteen isolates showed the solubilisation of inorganic phosphorous ranging from 3.2 to 32.6 mg/100ml. Chitinase and HCN production was shown by 19 and 15 different isolates, respectively. In addition, genes of indole acetic acid (iaaM) and chitinase (chiC) were successively amplified from 20 and 19 isolates respectively. The two potential strains Streptomyces sp. (BPSAC34) and Leifsonia xyli (BPSAC24) were tested in vivo and improved a range of growth parameters in chilli (Capsicum annuum L.) under greenhouse conditions. This study is the first published report that actinomycetes can be isolated as endophytes from within these plants and were shown to have antagonistic and plant growth promoting abilities. These results clearly suggest the possibility of using endophytic actinomycetes as bioinoculant for plant growth promotion, nutrient mobilization or as biocontrol agent against fungal phytopathogens for sustainable agriculture.  相似文献   

8.
From the root nodules of Alysicarpus vaginalis DC, the symbiont was isolated and identified as a Rhizobium sp. The bacteria produced a high amount (107 microg/ml) of indole acetic acid (IAA) in culture from tryptophan supplemented yeast extract mannitol medium. The isolate preferred L-isomer of tryptophan for maximum IAA production. The production was maximum when the bacteria reached its stationary phase of growth. The production of IAA could be increased up to 70% over yeast extract glucose medium by supplementing ZnSO4, 7H2O (0.5 microg/ml). L-asparagine (0.2%) and sodium dodecyl sulfate (1.0 microg/ml). The possible relationship between the rhizobial IAA production and legume-rhizobia symbiosis is discussed.  相似文献   

9.
Five heavy metals detected in distillery waste were lead (1.0–8.8 μg/ml), copper (1.7–15.7 μg/ml), zinc (3.1–11.8 μg/ml), iron (36.0–43.5 μg/ml), and manganese (3.0–5.1 μg/ml). Their toxicity to biomethanogenesis in a synthetic medium containing 1% sodium acetate, propionate, or butyrate was measured by batch fermentation, after cultivating the bacterial biomass semicontinuously. Lead, copper, and zinc in decreasing order were found to be toxic to biomethanogenesis. Lead at the concentration of 10 μg/ml completely stopped methane production. Iron did not produce any notable change in the process while manganese stimulated the rate of methane production. The toxicity of lead, copper, and zinc to methanogenic bacteria and methane production was dose-dependent but the growth of acetogenic bacteria was impaired at higher concentrations (2.5–10.0 μg/ml) of lead, copper, and zinc. Manganese stimulated the growth of only methanogenic bacteria, but not that of non-methanogenic bacteria or acetic acid production. The reduction in the synthesis of acetic acid via butyrate was more in the presence of these three metals than the synthesis of this acid via propionate.  相似文献   

10.
A biocontrol Streptomyces isolate (C) was tested for its plant growth promoting qualities under saline conditions. Exposure to elevated osmotic strengths up to 300 mM NaCl increased dry weight and cfu/ml significantly. The isolate C produced indolyl-3-acetic acid (IAA) into the medium in the amount of 2.4 μg/ml. The amount of auxin increased after adding salt and reached to 4.7 μg/ml in 300 mM NaCl. Biosynthesis of siderophore was detectable and increased in presence of NaCl. Streptomyces isolate C showed good solubilization of tricalcium phosphate in culture medium with 92 mg/l. Solubilization decreased in presence of NaCl. Soil treatment with isolate C increased the growth and development of wheat plant in normal and saline conditions. In this treatment there were significant increases in germination rate, percentage and uniformity, shoot length and dry weight compared to the control. Applying the bacterial inocula increased the concentration of N, P, Fe and Mn in wheat shoots grown in normal and saline soil, but had non-significant effect on other micro and macronutrients concentrations. Results of this study show that Streptomyces isolate C has potential to be utilized as biofertilizer in saline soils.  相似文献   

11.
Bacteria associated with the roots of greenhouse tropical orchids were shown to produce indole-3-acetic acid (IAA) and to excrete it into the culture liquid. The presence and activity of IAA were demonstrated colorimetrically, by thin-layer chromatography, and by biotests. The associated bacteria varied in their ability to excrete indole compounds (1-28 microg/ml nutrient broth). Addition of tryptophan to the growth medium enhanced phytohormone production. Upon addition of 200 microg/ml tryptophan, the bacteria isolated from Dendrobium moschatum roots (Sphingomonas sp. 18, Microbacterium sp. 23, Mycobacterium sp. 1, Bacillus sp. 3, and Rhizobium sp. 5) produced 50.2, 53.1, 92.9, 37.6, and 60.4 microg IAA/ml respectively, while the bacteria isolated from Acampe papillosa roots (Sphingomonas sp. 42, Rhodococcus sp. 37, Cellulomonas sp. 23, Pseudomonas sp. 24, and Micrococcus luteus) produced 69.4, 49.6, 53.9, 31.0, and 39.2 microg IAA/ml. Auxin production depended on cultivation conditions and on the growth phase of the bacterial cultures. Treatment of kidney bean cuttings with bacterial culture liquid promoted formation of a "root brush" with location height 7.4- to 13.4-fold greater than the one in the control samples. The ability of IAA-producing associated bacteria to act as stimulants of the host plant root development is discussed.  相似文献   

