首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The foraging behaviour of social insects is highly flexible because it depends on the interplay between individual and collective decisions. In ants that use foraging trails, high ant flow may entail traffic problems if different workers vary widely in their walking speed. Slow ants carrying extra‐large loads in the leaf‐cutting ant Atta cephalotes L. (Hymenoptera: Formicidae) are characterized as ‘highly‐laden’ ants, and their effect on delaying other laden ants is analyzed. Highly‐laden ants carry loads that are 100% larger and show a 50% greater load‐carrying capacity (i.e. load size/body size) than ‘ordinary‐laden’ ants. Field manipulations reveal that these slow ants carrying extra‐large loads can reduce the walking speed of the laden ants behind them by up to 50%. Moreover, the percentage of highly‐laden ants decreases at high ant flow. Because the delaying effect of highly‐laden ants on nest‐mates is enhanced at high traffic levels, these results suggest that load size might be adjusted to reduce the negative effect on the rate of foraging input to the colony. Several causes have been proposed to explain why leaf‐cutting ants cut and carry leaf fragments of sizes below their individual capacities. The avoidance of delay in laden nest‐mates is suggested as another novel factor related to traffic flow that also might affect load size selection The results of the presennt study illustrate how leaf‐cutting ants are able to reduce their individual carrying performance to maximize the overall colony performance.  相似文献   

2.
Fallen branches, logs, and exposed roots (fallen branches hereafter) commonly form part of the trunk trail system of leaf-cutting ants that inhabit the tropical rain forest. We studied the role of fallen branches on resource discovering and on leaf transport rates in Atta cephalotes . Fallen branches were common components of the A. cephalotes trail system; they were present in all the nests, and in the majority of the trunk trails examined (13/16). A field experiment revealed that, at the beginning of their foraging activity, ants discovered food sources located at the end of fallen branches earlier than those located on the leaf litter. Additionally, laden ants walked faster along a fallen branch than along soil tracks of the trunk trails. This increment in speed was higher in slow-walking ants ( e.g. , with larger loads) than in fast-walking ants ( e.g. , with smaller loads). These results suggest that the presence of fallen branches may direct the searching effort of leaf-cutters and increase the foraging speed of laden ants when these structures are part of the trunk trail system. The advantages of using fallen branches as part of a trail system, and their potential consequences in the spatial foraging pattern of leaf-cutting ants, are discussed.  相似文献   

3.
We used a simple engineering principle, which suggests that the width of a road needed for a smooth traffic flow is proportional to the peak traffic volume (“engineering hypothesis”), to analyze the adaptive significance of trail width at branching points in the leaf-cutting ant Atta cephalotes. Since the flow of outgoing ants splits at trail bifurcations and merges when ants return to the nest through the same paths, the sum of branch widths should equal the width of the trail section upstream of the bifurcation. We measured the width of branches and their preceding trail section and also performed field measurements and manipulations to analyze ant flow, number of collisions, and ant speed in different trail sectors. Contrary to the prediction of the “engineering hypothesis”, the sum of branch widths was larger than the width of the trail immediately before the bifurcation. Our data contradict the “trail addition hypothesis” and support the “border effect hypothesis” to explain this pattern. First, the width of the widest branch was smaller than the width of the trail upstream of the bifurcation, an unexpected result if one branch is merely the continuation of the basal trail. Second, ants collided with obstacles more often in the margin than in the central portion of the trail, relocated ants from central to margin trail sectors reduced their speed, and ant flow was higher in the central sections of the trail. Since the delaying effect of trail margins increases as the trail width decreases, ants may build branches wider than expected to reduce the border effect. The delaying effect of trail margins should be included in the analysis of costs and benefits to fully understand the adaptive value of the design of ant trail networks.  相似文献   

4.
Leaf-cutting ants (Atta spp.) create physical pathways to support the transport of resources on which colony growth and reproduction depend. We determined the scaling relationship between the rate of resource acquisition and the size of the trail system and foraging workforce for 18 colonies of Atta colombica and Atta cephalotes. We examined conventional power-law scaling patterns, but did so in a multivariate analysis that reveals the simultaneous effects of forager number, trail length and trail width. Foraging rate (number of resource-laden ants returning to the nest per unit time) scaled at the 0.93 power of worker numbers, the -1.02 power of total trail length and the 0.65 power of trail width. These scaling exponents indicate that individual performance declines only slightly as more foragers are recruited to the workforce, but that trail length imposes a severe penalty on the foraging rate. A model of mass traffic flow predicts the allometric patterns for workforce and trail length, although the effect of trail width is unexpected and points to the importance of the little-known mechanisms that regulate a colony's investment in trail clearance. These results provide a point of comparison for the role that resource flows may play in allometric scaling patterns in other transport-dependent entities, such as human cities.  相似文献   

