首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined the relationship between steroid treatment and CD163-mediated downstream pathways linked to inflammatory resolution. Twelve patients referred for congenital heart disease surgery were divided into two groups based on the severity of intravascular hemolysis during cardiopulmonary bypass surgery. Patients with severe intravascular hemolysis were administered haptoglobin during the procedure. Flow cytometry indicated a peak in monocyte CD163 expression on post-operative day 1 in both groups. Enhanced and prolonged heme oxygenase-1 (HO-1) mRNA expression levels were observed in patients who received haptoglobin. Binding of hemoglobin-haptoglobin complex (Hb/Hp) to CD163 resulted in significant induction of HO-1 by peripheral blood mononuclear cells after exposure to dexamethasone prior to culture. This effect was significantly inhibited by anti-CD163 antibody. Our results demonstrated up-regulation of CD163 expression on the monocyte surface by steroid treatment. Steroid treatment was suggested to facilitate CD163-mediated endocytosis of hemoglobin to monocytes/macrophages and thereby induce acceleration of HO-1 synthesis.  相似文献   

2.
The major function of the Haptoglobin (Hp) protein is to control trafficking of extracorpuscular hemoglobin (Hb) thru the macrophage CD163 receptor with degradation of the Hb in the lysosome. There is a common copy number polymorphism in the Hp gene (Hp 2 allele) that has been associated with a severalfold increased incidence of atherothrombosis in multiple longitudinal studies. Increased plaque oxidation and apoptotic markers have been observed in Hp 2-2 atherosclerotic plaques, but the mechanism responsible for this finding has not been determined. We proposed that the increased oxidative injury in Hp 2-2 plaques is due to an impaired processing of Hp 2-2-Hb complexes within macrophage lysosomes, thereby resulting in redox active iron accumulation, lysosomal membrane oxidative injury, and macrophage apoptosis. We sought to test this hypothesis in vitro using purified Hp-Hb complex and cells genetically manipulated to express CD163. CD163-mediated endocytosis and lysosomal degradation of Hp-Hb were decreased for Hp 2-2-Hb complexes. Confocal microscopy using lysotropic pH indicator dyes demonstrated that uptake of Hp 2-2-Hb complexes disrupted the lysosomal pH gradient. Cellular fractionation studies of lysosomes isolated from macrophages incubated with Hp 2-2-Hb complexes demonstrated increased lysosomal membrane oxidation and a loss of lysosomal membrane integrity leading to lysosomal enzyme leakage into the cytoplasm. Additionally, markers of apoptosis, DNA fragmentation, and active caspase 3 were increased in macrophages that had endocytosed Hp 2-2-Hb complexes. These data provide novel mechanistic insights into how the Hp genotype regulates lysosomal oxidative stress within macrophages after receptor-mediated endocytosis of Hb.  相似文献   

3.
《Phytomedicine》2015,22(14):1255-1261
BackgroundOleacein (dialdehydic form of decarboxymethyl elenolic acid linked to hydroxytyrosol; 3,4-DHPEA-EDA) have been proven to possess antioxidant and anti-inflammatory activity.PurposeIn this study, we examined whether oleacein could increase CD163 and IL-10 receptor expression as well as HO-1 intracellular secretion in human macrophages.MethodsEffect of oleacein (10 and 20 μmol/l) or oleacein together with complexes of haemoglobin (Hb) and haptoglobin 1-1 (Hp11) or haptoglobin 2-2 (Hp22) on expression of IL-10 and CD163 receptor was determined by Flow Cytometry. Expression of CD163mRNA was measured by real-time quantitative RT-PCR. Heme oxygenase 1 (HO-1) intracellular secretion in macrophages was investigated by enzyme-linked immunosorbent assay (ELISA).ResultsOleacein (OC) together with complexes HbHp11 or HbHp22 stimulated the expression of CD163 (30-100-fold), IL-10 (170-300-fold) and HO-1 secretion (60-130-fold) after 5 days of coincubation. The 2-fold (24 h), 4-fold (48 h) increase of CD163 mRNA level and its final (72 h) decrease was also observed.ConclusionOur results suggested that oleacein enhances anti-inflammatory activity of complexes haemoglobin with haptoglobin 1-1 and 2-2 and could play a potential role in the prevention of inflammatory disease related to atherosclerosis.  相似文献   