12.
Auxin production by bacteria associated with orchid roots   总被引:1,自引:0,他引:1  
Bacteria associated with the roots of greenhouse tropical orchids were shown to produce indole-3-acetic acid (IAA) and to excrete it into the culture liquid. The presence and activity of IAA were demonstrated colorimetrically, by thin-layer chromatography, and by biotests. The associated bacteria varied in their ability to excrete indole compounds (1–28 µg/ml nutrient broth). Addition of tryptophan to the growth medium enhanced phytohormone production. Upon addition of 200 µg/ml tryptophan, the bacteria isolated from Dendrobium moschatum roots (Sphingomonas sp. 18, Microbacterium sp. 23, Mycobacterium sp. 1, Bacillus sp. 3, and Rhizobium sp. 5) produced 50.2, 53.1, 92.9, 37.6, and 60.4 µg IAA/ml, respectively, while the bacteria isolated from Acampe papillosa roots (Sphingomonas sp. 42, Rhodococcus sp. 37, Cellulomonas sp. 23, Pseudomonas sp. 24, and Micrococcus luteus) produced 69.4, 49.6, 53.9, 31.0, and 39.2 µg IAA/ml. Auxin production depended on cultivation conditions and on the growth phase of the bacterial cultures. Treatment of kidney bean cuttings with bacterial culture liquid promoted formation of a root brush with a location height 7.4- to 13.4-fold greater than the one in the control samples. The ability of IAA-producing associated bacteria to act as stimulants of the host plant root development is discussed.Translated from Mikrobiologiya, Vol. 74, No. 1, 2005, pp. 55–62.Original Russian Text Copyright © 2005 by Tsavkelova, Cherdyntseva, Netrusov.  相似文献   

13.
Thirteen endophytic fungi were isolated from roots of three orchid species, Spathoglottis affinis, Paphiopedelum bellatulum and Phaius tankervilleae. Of these, three fungal isolates produced high levels of indole-3-acetic acid (IAA) in culture medium supplemented with 2 mg/ml of L-tryptophan, and were selected for further analysis. Morphological characteristics and a phylogenetic analysis based on an alignment of internal transcribed spacer regions of nuclear rDNA indicated that the fungal isolates CMU-SLP 007 and CMU-NUT 013 belonged to family Tulasnellaceae, genus Tulasnella (the anamorphic genus Epulorhiza) and the fungal isolate CMU-AU 006 belonged to Colletotrichum gloeosporioides. These three fungal isolates produced maximum levels of IAA when grown in a culture medium supplemented with 4 mg/ml of L-tryptophan (C. gloeosporioides CMU-AU 006, 243.56 μg/ml and Tulasnella sp. CMU-SLP 007, 155.63 μg/ml) and 6 mg/ml of L-tryptophan (Tulasnella sp. CMU-NUT 013, 104.03 μg/ml). Thin layer chromatography revealed that all fungal IAA presented the same Rf value as the standard IAA. The biological activity of fungal IAA showed that it increased the length of stem forming roots and the number of roots of kidney bean (Phaseolus vulgaris), promoted seed germination, the length of roots and root to shoot ratio of corn (Zea mays) and increased the elongation of rice (Oryza sativa) coleoptiles when compared with all controls (water and culture medium treatments). In addition, the results of all biological activities using fungal IAA indicated that the quality of fungal IAA were similar to standard IAA.  相似文献   

14.
The growth characteristics of an algo-bacterial community (Chlamydomonas reinhardtii and bacterial satellites) were studied, as well as the mechanism and patterns of bacterial effect on algae. Four strains of predominant bacteria were isolated and partially characterized. They were assigned to the following taxa: Rhodococcus terrea, Micrococcus roseus, and Bacillus spp. A pure culture of the alga under study was obtained by plating serial dilutions on agarized media. Within the algo-bacterial association, the alga had a higher growth rate (0.76 day?1) and yield (60 μg chlorophyll/ml culture) than in pure cultures (0.4 day?1 and 10 μg chlorophyll/ml culture, respectively). The viability of the algal cells within the association was retained longer than in pure culture. Among the isolated bacterial satellites, strains B1 and Y1, assigned to the species Rhodococcus terrae, had the highest stimulatory effect on algal growth. The culture liquid of bacteria incubated under the conditions not permitting growth stimulated algal growth; the culture liquid of actively growing bacteria had an opposite effect.  相似文献   

