首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated effects of sodium nitroprusside (SNP), the donor of nitric oxide (NO), on the growth and hormonal system of wheat plants (Triticum aestivum L.) in normal conditions and after salt stress (2% NaCl). During germination of seeds treated with SNP (50–500 μM), we obtained the SNP concentration (200 μM) optimal for stimulation of seedling growth estimated by increase in seed germination capacity and seedlings' linear sizes and their fresh and dry biomass. A comparative analysis of SNP (200 μM) effects, after seed germination in the medium with SNP or pretreatment of 3-day-old seedlings, showed SNP ability to increase the wheat plant resistance to subsequent effects of sodium chloride salinity at both treatment methods. Protective SNP effects appeared in the reduction of stress inhibitory action on seedling growth rates and significant reduction in the level of lipid peroxidation and exosmosis of electrolytes. An important contribution to realization of the growth-stimulating and protective effects of NO is associated with its ability to influence the state of the hormonal system of wheat plants due to an increase in the concentration of hormones of a cytokinin nature under normal conditions and the prevention of a decrease in their level under stress.  相似文献   

2.
Effects of 20 nM wheat germ agglutinin (WGA) on relative growth rate, mitotic index (MI) and the cell area in the root extension zone were investigated in seedling of Triticum aestivum L. under the influence of 2% NaCl. It was elucidated that pretreatment of wheat seedling with WGA prevented a salinity induced inhibition of root cell growth, and accelerated the restoration of cell growth after stress removal. The protective WGA effect on root cell growth may be due, presumably, to reorganization of phytohormone balance caused by WGA treatment, which could lead to accumulation of LAA and decrease in the ABA level.  相似文献   

3.
In the roots of bread wheat (Triticum aestivum L.) seedlings, the effects of pretreatment with 28 nM wheat germ agglutinin (WGA) and successive action of 1 mM cadmium acetate on growth, phytohormone balance, lignin deposition, and also cadmium accumulation and distribution were studied. Priority data on cadmium-induced ABA-mediated reversible accumulation of WGA in the roots, which was accompanied by its excretion in the medium of seedling incubation, were obtained. Pretreatment with WGA exerted a clear protective effect on seedling growth in the presence of cadmium, which was based on a decrease in the amplitude of stress-induced shifts in the balance between IAA and ABA and preventing the reduction in the cytokinin level. Acceleration of lignification of the cell walls in the basal parts of roots of seedlings pretreated with WGA and subjected to stress is shown, and this limits cadmium entry into the plant.  相似文献   

4.
The content of cytokinins and pigments together with the morphological parameters and fresh weight were estimated in durum wheat (Triticum durum Desf.) plants 2–4 days after introduction into their rhizosphere of an aliquot of Bacillus suspension using the strains that differed in their ability of producing cytokinins. The experiments were performed under laboratory conditions at the optimum light intensity and mineral nutrition. Inoculation with microorganisms incapable to synthesize cytokinins did not affect the total cytokinin content in the wheat plants, whereas the presence of cytokinin-producing microorganisms in the rhizosphere was accompanied by a considerable increase in the total cytokinin content and the accumulation of individual hormones. On the second day after inoculation, a dramatic increase in zeatin riboside and zeatin O-glucoside contents was observed in the roots, and at the next day the accumulation of zeatin riboside and zeatin was registered in the shoots of treated plants. The increase in cytokinin content promoted plant growth (the increased leaf length and width and a faster accumulation of plant fresh and dry weight). Plant treatment with a substance obtained from microorganisms incapable to synthesize hormones resulted in the insignificant growth stimulation. Plant treatment with a substance obtained from cytokinin-producing microorganisms increased leaf chlorophyll content; in this case, the level of chlorophylls was comparable to that observed in the plants treated with a synthetic cytokinin benzyladenine. The role of cytokinins of microbial origin as a factor providing for growth-stimulating effect of bacteria on plants is discussed.  相似文献   

5.
The effects of nutrient-solution cooling and PEG addition to the nutrient solution on the phytohormone content, the rate of leaf growth, leaf extensibility under the influence of external mechanical action, osmotic potential, and transpiration were studied in seven-day-old wheat plants. Leaf growth rapidly ceased, and the transpiration rate was reduced in both treatments. Growth cessation induced by PEG was transient, and growth resumption was preceded by an increase in the leaf extensibility. The functional role of auxin accumulation in plant shoots in the control of extensibility as well as the relationship between the ABA accumulation and a decrease in the cytokinin content, on the one hand, and reduced transpiration, on the other hand, under stress conditions are discussed.  相似文献   