4.
Extracellular or free hemoglobin (Hb) accumulates during hemolysis, tissue damage, and inflammation. Heme-triggered oxidative reactions can lead to diverse structural modifications of lipids and proteins, which contribute to the propagation of tissue damage. One important target of Hb׳s peroxidase reactivity is its own globin structure. Amino acid oxidation and crosslinking events destabilize the protein and ultimately cause accumulation of proinflammatory and cytotoxic Hb degradation products. The Hb scavenger haptoglobin (Hp) attenuates oxidation-induced Hb degradation. In this study we show that in the presence of hydrogen peroxide (H2O2), Hb and the Hb:Hp complex share comparable peroxidative reactivity and free radical generation. While oxidation of both free Hb and Hb:Hp complex generates a common tyrosine-based free radical, the spin-trapping reaction with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) yields dissimilar paramagnetic products in Hb and Hb:Hp, suggesting that radicals are differently redistributed within the complex before reacting with the spin trap. With LC-MS2 mass spectrometry we assigned multiple known and novel DMPO adduct sites. Quantification of these adducts suggested that the Hb:Hp complex formation causes extensive delocalization of accessible free radicals with drastic reduction of the major tryptophan and cysteine modifications in the β-globin chain of the Hb:Hp complex, including decreased βCys93 DMPO adduction. In contrast, the quantitative changes in DMPO adduct formation on Hb:Hp complex formation were less pronounced in the Hb α-globin chain. In contrast to earlier speculations, we found no evidence that free Hb radicals are delocalized to the Hp chain of the complex. The observation that Hb:Hp complex formation alters free radical distribution in Hb may help to better understand the structural basis for Hp as an antioxidant protein.  相似文献   

5.
Free hemoglobin (Hb) triggered vascular damage occurs in many hemolytic diseases, such as sickle cell disease, with an unmet need for specific therapeutic interventions. Based on clinical observations the Hb and heme scavenger proteins haptoglobin (Hp) and hemopexin (Hx) have been characterized as a sequential defense system with Hp as the primary protector and Hx as a backup when all Hp is depleted during more severe intravascular hemolysis. In this study we present a mechanistic rationale for this paradigm based on a combined biochemical and cell biological approach directed at understanding the unique roles of Hp and Hx in Hb detoxification. Using a novel in vitro model of Hb triggered endothelial damage, which recapitulates the well-characterized pathophysiologic sequence of oxyHb(Fe2+) transformation to ferric Hb(Fe3+), free heme transfer from ferric Hb(Fe3+) to lipoprotein and subsequent oxidative reactions in the lipophilic phase. The accumulation of toxic lipid peroxidation products liberated during oxidation reactions ultimately lead to endothelial damage characterized by a specific gene expression pattern with reduced cellular ATP and monolayer disintegration. Quantitative analysis of key chemical and biological parameters allowed us to precisely define the mechanisms and concentrations required for Hp and Hx to prevent this toxicity. In the case of Hp we defined an exponential relationship between Hp availability relative to oxyHb(Fe2+) and related protective activity. This exponential relationship demonstrates that large Hp quantities are required to prevent Hb toxicity. In contrast, the linear relationship between Hx concentration and protection defines a highly efficient backup scavenger system during conditions of large excess of free oxyHb(Fe2+) that occurs when all Hp is consumed. The diverse protective function of Hp and Hx in this model can be explained by the different target specificities of the two proteins.  相似文献   

