首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Individual levels of asymmetry in traits that display fluctuating asymmetry could be used as visual signals of phenotypic (and perhaps genotypic) quality, as asymmetry can often be negatively related to fitness parameters. There are some data to support this hypothesis but the experimental protocols employed have commonly resulted in asymmetries far larger than those observed in nature. To date, there has been little consideration of the ability of animals to accurately discriminate small asymmetries (of the magnitude observed in the wild) from perfect symmetry. This is key to assessing the plausibility of the asymmetry-signalling hypothesis. Here, I review the perceptual processes that may lead to the discrimination of asymmetry and discuss a number of ecologically relevant factors that may influence asymmetry signalling. These include: signal orientation, distance of trait elements from the axis of symmetry, trait complexity, trait contrast and colour, and the behaviour of both signaller and receiver. I also discuss the evolution of symmetry preferences and make suggestions as to where researchers should focus attention to examine the generality of asymmetry-signalling theory. In highly developmentally stable signalling systems the magnitude of asymmetry may be too small to be detected accurately and reliably, hence asymmetry signalling is unlikely to have evolved in these situations.  相似文献   

2.
In psychological studies of visual perception, symmetry is accepted as a potent cue in visual search for cryptic objects, yet its importance for non-human animals has been assumed rather than tested. Furthermore, while the salience of bilateral symmetry has been established in laboratory-based search tasks using human subjects, its role in more natural settings, closer to those for which such perceptual mechanisms evolved, has not, to our knowledge, been investigated previously. That said, the salience of symmetry in visual search has a plausible adaptive rationale, because biologically important objects, such as prey, predators or conspecifics, usually have a plane of symmetry that is not present in their surroundings. We tested the conspicuousness to avian predators of cryptic artificial, moth-like targets, with or without bilateral symmetry in background-matching coloration, against oak trees in the field. In two independent experiments, symmetrical targets were predated at a higher rate than otherwise identical asymmetrical targets. There was a small, but significant, fitness cost to symmetry in camouflage patterns. Given that birds are the most commonly invoked predators shaping the evolution of defensive coloration in insects, this raises the question of why bilateral asymmetry is not more common in cryptic insects.  相似文献   

3.
Female birds transfer antibodies to their offspring via the egg yolk, thus possibly providing passive immunity against infectious diseases to which hatchlings may be exposed, thereby affecting their fitness. It is nonetheless unclear whether the amount of maternal antibodies transmitted into egg yolks varies with female quality and egg laying order. In this paper, we investigated the transfer of maternal antibodies against type A influenza viruses (anti-AIV antibodies) by a long-lived colonial seabird, the yellow-legged gull (Larus michahellis), in relation to fluctuating asymmetry in females, i.e. the random deviation from perfect symmetry in bilaterally symmetric morphological and anatomical traits. In particular, we tested whether females with greater asymmetry transmitted fewer antibodies to their eggs, and whether within-clutch variation in yolk antibodies varied according to the maternal level of fluctuating asymmetry. We found that asymmetric females were in worse physical condition, produced fewer antibodies, and transmitted lower amounts of antibodies to their eggs. We also found that, within a given clutch, yolk antibody level decreased with egg laying order, but this laying order effect was more pronounced in clutches laid by the more asymmetric females. Overall, our results support the hypothesis that maternal quality interacts with egg laying order in determining the amount of maternal antibodies transmitted to the yolks. They also highlight the usefulness of fluctuating asymmetry as a sensitive indicator of female quality and immunocompetence in birds.  相似文献   

4.
Fluctuating asymmetry has received considerable recent attention in evolutionary biology as these small developmental asymmetries can be related to biological fitness and, hence, could be used as a visual cue (or signal) of quality among individuals. The ability of signal receivers to detect and respond to small asymmetries is a fundamental assumption of the symmetry-signalling hypothesis, but has not been experimentally investigated. In this study I have investigated the perceptual threshold to detect and respond to paired-bar length asymmetry in a common bird, the European starling Sturnus vulgaris, by means of operant-learning techniques. The threshold indicates how large the length asymmetry must be to be reliably discriminated from symmetry; birds could not detect an asymmetry of 1.25%. In nature, many asymmetries can be smaller than 1.25%, hence this initial study suggests that caution should be used when trying to invoke symmetry-signalling in natural populations.  相似文献   