6.
Effect of pretreatment with 28 nM wheat germ agglutinin (WGA) on cell divisions in the root apical meristem of 4-day-old seedlings of wheat (Triticum aestivum L.), distribution of cells among mitotic phases, cadmium-induced disruptions of normal progression through mitosis, and activity of nucleolar organizer regions (NOR) of the chromosomes was studied after 7-h-long exposure to 1 mM cadmium acetate. Pretreatment with WGA has a pronounced protective effect on divisions of root meristem cells exposed to cadmium. Progression of the cells through mitotic phases was normalized, abnormal mitoses became much less numerous, and the share of binuclear cells decreased. Activity of NOR remained at the control level that much depended on the ability of WGA to prevent reduction in cytokinin content under cadmium stress.  相似文献   

7.
Vegetation experiments were conducted under greenhouse conditions in which long-term effects of simulated acid rain on the shoots, and short-term effects of acidified root medium on the roots of two maple species (Acer pseudoplatanus L. andAcer negundo L.) were studied. Both alternatives of the acidification stress were studied with respect to exogenous applications of auxins and gibberellins. Changes in seedling growth caused by acid rain were not marked, but changes in the levels of endogenous growth regulators were detected, both the long-term exposure ofAcer pseudoplatanus L. seedling shoots to acid rain and the short-term acidification of root environment resulted in enhanced cytokinin activity and in decreased gibberellin activity. But when A.pseudoplatanus L. seedlings were pretreated with gibberellins, their activity was further increased by increased acidity.Acer negundo L. seedlings responded to the acidification of their root environment with enhanced cytokinin activity only when pretreated with exogenous auxins. The differences in the responses ofA. pseudoplatanus L. and A.negundo L. to the acidification can be explained in terms of their distinct physiological properties, including changes recorded in chlorophyll content. The results obtained show that a pretreatment of maple seedlings with exogenous growth regulators can modify the effects of increased acidity in the environment on their physiological status as characterized by the level of endogenous cytokinins and gibberellins.  相似文献   

8.
Cytokinins are often considered abscisic acid (ABA) antagonists and auxins antagonists/synergists in various processes in plants. Seed enhancement (seed priming) with cytokinins is reported to increase plant salt tolerance. It was hypothesized that cytokinins could increase salt tolerance in wheat plants by interacting with other plant hormones, especially auxins and ABA. The present studies were therefore conducted to assess the effects of pre-sowing seed treatment with varying concentrations (100, 150 and 200 mg l−1) of cytokinins (kinetin and benzylaminopurine (BAP)) on germination, growth, and concentrations of free endogenous auxins and ABA in two hexaploid spring wheat (Triticum aestivum L.) cultivars. The primed and non-primed seeds of MH-97 (salt-intolerant) and Inqlab-91 (salt-tolerant) were sown in both Petri dishes in a growth room and in the field after treatment with 15 dS m−1 NaCl salinity. Both experiments were repeated during 2002 and 2003. Among priming agents, kinetin was effective in increasing germination rate in the salt-intolerant and early seedling growth in the salt-tolerant cultivar when compared with hydropriming under salt stress. Thus, during germination and early seedling growth, the cytokinin-priming induced effects were cultivar specific. In contrast, kinetin-priming showed a consistent promoting effect in the field and improved growth and grain yield in both cultivars under salt stress. The BAP-priming did not alleviate the inhibitory effects of salinity stress on the germination and early seedling growth in both cultivars. The increase in growth and grain yield in both cultivars was positively correlated with leaf indoleacetic acid concentration and negatively with ABA concentration under both saline and non-saline conditions. The decrease in ABA concentration in the plants raised from kinetin-primed seeds might reflect diminishing influence of salt stress. However, the possibility of involvement of other hormonal interactions is discussed.  相似文献   