6.
Outside their cellular environments, hemoglobin (Hb) and myoglobin (Mb) are known to wreak oxidative damage. Using haptoglobin (Hp) and hemopexin (Hx) the body defends itself against cell-free Hb, yet mechanisms of protection against oxidative harm from Mb are unclear. Mb may be implicated in oxidative damage both within the myocyte and in circulation following rhabdomyolysis. Data from the literature correlate rhabdomyolysis with the induction of Heme Oxygenase-1 (HO-1), suggesting that either the enzyme or its reaction products are involved in oxidative protection. We hypothesized that carbon monoxide (CO), a product, might attenuate Mb damage, especially since CO is a specific ligand for heme iron. Low density lipoprotein (LDL) was chosen as a substrate in circulation and myosin (My) as a myocyte component. Using oxidation targets, LDL and My, the study compared the antioxidant potential of CO in Mb-mediated oxidation with the antioxidant potential of Hp in Hb-mediated oxidation. The main cause of LDL oxidation by Hb was found to be hemin which readily transfers from Hb to LDL. Hp prevented heme transfer by sequestering hemin within the Hp-Hb complex. Hemin barely transferred from Mb to LDL, and oxidation appeared to stem from heme iron redox in the intact Mb. My underwent oxidative crosslinking by Mb both in air and under N2. These reactions were fully arrested by CO. The data are interpreted to suit several circumstances, some physiological, such as high muscle activity, and some pathological, such as rhabdomyolysis, ischemia/reperfusion and skeletal muscle disuse atrophy. It appear that CO from HO-1 attenuates damage by temporarily binding to deoxy-Mb, until free oxygen exchanges with CO to restore the equilibrium.  相似文献   

7.
CD163 is a highly expressed macrophage membrane protein belonging to the scavenger receptor cysteine rich (SRCR) domain family. The CD163 expression is induced by interleukin-6, interleukin-10 and glucocorticoids. Its function has remained unknown until recently when CD163 was identified as the endocytic receptor binding hemoglobin (Hb) in complex with the plasma protein haptoglobin (Hp). This specific receptor-ligand interaction leading to removal from plasma of the Hp-Hb complex-but not free Hp or Hb-now explains the depletion of circulating Hp in individuals with increased intravascular hemolysis. Besides having a detoxificating effect by removing Hb from plasma, the CD163-mediated endocytosis of the Hp-Hb complex may represent a major pathway for uptake of iron in the tissue macrophages.The novel functional linkage of CD163 and Hp, which both are induced during inflammation, also reveal some interesting perspectives relating to the suggested anti-inflammatory properties of the receptor and the Hp phenotypes.  相似文献   

8.
Extracellular hemoglobin (Hb) has been recognized as a disease trigger in hemolytic conditions such as sickle cell disease, malaria, and blood transfusion. In vivo, many of the adverse effects of free Hb can be attenuated by the Hb scavenger acute-phase protein haptoglobin (Hp). The primary physiologic disturbances that can be caused by free Hb are found within the cardiovascular system and Hb-triggered oxidative toxicity toward the endothelium has been promoted as a potential mechanism. The molecular mechanisms of this toxicity as well as of the protective activities of Hp are not yet clear. Within this study, we systematically investigated the structural, biochemical, and cell biologic nature of Hb toxicity in an endothelial cell system under peroxidative stress. We identified two principal mechanisms of oxidative Hb toxicity that are mediated by globin degradation products and by modified lipoprotein species, respectively. The two damage pathways trigger diverse and discriminative inflammatory and cytotoxic responses. Hp provides structural stabilization of Hb and shields Hb''s oxidative reactions with lipoproteins, providing dramatic protection against both pathways of toxicity. By these mechanisms, Hp shifts Hb''s destructive pseudo-peroxidative reaction to a potential anti-oxidative function during peroxidative stress.  相似文献   