15.
Ceratophyllum demersum L. occurs in winter in the dormant form, in summer in the vegetative form. Factors that affect growth and dormancy in Ceratophyllum were studied. After several weeks of severe winter conditions the plants changed from dormant to quiescent state. Under natural conditions Ceratophyllum plants remain quiescent for several months, due to unfavourable growth conditions. Experimentally the dormant could also be broken by high and low temperature treatments (shocks), and most effectively by addition of GA, An attempt to induce dormancy in full grown plants by the addition of ABA under extreme summer or winter conditions proved unsuccessful. The IAA and ABA contents in the plants were measured during the year. In winter the concentration of ABA was high and that of IAA low, whereas in summer the IAA concentration increased and that of ABA was variable. IAA only slightly antagonized the inhibition of growth by ABA. Both the growth regulators were readily taken up from the culture medium, as was confirmed by a study with the radioactive labelled compounds. The uptake rate of IAA was significantly higher than that of ABA. being 762 μg and 3.26, μg per plant in 24 h, respectively. GA, was found to have a strong antagonistic effect on the ABA induced growth inhibition. The total GA activity in dormant and quiescent plants was similar, in full grown plants it was much lower. In the dormant state a large part of GA was in a bound form, whereas during quiescence relatively more GA occurred in a free state in the plants.  相似文献   

16.
The Rhizobium sp. isolated from healthy and mature root nodules of a leguminous tree, Dalbergia lanceolaria Linn. f., preferred mannitol and KNO3 for growth as carbon and nitrogen sources, respectively. The bacterium produced a high amount (22.3 microg/ml) of indole acetic acid (IAA) from L-tryptophan supplemented basal medium. Growth and IAA production started simultaneously. IAA production was maximum at 20 hr when the bacteria reached the stationary phase of growth. Cultural requirements were optimized for maximum growth and IAA production. The IAA production by the Rhizobium sp. was increased by 270.8% over control when the medium was supplemented with mannitol (1%,w/v), SDS (1 microg/ml), L-asparagine (0.02%,w/v) and biotin (1 microg/ml) in addition to L-tryptophan (2.5 mg/ml). The possible role of IAA production in the symbiosis is discussed.  相似文献   

17.
Thermomonospora chromogena was isolated from mushroom compost by spreading diluted suspensions on an agar medium containing kanamycin at 25 µg/ml. The antibiotic prevented the growth of other thermophilic actinomycetes on media incubated at 50°C and significantly reduced the growth of associated bacteria.  相似文献   

18.
A variety of isolation procedures were carried out to study the involvement of bacteria in the colonisation and biodeterioration of Spanish caves with paleolithic rock art (Altamira and Tito Bustillo). The applied techniques mainly aimed to isolate heterotrophic bacteria such as streptomycetes, nocardioform and coryneform actinomycetes, and other gram-positive and gram-negative bacteria. The results demonstrated that actinomycetes were the most abundant gram-positive bacteria in the caves. Actinomycetes revealed a great taxonomic diversity with the predominant isolates belonging to the genus Streptomyces. Members of the genera Nocardia, Rhodococcus, Nocardioides, Amycolatopsis, Saccharothrix, Brevibacterium, Microbacterium, and coccoid actinomycetes (family Micrococcaceae) were also found.  相似文献   

19.
《Plant science》1987,48(1):49-54
Embryogenesis in isolated microspores of wheat (Triticum aestivum L.) leading to plant regeneration has been established on modified liquid N6 medium (supplemented with 2,4-D, casein hydrolysate and Ficoll). Globular embryoids which were obtained after 6–8 weeks of culture of competent embryogenic microspores produced perfect embryoids when transferred to regeneration medium. Embryoids were differentiated to plants on other modified N6 agar medium (0.75% w/v agar, 20 g/l sucrose, 1 g/l myo-inositol, 8.8 μM 6-benzylaminopurine (BAP), 11.4 μM indoleacetic acid (IAA), 160 mg/l glutamine, 10 mg/l proline). Responses of microspores in regeneration and embryoid differentiation varied depending on the constituents of the media and genotypes used.  相似文献   

20.
Azospirillum brasilense, a nitrogen-fixing bacterium found in the rhizosphere of various grass species, was investigated to establish the effect on plant growth of growth substances produced by the bacteria. Thin-layer chromatography, high-pressure liquid chromatography, and bioassay were used to separate and identify plant growth substances produced by the bacteria in liquid culture. Indole acetic acid and indole lactic acid were produced by A. brasilense from tryptophan. Indole acetic acid production increased with increasing tryptophan concentration from 1 to 100 μg/ml. Indole acetic acid concentration also increased with the age of the culture until bacteria reached the stationary phase. Shaking favored the production of indole acetic acid, especially in a medium containing nitrogen. A small but biologically significant amount of gibberellin was detected in the culture medium. Also at least three cytokinin-like substances, equivalent to about 0.001 μg of kinetin per ml, were present. The morphology of pearl millet roots changed when plants in solution culture were inoculated. The number of lateral roots was increased, and all lateral roots were densely covered with root hairs. Experiments with pure plant hormones showed that gibberellin causes increased production of lateral roots. Cytokinin stimulated root hair formation, but reduced lateral root production and elongation of the main root. Combinations of indole acetic acid, gibberellin, and kinetin produced changes in root morphology of pearl millet similar to those produced by inoculation with A. brasilense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号