5.
Can nonhuman animals attend to visual stimuli as whole, coherent objects? We investigated this question by adapting for use with pigeons a task in which human participants must report whether two visual attributes belong to the same object (one-object trial) or to different objects (two-object trial). We trained pigeons to discriminate a pair of differently colored shapes that had two targets either on a single object or on two different objects. Each target equally often appeared on the one-object and two-object stimuli; therefore, a specific target location could not serve as a discriminative cue. The pigeons learned to report whether the two target dots were located on a single object or on two different objects; follow-up tests demonstrated that this ability was not entirely based on memorization of the dot patterns and locations. Additional tests disclosed predominate stimulus control by the color, but not by the shape of the two objects. These findings suggest that human psychophysical methods are readily applicable to the study of object discrimination by nonhuman animals.  相似文献   

6.
Social animals learn to perceive their social environment, and their social skills and preferences are thought to emerge from greater exposure to and hence familiarity with some social signals rather than others. Familiarity appears to be tightly linked to multisensory integration. The ability to differentiate and categorize familiar and unfamiliar individuals and to build a multisensory representation of known individuals emerges from successive social interactions, in particular with adult, experienced models. In different species, adults have been shown to shape the social behavior of young by promoting selective attention to multisensory cues. The question of what representation of known conspecifics adult-deprived animals may build therefore arises. Here we show that starlings raised with no experience with adults fail to develop a multisensory representation of familiar and unfamiliar starlings. Electrophysiological recordings of neuronal activity throughout the primary auditory area of these birds, while they were exposed to audio-only or audiovisual familiar and unfamiliar cues, showed that visual stimuli did, as in wild-caught starlings, modulate auditory responses but that, unlike what was observed in wild-caught birds, this modulation was not influenced by familiarity. Thus, adult-deprived starlings seem to fail to discriminate between familiar and unfamiliar individuals. This suggests that adults may shape multisensory representation of known individuals in the brain, possibly by focusing the young's attention on relevant, multisensory cues. Multisensory stimulation by experienced, adult models may thus be ubiquitously important for the development of social skills (and of the neural properties underlying such skills) in a variety of species.  相似文献   

7.
How do Crab-eating Monkeys (Macaca fascicularis) Perceive and Classify Realistic Visual Patterns? The process by which crab-eating monkeys perceive and classify stimuli functionally relevant to their feeding behaviour was investigated. The visual patterns consisted of realistic drawings of insects and parts of plants.
  • 1 A new experimental approach was conceived: During the experimental sessions social interactions within the group were permitted while the learning behaviour of individual monkeys was analysed. The procedure consisted of the simultaneous discrimination tasks of four visual patterns and motoric responses (continuous reinforcement).
  • 2 To prepare the functional analysis of their ability to classify environmental objects, tests were conducted in which the animals successively learned to answer visual stimuli with motoric responses. The monkeys learned not only to discriminate geometrical patterns from contrast and form cues but also to build specific associations between visual patterns and special motoric coordinations. When shown similar geometrical stimuli, the animals were able to generalise their recognition of invariant features (‘angularity’).
  • 3 The monkeys learned very quickly to discriminate insects from parts of plants. This discrimination ability could be transferred immediately to other insect pictures. This learning process was linked with a memorized classification system of natural objects induced by environmental experience. A preference test for single cues resulted in a graded estimation of particular pattern components. Numerous variations of the insect pattern were shown to the animals. From the different choice frequency for single cues, a gradual continuum of cue relevance could be established (e. g. contrast and form were the most relevant cues). A direct dependence between the completeness of the insect ‘gestalt’ and its choice frequency was shown.
  相似文献   