9.
10.
Hemoglobin (Hb) plays a critical role in human physiological function by transporting O2. Hb is safe and inert within the confinement of the red blood cell but becomes reactive and toxic upon hemolysis. Haptoglobin (Hp) is an acute-phase serum protein that scavenges Hb and the resulting Hb-Hp complex is subjected to CD163-mediated endocytosis by macrophages. The interaction between Hb and Hp is extraordinarily strong and largely irreversible. As the structural details of the human Hb-Hp complex are not yet available, this study reports for the first time on insights of the binding modalities and molecular details of the human Hb-Hp interaction by means of protein-protein docking. Furthermore, residues that are pertinent for complex formation were identified by computational alanine scanning mutagenesis. Results revealed that the surface of the binding interface of Hb-Hp is not flat and protrudes into each binding partner. It was also observed that the secondary structures at the Hb-Hp interface are oriented as coils and α-helices. When dissecting the interface in more detail, it is obvious that several tyrosine residues of Hb, particularly β145Tyr, α42Tyr and α140Tyr, are buried in the complex and protected from further oxidative reactions. Such finding opens up new avenues for the design of Hp mimics which may be used as alternative clinical Hb scavengers.  相似文献   

11.
Heme oxygenase-1 (HO-1) is a key enzyme in the cellular response to tissue injury and oxidative stress. HO-1 enzymatic activity results in the formation of the cytoprotective metabolites CO and biliverdin. In the skin, HO-1 is strongly induced after long wave ultraviolet radiation (UVA-1). Here we show that UVA-1 irradiation generates oxidized phospholipids derived from 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (PAPC) that mediate the expression of HO-1 in skin cells. Using EO6 antibodies that recognize oxidized phospholipids, we show that UVA-1 irradiation of dermal fibroblasts generates oxidation-specific epitopes. Irradiation of arachidonate-containing phospholipids with UVA-1 led to formation of defined lipid oxidation products including epoxyisoprostane-phosphatidylcholine that induced HO-1 expression in dermal fibroblasts, in keratinocytes, and in a three-dimensional epidermal equivalent model. In addition, we demonstrate that the oxidation of PAPC by UVA-1 is a singlet oxygen-dependent mechanism. Together, we present a novel mechanism of UVA-1-induced HO-1 expression that is mediated by the generation of biologically active phospholipid oxidation products. Because UVA-1 irradiation is a mainstay treatment of several inflammatory skin diseases, structural identification of UVA-1-generated biomolecules with HO-1-inducing capacity should lead to the development of drugs that could substitute for irradiation.  相似文献   

12.
The heme oxygenase (HO) enzymes catalyze the rate-limiting step of heme breakdown. Prior studies have demonstrated that the vulnerability of neurons and astrocytes to hemoglobin is modified in cells lacking HO-2, the constitutive isoform. The present study assessed the effect of the inducible isoform, HO-1. Wild-type astrocytes treated for 3-5 days with 3-30 microM hemoglobin sustained no loss of viability, as quantified by LDH and MTT assays. The same treatment resulted in death of 25-50% of HO-1 knockout astrocytes, and a 4-fold increase in protein oxidation. Cell injury was attenuated by transfer of the HO-1 gene, but not by bilirubin, the antioxidant heme breakdown product. Conversely, neuronal protein oxidation and cell death after hemoglobin exposure were similar in wild-type and HO-1 knockout cultures. These results suggest that HO-1 induction protects astrocytes from the oxidative toxicity of Hb, but has no effect on neuronal injury.  相似文献   