9.
In some regions of the world, low annual precipitation necessitates irrigation of crop plants which usually leads to soil salinity. Due to climatic changes this effect is also expected in the countries of Central Europe, and so in Poland. The aim of the study was (1) to compare tolerance to salt stress of Polish Triticum aestivum cvs. ‘Bogatka’ and ‘Banderola’ with T. durum cv. ‘Komnata’ and breeding line 121, and (2) to indicate the physiological parameter/parameters most suitable for such comparison. The investigation was performed in two experiments. In the first one, the germination ability of caryopses and coleoptiles’ growth were estimated at 0–250 mM of NaCl. The second experiment was conducted on plants grown in a glasshouse in saline soil at 0–150 mM of NaCl for 6 weeks. Salt tolerance was evaluated on the basis of following parameters: chlorophyll fluorescence, net photosynthesis rate (P N), transpiration rate (E), stomatal conductance (g s), cell membrane permeability (EL), proline content, fresh weight (FW), dry weight (DW), and relative water content (RWC). Highest germination of caryopses of durum cultivars was recorded at all the salinity levels; however, their coleoptiles were shorter than coleoptiles of bread wheat cultivars. Analysis of chlorophyll fluorescence showed that applied salt doses did not disturb the light phase of photosynthesis in all cultivars under study. Plants of durum wheat showed the higher dissipation of energy excess at the level of the antenna chlorophyll (DIo/CSm) under salinity as compared to plants of bread wheat. Both ‘Komnata’ and line 121 showed stronger P N reduction as an effect of salinity. A decline of P N was closely connected with a decrease in g s. The P N correlated with a decrease in DW in all studied cultivars except ‘Bogatka’. Control plants of ‘Komnata’ and line 121 were characterized by higher EL and proline level than bread wheat cultivars. An increasing cell membrane permeability correlated with a decrease of RWC in ‘Banderola’ and ‘Komnata’. The content of proline under the increasing salinity correlated with changes of RWC in ‘Banderola’, ‘Komnata’ and line 121, which indicate protectoral role of proline against dehydration of tissue. Dry weight and RWC seem to be the parameters most useful in the salt-tolerance estimation of wheat plants. Taking into account the studied parameters ‘Banderola’ could be recognized as more salt tolerant, the degree of salinity tolerance of ‘Bogatka’ is the same as line 121, while ‘Komnata’ seems to be the most salt sensitive. The salt tolerance of T. aestivum and T. durum depends on the cultivar rather than the wheat species.  相似文献   

10.
Osmotic stress associated with drought and salinity is a serious problem that inhibits the growth of plants mainly due to disturbance of the balance between production of ROS and antioxidant defense and causes oxidative stress. In this research, sodium nitroprusside (SNP) was used as NO donor in control and drought-stressed plants, and the role of NO in reduction of oxidative damages were investigated. In this study, we observed that SNP pretreatment prevented drought-induced decrease in RWC and membrane stability index, increase in lipid peroxidation and lipoxygenase activity and increase in hydrogen peroxide content. However, pretreatment of plants with SNP and phenyl 4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (a NO scavenger) reversed the protective effects of SNP suggesting that protective effect by SNP is attributable to NO release. In addition, the relationship between these defense mechanisms and activity of antioxidant enzymes were checked. Results showed that in drought-stressed plants ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and catalase activities were elevated over the controls, while GR decreased under drought condition. Activity of GPX was inhibited under SNP pretreatment in drought-stressed plants specially, while the activity of APX and GR increased under SNP pretreatment and it seems that under this condition APX had a key role of detoxification of ROS in tomato plants. This result corresponded well with ASA and total acid-soluble thiols content. Therefore, reduction of drought-induced oxidative damages by NO in tomato leaves is most likely mediated through either NO ability to scavenge active oxygen species or stimulation of antioxidant enzyme such as APX.  相似文献   

11.
The action of phytohormone producing bacteria and plant growth regulators on germination and seedling growth of wheat under saline conditions were studied. Seed dormancy enforced by salinity (100 mM NaCl) was substantially alleviated and the germination was promoted by gibberellin, auxin, zeatin, and ethephon from 54 to 97%. The IAA producing bacterial strains Pseudomonas aureantiaca TSAU22, Pseudomonas extremorientalis TSAU6 and Pseudomonas extremorientalis TSAU20 significantly increased seedling root growth up to 25% in non-salinated conditions and up to 52% at 100 mM NaCl, compared to control plants. It is concluded that growth regulators considerably alleviated salinity-induced dormancy of wheat seeds. The facts mentioned above make it possible to recommend root colonizing bacteria that produce phytohormone to alleviate salt stress of wheat grown under conditions of soil salinity.  相似文献   

12.
The effects of sodium-chloride salinity on the leaf elongation rate, transpiration rate, cell sap osmolality, and phytohormone content in 7-day-old shoots of durum wheat (Triticum durum L.) were studied. Leaf growth was suppressed under the salinity stress and resumed 1 h after NaCl removal. The resumption of leaf growth coincided with a decrease in the transpiration rate due to the rapid ABA accumulation in the differentiation leaf zone. The increased IAA concentration in the growing leaf zone promoted the formation of the attraction signal. The authors concluded that the changes in phytohormonal status in wheat plants occurred already following short-term (up to 1 h) salinity and were directed to the maintenance of plant growth under these conditions.  相似文献   