5.
Many animals, including humans, organize their foraging activity along well-defined trails. Because trails are cleared of obstacles, they minimize energy expenditure and allow fast travel. In social insects such as ants, trails might also promote social contacts and allow the exchange of information between workers about the characteristics of the food. When the trail traffic is heavy, however, traffic congestion occurs and the benefits of increased social contacts for the colony can be offset by a decrease of the locomotory rate of individuals. Using a small laboratory colony of the leaf-cutting ant Atta colombica cutting a mix of leaves and Parafilm, we compared how foraging changed when the width of the bridge between the nest and their foraging area changed. We found that the rate of ants crossing a 5 cm wide bridge was more than twice as great as the rate crossing a 0.5 cm bridge, but the rate of foragers returning with loads was less than half as great. Thus, with the wide bridge, the ants had about six times lower efficiency (loads returned per forager crossing the bridge). We conclude that crowding actually increased foraging efficiency, possibly because of increased communication between laden foragers returning to the nest and out-going ants. Received 15 December 2006; revised 16 February 2007; accepted 19 February 2007.  相似文献   

6.
Ants are ordinarily faced with a succession of bifurcations along their foraging networks. Given that there is no directionality in pheromone trails, each bifurcation is potentially an opportunity for error in the trajectory of laden workers to the nest, which could entail considerable inefficiencies in the transportation of food to the colony. Leaf-cutting ants (Atta and Acromyrmex) commonly show intense traffic and complex foraging trail systems, which make them ideal organisms to study worker behavior in trail bifurcations. The behavior of leaf-cutting ants of the genus Acromyrmex in trail bifurcations is still largely unexplored. Thus, this study aimed to assess the behavior of Acromyrmex crassispinus workers on trail bifurcations and to investigate whether differences in ant flow on foraging trails influence the error rate of nestbound laden workers at trail bifurcation. There was a negative relationship between ant flow and error rate of nestbound laden workers. Most workers walked in the central part of the foraging trails but occupied a broader area of the foraging trail when the ant flow was high. The results of this study provide valuable insight into the organization of traffic flow in A. crassispinus and its impacts on the foraging strategy of the species.  相似文献   

7.
Summary. Trail traffic of the leaf-cutting ant Atta cephalotes involves intermingled flows of outbound and returning foragers. Head-on encounters between workers from the opposite flows are a common occurrence in this traffic. Each encounter momentarily delays the two ants involved, and these small delays might pose a significant cost to the colony's foraging performance when summed over thousands of workers along many metres of trail. We videotaped outbound and returning foragers over a 1 m course, and measured the encounter rates they experienced and their velocity. Our analysis indicates that locomotion speed is diminished by increasing encounter rate, but that the effect is small relative to the effects of ant body size and load mass. Head-on encounters allow exchange of information and leaf fragments between workers, and we consider how the benefits of such encounters may make this form of traffic organization superior to segregated outbound and returning lanes, despite the measurable c ost of encounters in mixed traffic.  相似文献   

8.
Ants build a trail that leads to a new location when they move their colony. The trail’s traffic flows smoothly, regardless of the density on the trail. To the best of our knowledge, such a phenomenon has been reported only for ant species. The trail’s capacity is known as trail traffic flow. In this paper, we propose a probabilistic model of trail traffic flow, which overcomes some inadequacies of the kinetic model previously proposed in the literature. Our model answers a question unsolved by the previous model, namely, how many worker ants form such a density-independent trail. We focus on ants’ responses to mutual contacts that involve individuals in trail formation. We propose a model in which contact frequency predicts the number of worker ants that form a trail. We verify that our model’s estimates match the empirical data that ant experts reported in the literature. In modeling and evaluation, we discuss an intelligent ant species, the house-hunting ant Temnothorax albipennis, which is popular among the ant experts.  相似文献   