13.
The main function of CD163 (hemoglobin scavenger receptor) is to bind the hemoglobin-haptoglobin complex, thereby mediating extravasal hemolysis. However, CD163 also has an antiinflammatory function. After CD163-mediated endocytosis, hemoglobin is catabolized further by hemeoxygenase 1 (HO-1). Previously, we found expression of HO-1 to be restricted to microglia/macrophages at sites of hemorrhages in human traumatic and ischemic brain lesions. We now investigated if CD163 expression is also correlated with hemorrhages in brain lesions. Methods. Autopsy brain tissue from 44 cases with hemorrhagic brain lesions (32 traumatic brain injuries/TBI, 12 intracerebral bleedings/ICB), 56 non-hemorrhagic brain lesions (30 ischemias, 26 hypoxias) and 6 control brains were investigated. The post injury survival times ranged from a few minutes to 60 months. Results. In controls, single perivascular monocytes expressed CD163, but only single CD163+ microglia were found in 3/6 cases. CD163+ cells in the parenchyma (activated microglia/macrophages) increased significantly within 24 hours after trauma and ischemia and within 1-7 days following ICB or hypoxia. Overall, significantly lower and higher levels of parenchymal CD163+ cells occurred in hypoxia and ischemia, respectively. Perivascular CD163+ cells also increased significantly in all pathological conditions. In areas remote from circumscribed brain lesions (TBI, ICB, ischemia), significant changes were only found in ICB and ischemia. Conclusions. De novo expression of CD163 by activated microglia/macrophages and CD163+ infiltrating monocytes are neither restricted to nor predominant in hemorrhagic brain lesions. Thus, the antiinflammatory function of CD163 probably predominates, both in hemorrhagic and non-hemorrhagic brain lesions and points to possible immunomodulatory treatment strategies targeting CD163.  相似文献   

14.
CD163, a scavenger receptor that is expressed at high levels in the monocyte-macrophage system, is a critical factor for the efficient extracellular hemoglobin (Hb) clearance during hemolysis. Because of the enormous detrimental effect of liberated Hb on our body by its ability to induce pro-inflammatory signals and tissue damage, an understanding of the molecular mechanisms associated with CD163 expression during the acute phase response is a central issue. We report here that α(1)-acid glycoprotein (AGP), an acute phase protein, the serum concentration of which is elevated under various inflammatory conditions, including hemolysis, up-regulates CD163 expression in both macrophage-like differentiated THP-1 (dTHP-1) cells and peripheral blood mononuclear cells in a time- and concentration-dependent manner. Moreover, the subsequent induction of Hb uptake was also observed in AGP-treated dTHP-1 cells. Among representative acute phase proteins such as AGP, α(1)-antitrypsin, C-reactive protein, and haptoglobin, only AGP increased CD163 expression, suggesting that AGP plays a specific role in the regulation of CD163. Consistently, the physiological concentrations of AGP induced CD163, and the subsequent induction of Hb uptake as well as the reduction of oxidative stress in plasma were observed in phenylhydrazine-induced hemolytic model mice, confirming the in vivo role of AGP. Finally, AGP signaling through the toll-like receptor-4 (TLR4) and CD14, the common innate immune receptor complex that normally recognizes bacterial components, was identified as a crucial stimulus that induces the autocrine regulatory loops of IL-6 and/or IL-10 via NF-κB, p38, and JNK pathways, which leads to an enhancement in CD163 expression. These findings provide possible insights into how AGP exerts anti-inflammatory properties against hemolysis-induced oxidative stress.  相似文献   

15.
The toxicity of acellular hemoglobin (Hb)-based therapeutics has been attributed in part to the uncontrolled oxidative reactions. A variety of antioxidant strategies to ameliorate potential oxidative damage in vivo have been suggested. We have examined the effects of (-)-epigallocatechin gallate (EGCG), a green tea polyphenol compound widely regarded as a chain-breaking antioxidant, on the oxidative stability of diaspirin crosslinked Hb (DBBF) and its cytotoxic ferryl intermediate. DBBF (ferrous) was rapidly oxidized to the ferric form in the presence of EGCG relative to the normal spontaneous oxidation of this Hb. The fast elimination of ferrous Hb is probably due to the ability of EGCG to produce hydrogen peroxide (H2O2) as these reactions were almost completely reversed by the addition of catalase and superoxide dismutase to the reaction medium. EGCG, however, effectively reduced ferryl back to ferric Hb in a biphasic kinetic reaction at physiological pH. At acidic pH where the autoreduction of protonated ferryl Hb is enhanced, a monophasic reduction process of the ferryl heme is achieved. A balance between pro and antioxidant properties of EGCG should be taken into account if EGCG is used in combination therapy with redox active acellular Hbs.  相似文献   