13.
水杨酸和阿斯匹林对小麦幼苗生长过程中盐害的缓解作用   总被引:11,自引:0,他引:11  
以小麦为材料,研究盐分胁迫对小麦幼苗生长的影响以及水杨酸和阿斯匹林对小麦幼苗生长过程中盐害的缓解作用。结果表明,水杨酸和阿斯匹林能够相对提高盐分胁迫条件下小麦幼苗叶片的相对含水量,降低叶片质膜透性和盐害对细胞膜的伤害,提高幼苗体内超氧化物歧化酶、过氧化物酶等细胞保护酶的活性,抑制过氧化作用产物丙二醛的积累;同时发现外源水杨酸和阿斯匹林还能够提高幼苗体内ATP的含量,维持幼苗能量代谢和供应的正常进行,从而提高小麦对盐分胁迫的适应性  相似文献   

14.
Root pruning of wheat seedlings resulted in 2–10 foldincrease in the concentration of IAA in roots ascompared to the control level, which might beresponsible for the observed initiation of lateralroot growth. Cytokinin concentration in xylem sap wasdecreased initially by 60% by pruning in accordancewith the reduction in the hormone-producing organ.Nevertheless cytokinin content in the shoots remainedhigh, which might be due to a decrease in cytokinindecay registered in vitro. A subsequent increasein the export of cytokinins from roots up to thecontrol level demonstrated an elevated ability of thepruned organ to synthesise the hormone. The highcytokinin content in the shoots correlated with theability of the plants to maintain their transpirationand growth at the level of intact plants. Both IAA andcytokinins seem to be important in the restoration ofthe shoot/root balance disturbed by root pruning.  相似文献   

15.
In the present study, four endophytic fungi (GM-1, GM-2, GM-3, and GM-4) were tested for their ability to improve soybean plant growth under salinity stress conditions. The seed germination and plant growth were higher in seeds pretreated with endophytic fungal cultures than their controls. The positive influence of fungi on plant growth was supported by gibberellins analysis of culture filtrate (CF), which showed wide diversity and various concentrations of GAs. Specifically, GA4, GA7, GA8, GA9, GA12, and GA20 were found in fungal CFs. Under salinity stress conditions, GM-1 significantly enhanced the length and fresh weight of soybean plants relative to other fungal treatments. GM-1 effectively mitigated the adverse effects of salinity by limiting lipid peroxidation and accumulating protein content. GM-2, GM-3, and GM-4 also counteracted the salinity induced oxidative stress in soybean plants through reduction of lipid peroxidation and enhancement of protein content, maintaining the length and fresh weight of shoots. The activities of the antioxidant enzymes catalase, superoxide dismutase and peroxidase were inhibited in salinity exposed plants, while GM-1 significantly enhanced these antioxidant enzyme activities in plants under salt stress. GM-1 treatment also showed lower levels of abscisic acid and elevated levels of salicylic acid in plants under salinity stress. Hence, GM-1 was identified as Fusarium verticillioides (teleomorph Gibberella moniliformis) isolate RK01 based on its DNA sequence homology. These results suggest that endophytic fungal (F. verticillioides) pre-treatment of soybean seeds would be an effective method to promote soybean plant growth under salinity stress conditions.  相似文献   

16.
RNase activity was assayed in subcellular fractions of apical regions of Pisum sativum L. var. Alaska epicotyls after seedling decapitation and treatments with various growth regulators. High concentrations of applied indoleacetic acid caused a marked increase to occur in the RNase activity level associated with “heavy” microsomes, e.g., a 20-fold rise per unit RNA or protein in 3 days. This rise could be abolished by treating with the cytokinin benzyladenine along with indoleacetic acid. Nevertheless, indoleacetic acid and benzyladenine acted synergistically in their abilities to evoke swelling and net synthesis of RNA and protein. Polysomal profiles prepared after treatment with indoleacetic acid plus benzyladenine showed less degradation than profiles from any other treatment. It is concluded that auxin generates and cytokinin suppresses the activity of a particular membrane-bound RNase which can control turnover of the auxin-evoked polysomes required for growth in peas. Synergism between the two hormones in this system may be explained by the action of one to increase RNA synthesis and the other to decrease RNA destruction.  相似文献   