8.
In some animals, males evolve exaggerated traits (e.g. the peacock''s conspicuous tail and display) because of female preference. Recently Enquist and Arak presented a simple neural network model for a visual system in female birds that acquires the ability to discriminate males of the correct species from those of the wrong species by training. They reported that the trained networks were attracted by ''supernormal stimuli'' where there was a greater response to an exaggerated form than to the images used as the correct species for training. They suggested that signal recognition mechanisms have an inevitable bias in response, which in turn causes selection on signal form. We here examine the Enquist and Arak model in detail. A three-layered neural network is used to represent the female''s mate preference, which consists of 6 by 6 receptor cells arranged on a regular square lattice, ten hidden cells, and one output cell. Connection weights of the network were modified by a genetic algorithm, in which the female''s fitness increases if she accepts a conspecific male but decreases if she accepts a male of a different species or a random image. We found that: (i) after the training period the evolved network was able to discriminate male images. Female preference evolves to favour unfamiliar patterns if they are similar to the images of the correct species (generalization); (ii) the speed and the final degree of learning depended critically on the choice of the random images that are rejected. The learning was much less successful if the random images were changed every generation than if 20 random images were fixed throughout the training period; (iii) the male of the same species used for training achieved the highest probability of being accepted by the trained network. Hence, contrary to Enquist and Arak, the evolved network was not attracted by supernormal stimuli.  相似文献   

9.
This study explores the evolutionary-based hypothesis that facial attractiveness (a guiding force in mate selection) is a cue for physical fitness (presumably an important contributor to mate value in ancestral times). Since fluctuating asymmetry, a measure of developmental stability, is known to be a valid cue for fitness in several biological domains, we scrutinized facial asymmetry as a potential mediator between attractiveness and fitness. In our sample of young women, facial beauty indeed indicated physical fitness. The relationships that pertained to asymmetry were in the expected direction. However, a closer analysis revealed that facial asymmetry did not mediate the relationship between fitness and attractiveness. Unexpected problems regarding the measurement of facial asymmetry are discussed.  相似文献   

10.
Characters in animals used in signalling and subjected to strong directional selection often demonstrate (i) an elevated level of fluctuating asymmetry (small random deviations from bilateral symmetry) and (ii) a negative relationship between the degree of individual fluctuating asymmetry and the size of a given character. We tested these two predictions in plants since flowers are subjected to strong directional selection and are involved in signalling to pollinators, whereas leaves are supposed not to be directly involved in signalling. The overall level of fluctuating asymmetry in a number of plant species with bilaterally or radially symmetric flowers was not generally higher in floral traits than in leaves. The level of fluctuating asymmetry in plants was sometimes significantly consistent within individuals. The absolute degree of individual fluctuating asymmetry in floral traits was generally negatively related to the size of the trait, while there was a positive relationship for leaves. The degree of individual fluctuating asymmetry in floral traits was marginally negatively related to the degree of individual fluctuating asymmetry in leaf traits. These patterns of fluctuating asymmetry in plants suggest that (i) the degree of asymmetry in flowers signals different aspects of quality than does the degree of asymmetry in leaves, and that (ii) fluctuating asymmetry in flowers often reflects the phenotypic quality of individual plants.  相似文献   

11.
Pigeons trained to discriminate between either two differentodors or two different colored lights acquired their discriminationsat the same rate. When the discrimination problems were reversedwithin a modality, however, the birds using visual cues acquirednew discriminations more rapidly than in original learning (positivetransfer), whereas the birds using olfactory cues acquired thediscrimination reversal less rapidly. On subsequent reversals,pigeons in the visual task condition developed a successivediscrimination reversal set with repeated reversals of the stimuli,while those in the olfactory condition did not. In a secondexperiment designed to assess the acquisition of redundant cues,birds received additional training with visual and olfactorycues in compound as discriminative stimuli, and were then testedwith only visual or olfactory cues. Birds previously trainedwith odor attended to visual cues in the compound, whereas birdspreviously trained to discriminate between lights did not attendto odor cues until they were presented alone. These resultsdemonstrate that the selection of stimuli may play a crucialrole in the performance of successive discrimination reversalsand suggest that, in contrast to rats, birds selectively attendto visual over olfactory cues in discrimination learning.  相似文献   

12.
Contrast sensitivity (CS) is the ability of the observer to discriminate between adjacent stimuli on the basis of their differences in relative luminosity (contrast) rather than their absolute luminances. In previous studies, using a narrow range of species, birds have been reported to have low contrast detection thresholds relative to mammals and fishes. This was an unexpected finding because birds had been traditionally reported to have excellent visual acuity and color vision. This study reports CS in six species of birds that represent a range of visual adaptations to varying environments. The species studied were American kestrels (Falco sparverius), barn owls (Tyto alba), Japanese quail (Coturnix coturnix japonica), white Carneaux pigeons (Columba livia), starlings (Sturnus vulgaris), and red-bellied woodpeckers (Melanerpes carolinus). Contrast sensitivity functions (CSFs) were obtained from these birds using the pattern electroretinogram and compared with CSFs from the literature when possible. All of these species exhibited low CS relative to humans and most mammals, which suggests that low CS is a general characteristic of birds. Their low maximum CS may represent a trade-off of contrast detection for some other ecologically vital capacity such as UV detection or other aspects of their unique color vision.  相似文献   