16.
The reaction between hydroxylamine (NH2OH) and human hemoglobin (Hb) at pH 6-8 and the reaction between NH2OH and methemoglobin (Hb+) chiefly at pH 7 were studied under anaerobic conditions at 25 degrees C. In presence of cyanide, which was used to trap Hb+, Hb was oxidized by NH2OH to methemoglobin cyanide with production of about 0.5 mol NH+4/mol of heme oxidized at pH 7. The conversion of Hb to Hb+ was first order in [Hb] (or nearly so) but the pseudo-first-order rate constant was not strictly proportional to [NH2OH]. Thus, the apparent second-order rate constant at pH 7 decreased from about 30 M-1 X s-1 to a limiting value of 11.3 M-1 X s-1 with increasing [NH2OH]. The rate of Hb oxidation was not much affected by cyanide, whereas there was no reaction between NH2OH and carbonmonoxyhemoglobin (HbCO). The pseudo-first-order rate constant for Hb oxidation at 500 microM NH2OH increased from about 0.008 s-1 at pH 6 to 0.02 s-1 at pH 8. The oxidation of Hb by NH2OH terminated prematurely at 75-90% completion at pH 7 and at 30-35% completion at pH 8. Data on the premature termination of reaction fit the titration curve for a group with pK = 7.5-7.7. NH2OH was decomposed by Hb+ to N2, NH+4, and a small amount of N2O in what appears to be a dismutation reaction. Nitrite and hydrazine were not detected, and N2 and NH+4 were produced in nearly equimolar amounts. The dismutation reaction was first order in [Hb+] and [NH2OH] only at low concentrations of reactants and was cleanly inhibited by cyanide. The spectrum of Hb+ remained unchanged during the reaction, except for the gradual formation of some choleglobin-like (green) pigment, whereas in the presence of CO, HbCO was formed. Kinetics are consistent with the view advanced previously by J. S. Colter and J. H. Quastel [1950) Arch. Biochem. 27, 368-389) that the decomposition of NH2OH proceeds by a mechanism involving a Hb/Hb+ cycle (reactions [1] and [2]) in which Hb is oxidized to Hb+ by NH2OH.  相似文献   

17.
Haptoglobin (Hp) can be purified by affinity chromatography using hemoglobin (Hb)-linked Sepharose. Elution with 8 M urea is generally performed, resulting in heavy contamination of the Hp preparation by apolipoprotein AI (ApoAI), and partial loss of Hb binding activity. Hp, separated from ApoAI, was recovered by elution with glycine-HCl at pH 3. Complexes of the isolated protein with Hb or ApoAI were detected by enzyme-linked immunosorbent assay (ELISA). Competition between the two ligands in their interaction with Hp was observed. Concanavalin A (ConA), which binds the Hp carbohydrate chains, did not influence Hp binding to ApoAI. These results suggest that changes in the plasma levels of ApoAI or Hb affect the Hp role in regulating the reverse transport of cholesterol or preventing Hb-dependent oxidative damage.  相似文献   

18.
Current strategies to deliver therapeutic molecules to specific cell and tissue types rely on conjugation of antibodies and other targeting ligands directly to the therapeutic molecule itself or its carrier. This work describes a novel strategy to deliver therapeutic molecules into macrophages that takes advantage of the native hemoglobin (Hb) scavenging activity of plasma haptoglobin (Hp) and the subsequent uptake of the Hb-Hp complex into macrophages via CD163 receptor-mediated endocytosis. The drug delivery system described in this work consists of Hb decorated liposomes that can encapsulate any therapeutic molecule of interest, in this case the model fluorescent dye calcein was used in this study. The results of this study clearly demonstrate that this delivery system is specific towards macrophages and demonstrates the feasibility of using this approach in targeted drug delivery.  相似文献   