9.
Abstract. 1. The leaf-cutting ant Atta cephalotes (L.) in a Costa Rican tropical moist forest showed diel changes in foraging activity. In most colonies studied, foraging was primarily nocturnal, although in a few colonies it was primarily diurnal.
2. In all colonies studied, mean forager mass was larger at night than during the day.
3. At night, most foragers carried freshly cut leaf fragments, whereas during the day a large proportion carried dried fragments and other vegetable matter collected from along their trail.
4. Along one trail, where foraging was primarily nocturnal, the match between ant mass and load mass was compared for laden ants at night and during the day. Laden ants at night were larger, carried relatively heavier loads, and showed a higher degree of matching between their mass and load mass than those foraging during the day.
5. A comparison of load masses of ants coming down a local tree and of ants picking up marked fragments from along their trail suggested that the diel difference in load mass and in the match between ant mass and load mass were related to the greater proportion of ants carrying freshly cut leaf fragments at night. Fresh fragments weighed more due to higher water content, and the match between ant mass and load mass was greater for ants cutting fresh fragments than for ants picking up abandoned fragments from along their trail.
6. Possible explanations for the diel changes in forager size and activity are discussed.  相似文献   

10.
Burd M 《Animal behaviour》2000,60(6):781-788
Two mechanisms have been proposed to explain how colony-level foraging performance of leaf-cutting ants can be maximized when workers harvest leaf fragments of a size that does not maximize their individual performance. Each mechanism predicts that ants will adjust the size of leaf fragments between starting a foraging bout and establishing full traffic between the nest and foraging site, but the two models predict shifts in opposite directions. I examined fragment sizes at the start of daily foraging in five field colonies of Atta cephalotes in Costa Rica and detected an obvious shift in only one case. More shifts were detected when the small and large ends of the worker body size range were considered separately, but the direction was inconsistent among colonies. I also examined the role of returning laden workers in recruitment of nestmates by intercepting all laden workers for the first 2 h of foraging, and measuring the effect on the arrival of recruits at the foraging site. In two cases, the flow of recruits was not diminished by the interception of returning workers. The results suggest that neither mechanism correctly and consistently accounts for load size selection by leaf-cutting ants. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

11.
Leaf-cutting ants of the genus Atta have highly size-polymorphic workers, and size is related to division of labor. We studied trail-following behavior of different-sized workers in a laboratory colony of Atta vollenweideri. For small and large workers, we measured responsiveness and preference to artificial conspecific and heterospecific pheromone trails made from poison gland extracts of A. vollenweideri and A. sexdens. Responsiveness was measured as the probability of trail-following, and preference was measured by testing the discrimination between one conspecific and one heterospecific trail. Minute amounts of the releaser component methyl-4-methylpyrrole-2-carboxylate (0.4pg/1m), present in both, conspecific and heterospecific trails, suffice to elicit trail-following behavior. Workers followed heterospecific trails, and these trails (after normalizing their concentration) were as effective as conspecific trails. Small workers were less likely to follow a trail of a given concentration than large workers. In the discrimination test, small workers preferred the conspecific trail over the heterospecific trail, whereas large workers showed no significant preference. It is suggested that large workers primarily respond to the releaser component present in both trails, whereas small workers focus more on the conspecific traits provided by the blend of components contained in the trail pheromone.  相似文献   

12.
Leaf cutting ants are dominant herbivores and influential ecosystem engineers in the Neotropics. It has been suggested that habitat disturbances alter the architecture of foraging trail systems for colonies in their vicinity; however, the evidence remains scarce. In this study we investigated the effect of unpaved roads dissecting tropical lowland forest habitat on the structure of leafcutter foraging trail systems and foraging effort. We mapped trail systems for 16 mature Atta colombica colonies located at different distances from unpaved roads. Our results suggest exploitation of unpaved roads by leafcutters provides favorable foraging conditions, causing significant differences in foraging trail structure.  相似文献   

13.
We investigate the organization of traffic flow on preexisting uni- and bidirectional ant trails. Our investigations comprise a theoretical as well as an empirical part. We propose minimal models of uni- and bi-directional traffic flow implemented as cellular automata. Using these models, the spatio-temporal organization of ants on the trail is studied. Based on this, some unusual flow characteristics which differ from those known from other traffic systems, like vehicular traffic or pedestrians dynamics, are found. The theoretical investigations are supplemented by an empirical study of bidirectional traffic on a trail of Leptogenys processionalis. Finally, we discuss some plausible implications of our observations from the perspective of flow optimization.  相似文献   