13.
Previous experiments on visual feature discrimination abilities have consistently shown a right-eye system lateralization in pigeons, Columba livia, and young domestic chickens, Gallus gallus domesticus, both nonpasserine species. Recently, however, it has been shown that photoreceptor distribution in the left and right retinas are asymmetrical in the European starling, Sturnus vulgaris, a passerine species. Single cone receptors are significantly more abundant in the left retina, which suggests that starlings should perform visual discrimination tasks more proficiently with the left eye, in contrast to previous findings with nonpasserines. We tested this hypothesis using the technique of monocular occlusion. In the first experiment, starlings were tested on a simultaneous visual discrimination task in three conditions: binocular (both eyes), left monocular (left eye only) and right monocular (right eye only). Subjects in the binocular and left-monocular conditions achieved significantly higher performance scores on the discrimination task than birds in the right-monocular condition. A second experiment found similar results, with birds in the left-monocular condition learning the discrimination task more than twice as quickly as those in the right-monocular condition. Subsequent tests with the alternative eye for both groups indicated no interocular transfer. These findings suggest that visual discriminative abilities in starlings are asymmetrical, and that they are lateralized in the opposite eye system than has been reported for all other species tested to date.  相似文献   

14.
The patterns of variation in fluctuating asymmetry were studied in four morphological characters of the barn swallow Hirundo rustica. The level of absolute and relative asymmetry was larger in the secondary sexual character “outer tail length” than in three nonsexual morphological traits (wing, central tail, and tarsus length). The extent of individual asymmetry in outer tail length was negatively correlated with tail-ornament size, whereas the relationship between asymmetry of all other morphological characters and their size was flat or U-shaped. Asymmetry in outer tail length was unrelated to asymmetry in other morphological characters, whereas asymmetries in the length of wing, central tail, and tarsus were positively correlated. Male bam swallows exhibited larger asymmetry in outer tail length than females. Asymmetry of most morphological traits exhibited intermediate repeatabilities between years, with the exception of male and female outer tail length, which were highly repeatable. Tail asymmetry of offspring weakly, though significantly, resembled that of their parents. Asymmetry in wing and outer tail length was also significantly related to several fitness components. Male barn swallows that acquired a mate were less asymmetric in wing and outer tail length than unmated males. Females with more asymmetrical tails laid eggs significantly later. Annual reproductive success was unrelated to fluctuating asymmetry. Male barn swallows that survived were less asymmetric in wing and outer tail length than nonsurvivors, whereas female survivors were less asymmetric in outer tail length than nonsurvivors. These results suggest that levels of fluctuating asymmetry in barn swallows are associated with differences in fitness.  相似文献   

15.
Bilateral symmetry is visually salient to diverse animals including birds, but whereas experimental studies typically use bilaterally symmetrical two-dimensional patterns that are viewed approximately fronto-parallel; in nature, animals observe three-dimensional objects from all angles. Many animals and plant structures have a plane of bilateral symmetry. Here, we first (experiment I) give evidence that young poultry chicks readily generalize bilateral symmetry as a feature of two-dimensional patterns in fronto-parallel view. We then test the ability of chicks to recognize symmetry in images that would be produced by the transformed view produced by a 40° horizontal combined with a 20° vertical rotation of a pattern on a spherical surface. Experiment II gives evidence that chicks trained to distinguish symmetrical from asymmetrical patterns treat rotated views of symmetrical 'objects' as symmetrical. Experiment III gives evidence that chicks trained to discriminate rotated views of symmetrical 'objects' from asymmetrical patterns generalize to novel symmetrical objects either in fronto-parallel or rotated view. These findings emphasize the importance of bilateral symmetry for three-dimensional object recognition and raise questions about the underlying mechanisms of symmetry perception.  相似文献   