19.
We compared oxygenation and anaerobic oxidation reactions of a purified complex of human hemoglobin (Hb) and haptoglobin (Hb-Hp) to those of uncomplexed Hb. Under equilibrium conditions, Hb-Hp exhibited active-site heterogeneity and noncooperative, high-affinity O(2) binding (n(1/2)=0.88, P(1/2)=0.33mm Hg in inorganic phosphate buffer at pH 7 and 25°C). Rapid-reaction kinetics also exhibited active-site heterogeneity, with a slower process of O(2) dissociation and a faster process of CO binding relative to uncomplexed Hb. Deoxygenated Hb-Hp had significantly reduced absorption at the λ(max) of 430nm relative to uncomplexed Hb, as occurs for isolated Hb subunits that lack T-state stabilization. Under comparable experimental conditions, the redox potential (E(1/2)) of Hb-Hp was found to be +54mV, showing that it is much more easily oxidized than uncomplexed Hb (E(1/2)=+125mV). The Nernst plots for Hb-Hp oxidation showed no cooperativity and slopes less than unity indicated active-site heterogeneity. The redox potential of Hb-Hp was unchanged by pH over the range of 6.4-8.3. Exposure of Hb-Hp to excess hydrogen peroxide (H(2)O(2)) produced ferryl heme, which was found to be more kinetically inert in the Hb-Hp complex than in uncomplexed Hb. The negative shift in the redox potential of Hb-Hp and its stabilized ferryl state may be central elements in the protection against Hb-induced oxidative damage afforded by formation of the Hb-Hp complex.  相似文献   

20.
Oxidative stress and increased oxidation of low-density lipoprotein (oxLDL) through free radical-mediated tissue injury may be important factors in the development of extracranial atherosclerotic lesions. However, the roles of oxidative stress and hypercholesterolemia in intracranial atherosclerosis is less established. The induction of heme oxygenase (HO) is a cellular response to oxidative stress, and inducible HO (HO-1) may protect against oxidized lipids such as those produced by oxidative stress. We investigated the effects of oxLDL on cell and tissue viability, HO-1 and ferritin expression in extracranial and intracranial endothelial cells, and the arteries of cholesterol-induced atherosclerosis (CIA) Japanese quail. We report that cultured microvascular endothelial cells from the brain (QBMEC) and carotid (QCEC) differ in their response to oxidative stress. The QCECs are less responsive than QBMECs to oxidative stress induced by oxLDL, as evident by lower expression of HO-1 mRNA, HO activity, and ferritin levels. Furthermore, the higher levels of catalytic iron, thiobarbituric acid reactive substances, and lactate dehydrogenase released in QCECs indicated that these cells are more susceptible to oxidative stress than QBMECs. We also investigated the relationship between extent of atherosclerotic plaque deposition and the extracranial and intracranial arterial expression of HO-1 in quail. The common carotid and vertebral (extracranial) arteries had higher tissue cholesterol levels (starting at 2 weeks of cholesterol-supplementation) and a greater atherosclerotic plaque score (starting at 4 weeks of cholesterol-supplementation) compared with middle cerebral and basilar (intracranial) arteries, and this may be relevant to the effect of aging on the process of atherogenesis. The extracranial arteries also had early and greater levels of lipid peroxidation and catalytic iron coupled with lower expression of HO-1 protein, HO activity, and ferritin compared to the intracranial vessels. These observations suggest that the extracranial and intracranial arterial walls respond differently to oxidation of lipoproteins, and support the feasibility of increased HO-1 expression as a means of protection against oxidant injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号