14.
The fragmentation and transformation of land cover modify the microclimate of ecosystems. These changes have the potential to modify the foraging activity of animals, but few studies have examined this topic. In this study, we investigated whether and how the foraging activity of the leaf-cutter ant Atta cephalotes is modified by microclimatic variations due to land cover change from forest to pasture. We characterized the microclimate of each habitat and identified alterations in foraging behavior in response to relative humidity (RH), air temperature, and surface temperature along ant foraging trails by synchronously assessing foraging activity (number of ants per 5 min including incoming laden and unladen and outgoing ants) and microclimatic variables (air temperature, RH, and maximum and minimum surface temperature along the foraging trail). There were climatic differences between habitats during the day but not throughout the night, and A. cephalotes was found to have a high tolerance for foraging under severe microclimatic changes. This species can forage at surface temperatures between 17 and 45°C, air temperatures between 20 and 36°C, and an RH between 40% and 100%. We found a positive effect of temperature on the foraging activity of A. cephalotes in the pasture, where the species displayed thermophilic behavior and the ability to forage across a wide range of temperatures and RH. These results provide a mechanism to partially explain why A. cephalotes becomes highly prolific as anthropogenic disturbances increase and why it has turned into a key player of human-modified neotropical landscapes.  相似文献   

15.
In the present study, we investigated whether single-file traffic of the ant Camponotus japonicus would exhibit a transition to traffic-jamming with increasing density under stress conditions. Previous work indicated that this transition did not occur in non-stressed ants, in contrast to data from pedestrians and vehicular traffic. Citronella oil was used to elicit ant movement from one end of a unidirectional passage to the other. The movements were recorded with a video camera, and the speed and distance travelled were extracted using image processing. We provided fundamental diagrams of ant traffic for small and large ants under stress conditions. Examination of the relationship between flow rate and density revealed no evidence of jamming, different from pedestrian and vehicular traffic. Concerning the speed-density relationship, surprisingly, in contrast with human fundamental diagrams (vehicular and pedestrian), we found that speed seemed to be constant with density within the experimental error. This study provided novel experimental data on ant traffic and might inform future studies of collective behavior of social insects and traffic systems.  相似文献   

16.
Summary A month-long study was conducted on the comparative foraging behavior of 20 colonies of the leafcutting ant, Atta cephalotes L. in Santa Rosa National Park, Guanacaste Province, Costa Rica. The study was conducted during the middle of the wet season, when trees had mature foliage and the ants were maximally selective among species of potential host plants. The colonies always gathered leaves from more than a single tree species but on average one species constituted almost half the diet with the remaining species being of geometrically decreasing importance. Colonies exhibited greater diversity in their choice of leaves and lower constancy of foraging when the average quality of resource trees was lower, as predicted by elementary optimal foraging theory. Furthermore, the ants were more selective of the species they attacked at greater distances from the nest. However, the ants sometimes did not attack apparently palatable species, and often did not attack nearby individuals of species they were exploiting at greater distances.A classical explanation for why leafcutting ants exploit distant host trees when apparently equally good trees are nearer, is that the ants are pursuing a strategy of conserving resources to avoid long-term overgrazing pressure on nearby trees. We prefer a simpler hypothesis: (1) Trees of exploited species exhibit individual variation in the acceptability of their leaves to the ants. (2) The abundance of a species will generally increase with area and radial distance from the nest, so the probability that at least one tree of the species will be acceptable to the ants also increases with distance. (3) The ants forage using a system of trunk-trails cleared of leaf litter, which significantly reduces their travel time to previously discovered, high-quality resource trees (by a factor of 4- to 10-fold). (4) Foragers are unware of the total pool of resources available to the colony. Therefore once scouts have chanced upon a tree which is acceptable, the colony will concentrate on harvesting from that tree rather than searching for additional sources of leaves distant from the established trail.  相似文献   