16.
Fluctuating asymmetry and sexual selection   总被引:7,自引:0,他引:7  
Fluctuating asymmetry occurs when an individual is unable to undergo identical development on both sides of a bilaterally symmetrical trait. Fluctuating asymmetry measures the sensitivity of development to a wide array of genetic and environmental stresses. We propose that fluctuating asymmetry is used in many signalling contexts for assessment of an individual's ability to cope with its environment. We hypothesize that fluctuating asymmetry is used in sexual selection, both in fighting and mate choice, and in competition for access to resources. Evidence is reviewed showing that the patterns of fluctuating asymmetry in secondary sexual characters differ from those seen in other morphological traits. Secondary sexual characters show much higher levels of fluctuating asymmetry. Also, there is often a negative relationship between fluctuating asymmetry and the absolute size of ornaments, whereas the relationship is typically U-shaped in other morphological traits. The common negative relationship between fluctuating asymmetry and ornament size suggests that many ornaments reliably reflect individual quality.  相似文献   

17.
Invariant representations of stimulus features are thought to play an important role in producing stable percepts of objects. In the present study, we assess the invariance of neural representations of tactile motion direction with respect to other stimulus properties. To this end, we record the responses evoked in individual neurons in somatosensory cortex of primates, including areas 3b, 1, and 2, by three types of motion stimuli, namely scanned bars and dot patterns, and random dot displays, presented to the fingertips of macaque monkeys. We identify a population of neurons in area 1 that is highly sensitive to the direction of stimulus motion and whose motion signals are invariant across stimulus types and conditions. The motion signals conveyed by individual neurons in area 1 can account for the ability of human observers to discriminate the direction of motion of these stimuli, as measured in paired psychophysical experiments. We conclude that area 1 contains a robust representation of motion and discuss similarities in the neural mechanisms of visual and tactile motion processing.  相似文献   

18.
Artificial grammar learning (AGL) provides a useful tool for exploring rule learning strategies linked to general purpose pattern perception. To be able to directly compare performance of humans with other species with different memory capacities, we developed an AGL task in the visual domain. Presenting entire visual patterns simultaneously instead of sequentially minimizes the amount of required working memory. This approach allowed us to evaluate performance levels of two bird species, kea (Nestor notabilis) and pigeons (Columba livia), in direct comparison to human participants. After being trained to discriminate between two types of visual patterns generated by rules at different levels of computational complexity and presented on a computer screen, birds and humans received further training with a series of novel stimuli that followed the same rules, but differed in various visual features from the training stimuli. Most avian and all human subjects continued to perform well above chance during this initial generalization phase, suggesting that they were able to generalize learned rules to novel stimuli. However, detailed testing with stimuli that violated the intended rules regarding the exact number of stimulus elements indicates that neither bird species was able to successfully acquire the intended pattern rule. Our data suggest that, in contrast to humans, these birds were unable to master a simple rule above the finite-state level, even with simultaneous item presentation and despite intensive training.  相似文献   

19.
In order to study the ability of fish to perceive and distinguish textures visually, bluegill sunfish (Lepomis macrochirus) were trained to discriminate between pairs of artificial texture patterns. Random dot patterns with different statistical dot distributions were presented to the fish as artificial texture patterns. The results indicate that bluegills have the ability to discriminate many pairs of patterns with different statistical features of dot distributions which have different appearance in texture. This suggests that texture could be one of the important visual features bluegill sunfish recognize and utilize.  相似文献   

20.
Joung W  Latimer C 《Spatial Vision》2003,16(2):155-182
This paper follows from studies by Joung, van der Zwan and Latimer (2000) in which symmetrical dot patterns with one axis of symmetry were used to produce tilt aftereffects (TAEs). The present paper investigates TAE functions produced by symmetrical dot patterns with multiple axes of symmetry. In Experiments 1 and 2, TAE functions produced by dot patterns with two axes of symmetry were compared with TAE functions produced by line stimuli arranged in the same orientation and location as the axes of symmetry in the dot patterns. Similar functions were found. In Experiments 3 and 4, functions produced by dot patterns with four axes of symmetry were compared with functions produced by line stimuli arranged in the same orientation and location as the four axes of symmetry. Again, similar functions were found. These experiments demonstrate that line stimuli and dot stimuli produce similar TAE functions. The implications of these results are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号