17.
The aim of this study was to investigate whether presoaking with hemin, an inducer of heme oxygenase-1 (HO-1), could alleviate salinity damage during wheat seed germination in comparison with the pretreatment of a well-known nitric oxide (NO) donor sodium nitroprusside (SNP). The results showed that, compared with the samples upon 150 mM NaCl salt stress alone, both 10 ??M hemin and 200 ??M SNP pretreatments could (1) significantly attenuate the inhibition of seed germination and thereafter seedling growth; (2) induce HO expression; (3) enhance amylase activity, thus accelerating the formation of reducing sugar and total soluble sugar; and (4) increase the potassium (K) to sodium (Na) ratio, particularly in the shoot parts. Hemin and SNP could also increase antioxidant enzyme activities, including superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (POD), and ascorbate peroxidase (APX), thus resulting in the alleviation of oxidative damage, as indicated by the decrease of thiobarbituric acid reactive substances (TBARS) content. Moreover, semi-quantitative RT-PCR and isozymatic analysis illustrated that hemin and SNP pretreatment were able to up-regulate the expression of Mn-SOD (especially) and Cu/Zn-SOD gene, and activate SOD isozymatic activities. Since the addition of the NO scavenger methylene blue (MB) differentially reversed the above effects, the protective roles of hemin might be related to the induction of endogenous NO signal. Meanwhile, hemin-driven NO production was confirmed. Together, these results indicated that hemin exerted an advantageous effect on enhancing salinity tolerance during wheat seed germination, which might interact with NO.  相似文献   

18.
A halotolerant plant-growth-promoting rhizobacteria (PGPR) can ameliorate salt stress in associated plants by various mechanisms. Therefore, the present study aimed to characterize a PGPR Klebsiella sp. SBP-8 for its ability to tolerate salt stress and to study the mechanism of PGPR-mediated mitigation of salt stress in the wheat plant. The abiotic stressors result in multiple changes in the fatty acid composition of Klebsiella sp. SBP-8, helping the membrane to keep its integrity, fluidity, and function for its growth under salt (NaCl) stress conditions. The changes in fatty acid composition of test organism were analyzed by fatty acid methyl ester (FAME) analysis under varying saline conditions. The spectroscopy (GC-MS) profile of cell extract at different salt concentrations was comprised of hydrocarbons, and fatty alcohols with varying carbon chain length. Inoculation of Klebsiella sp. SBP-8 to wheat seedling showed increase in proline, total soluble sugar, and total protein content of treated plants. Bacterial inoculation also decreased the concentration of salinity-induced malondialdehyde (MDA) content. In addition, bacterial inoculation also increased the various antioxidative enzymes like superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX) in treated plants. It is likely that bacterial inoculation alleviated the salt stress to wheat plant by co-ordination of antioxidative machinery, and improvement in osmolyte contents. Therefore, the present study suggests that bacterial-inoculated wheat plants were able to cope better with salt stress than uninoculated control, therefore it can serve as a promising bio-inoculant for enhancing the growth of wheat like cereal crops under saline stress.  相似文献   

19.
以小麦品种‘西农88’(Triticum aestivum L.,cv.Xinong 88)为材料,研究了外源施加不同浓度茉莉酸(1、2.5、5、10 mmol/L)对UV-B辐射(1.5 kJ·m-2·d-1)下小麦幼苗光合色素、抗氧化酶、丙二醛、游离脯氨酸、紫外吸收物、花青素、根系活力等生理指标以及对其生长的影响,探讨了茉莉酸在UV-B辐射胁迫中的可能作用及其作用机制.研究结果表明,外源茉莉酸对小麦幼苗生理指标产生显著影响,并且表现出浓度效应,其中较低浓度的茉莉酸(1 mmol/L和2.5 mmol/L)能明显提高小麦幼苗的UV-B抗性.表现为低浓度茉莉酸显著提高UV-B辐射下小麦幼苗叶片中的总叶绿素含量、过氧化氢酶(CAT)、过氧化物酶(POD)和超氧化物歧化酶(SOD)活性.并且外源施加的茉莉酸还能够增加小麦幼苗的游离脯氨酸含量,降低脂质过氧化水平,提高花青素含量,增强根系活力.可见,茉莉酸通过提高小麦幼苗的抗氧化酶活性,增加渗透调节物含量以及保护性色素含量,从而缓解膜脂过氧化程度和提高防御物质含量,进而增强植物抵抗UV-B辐射胁迫的能力,保证小麦幼苗正常生长.  相似文献   

20.
Seedlings of the salt sensitive wheat cultivar C-306 evolved more ethylene than the salt tolerant cultivar Kharchia-65 under different levels of both chloride- and sulphate-dominated types of salinity. Pre-sowing seed soaking treatments with kinetin, gibberellic acid and to a lesser extent indole-3-acetic acid alleviated salt stress effects as apparent from seedling dry mass. Treated seedlings also evolved more ethylene both under saline and non-saline conditions. Ethrel did not affect seedling growth as well as ethylene production. Abscisic acid inhibited seedling growth and ethylene production under both types of salinity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号