17.
1. Ants using trails to forage have to select between two alternative routes at bifurcations, using two, potentially conflicting, sources of information to make their decision: individual experience to return to a previous successful foraging site (i.e. fidelity) and ant traffic. In the field, we investigated which of these two types of information individuals of the leaf‐cutting ant Acromyrmex lobicornis Emery use to decide which foraging route to take. 2. We measured the proportion of foraging ants returning to each trail of bifurcations the following day, and for 4–7 consecutive days. We then experimentally increased ant traffic on one trail of the bifurcation by adding additional food sources to examine the effect of increased ant traffic on the decision that ants make. 3. Binomial tests showed that for 62% of the trails, ant fidelity was relatively more important than ant traffic in deciding which bifurcation to follow, suggesting the importance of previous experience. 4. When information conflict was generated by experimentally increasing ant traffic along the trail with less foraging activity, most ants relied on ant traffic to decide. However, in 33% of these bifurcations, ants were still faithful to their trail. Thus, there is some degree of flexibility in the decisions that A. lobicornis make to access food resources. 5. This flexible fidelity results in individual variation in the response of workers to different levels of ant traffic, and allows the colony to simultaneously exploit both established and recently discovered food patches, aiding efficient food gathering.  相似文献   

18.
Motivated by recent experimental work of Burd et al., we propose a model of bi-directional ant traffic on pre-existing ant trails. It captures in a simple way some of the generic collective features of movements of real ants on a trail. Analysing this model, we demonstrate that there are crucial qualitative differences between vehicular- and ant-traffics. In particular, we predict some unusual features of the flow rate that can be tested experimentally. As in the uni-directional model a non-monotonic density-dependence of the average velocity can be observed in certain parameter regimes. As a consequence of the interaction between oppositely moving ants the flow rate can become approximately constant over some density interval.  相似文献   

19.
Fluid intake rates in ants correlate with their feeding habits   总被引:2,自引:0,他引:2  
This study investigates the techniques of nectar feeding in 11 different ant species, and quantitatively compares fluid intake rates over a wide range of nectar concentrations in four species that largely differ in their feeding habits. Ants were observed to employ two different techniques for liquid food intake, in which the glossa works either as a passive duct-like structure (sucking), or as an up- and downwards moving shovel (licking). The technique employed for collecting fluids at ad libitum food sources was observed to be species-specific and to correlate with the presence or absence of a well-developed crop in the species under scrutiny. Workers of ponerine ants licked fluid food during foraging and transported it as a droplet between their mandibles, whereas workers of species belonging to phylogenetically more advanced subfamilies, with a crop capable of storing liquids, sucked the fluid food, such as formicine ants of the genus Camponotus. In order to evaluate the performance of fluid collection during foraging, intake rates for sucrose solutions of different concentrations were measured in four ant species that differ in their foraging ecology. Scaling functions between fluid intake rates and ant size were first established for the polymorphic species, so as to compare ants of different size across species. Results showed that fluid intake rate depended, as expected and previously reported in the literature, on sugar concentration and the associated fluid viscosity. It also depended on both the species-specific feeding technique and the extent of specialization on foraging on liquid food. For similarly-sized ants, workers of two nectar-feeding ant species, Camponotus rufipes (Formicinae) and Pachycondyla villosa (Ponerinae), collected fluids with the highest intake rates, while workers of the leaf-cutting ant Atta sexdens (Myrmicinae) and a predatory ant from the Rhytidoponera impressa-complex (Ponerinae) did so with the lowest rate. Calculating the energy intake rates in mg sucrose per unit time, licking was shown to be a more advantageous technique at higher sugar concentrations than sucking, whereas sucking provided a higher energy intake rate at lower sugar concentrations.  相似文献   

20.
Leaf-cutting ants (Atta spp.) are known for their extensive defoliation in neo-tropical forests and savannahs. Debate about the costs and benefits of their activities has been largely dominated by their detrimental effects on agriculture and agroforestry. However, the large accumulation of nutrients and changes in soil properties near their nests might benefit plants growing near them. Here, we test whether trees use nutrients that accumulate in debris piles near, or refuse chambers within, leaf-cutting ant nests. At two tropical sites (a moist tropical forest site in Panama and a savannah site in Brazil), we fed leaves labelled with the stable isotope 15N to two species of leaf-cutting ants (Atta colombica and Atta laevigata) and traced the stable isotope label in plants surrounding the two nests. Thus, we show that plants in both sites access resources associated with Atta nests. In addition, leaf tissue of trees near the nests labelled with 15N had significantly higher calcium concentrations than those of distal, unlabelled conspecifics. It has been documented that calcium is a limiting macronutrient in tropical forests and savannahs. Atta may thus play an important ecological role through their long-distance transport, redistribution and concentration of critical macronutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号