首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osteoprotegerin (OPG) is an essential secreted protein in bone turnover due to its role as a decoy receptor for the Receptor Activator of Nuclear Factor-kB ligand (RANKL) in the osteoclasts, thus inhibiting their differentiation. However, there are additional ligands of OPG that confer various biological functions. OPG can promote cell survival, cell proliferation and facilitates migration by binding TNF-related apoptosis inducing ligand (TRAIL), glycosaminoglycans or proteoglycans. A large number of in vitro, pre-clinical and clinical studies provide evidences of OPG involvement in vascular, bone, immune and tumor biology. This review describes an overview of the different OPG ligands regulating its biological functions.  相似文献   

2.
Osteoprotegerin (OPG), a member of the tumor necrosis factor (TNF) receptor superfamily, contributes determinatively to the bone remodeling as well as to the pathogenetic mechanism of bone malignancies and disorders of mineral metabolism. There is additional evidence that OPG can promote cell survival by inhibiting TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. A number of recent in vitro, in vivo and clinical studies have defined the role of the RANK/RANKL/OPG pathway in skeletal and vascular diseases. These works were the milestone of the deep understanding of the mechanism of OPG. This review provides an overview of the potential innovative therapeutic strategies of OPG in metastatic breast and prostate carcinoma, multiple myeloma, postmenopausal osteoporosis, glucocorticoid-induced osteoporosis and rheumatoid arthritis. Special reference is given to the increasing evidence that RANKL and OPG may link the skeletal with the vascular system.  相似文献   

3.
Osteoprotegerin (OPG) is a member of the tumour necrosis factor receptor superfamily of cytokines which, in spite of being initially described as a strong anti-resorptive factor, has lately been considered as a possible link between bone and vascular disease. In the last few years, several studies have evidenced its close relationship with the development of diabetes. In this review, we analyse the role of OPG in diabetic patients and its links with the most relevant associated diseases such as atherosclerosis, hypertension, endothelial dysfunction and diabetic nephropathy, as well as its connection with related pathologies as fibrosis, obesity and metabolic syndrome.  相似文献   

4.
Cardiovascular disease (CVD) is an overall term that comprises a number of related pathologies, these include peripheral arterial disease, cerebrovascular disease, coronary heart disease (CHD), venous thromboembolism, and rheumatic and congenital heart diseases. Fatty acids in the diet have been reported to affect CVD. The OPG/RANKL/RANK system appears to have a role in CVD outcomes. However, there have been few studies on the impact of diet-gene interaction for effects of fatty acids consumption on the OPG/RANKL/RANK system in CVD. This review focuses on the effects of fatty acids on OPG/RANKL/RANK in CVD.  相似文献   

5.
The emergence of the molecular triad osteoprotegerin (OPG)/Receptor Activator of NF-kB (RANK)/RANK Ligand (RANKL) has helped elucidate a key signalling pathway between stromal cells and osteoclasts. The interaction between RANK and RANKL plays a critical role in promoting osteoclast differentiation and activation leading to bone resorption. OPG is a soluble decoy receptor for RANKL that blocks osteoclast formation by inhibiting RANKL binding to RANK. The OPG/RANK/RANKL system has been shown to be abnormally regulated in several malignant osteolytic pathologies such as multiple myeloma [MM, where enhanced RANKL expression (directly by tumour cells or indirectly by stromal bone cells or T-lymphocytes)] plays an important role in associated bone destruction. By contrast, production of its endogenous counteracting decoy receptor OPG is either inhibited or too low to compensate for the increase in RANKL production. Therefore, targeting the OPG/RANK/RANKL axis may offer a novel therapeutic approach to malignant osteolytic pathologies. In animal models, OPG or soluble RANK was shown both to control hypercalcaemia of malignancy and the establishment and progression of osteolytic metastases caused by various malignant tumours. To this day, only one phase I study has been performed using a recombinant OPG construct that suppressed bone resorption in patients with multiple myeloma or breast carcinoma with radiologically confirmed bone lesions. RANK-Fc also exhibits promising therapeutic effects, as revealed in animal models of prostate cancer and multiple myeloma. If the animal results translate to similar clinical benefits in humans, using RANK-Fc or OPG may yield novel and potent strategies for treating patients with established or imminent malignant bone diseases and where standard therapeutic regimens have failed.  相似文献   

6.
Osteoporosis and vasculopathy are common after organ transplantation and have been largely attributed to the use of immunosuppressants. Osteoprotegerin (OPG) is produced by osteoblastic and arterial cells, and inhibits osteoclast functions by neutralizing receptor activator of NF-kappaB ligand (RANKL). Because OPG-deficient mice develop osteoporosis and arterial calcification, we assessed the effects of immunosuppressants on OPG and RANKL expression by human osteoblastic and coronary artery smooth muscle cells (CASMC). Cyclosporine A, rapamycin, and FK-506 decreased OPG mRNA and protein levels in undifferentiated marrow stromal cells (by 63, 44, and 68%, respectively, P < 0.001). All three immunosuppressants increased RANKL mRNA levels in these cells by 60 to 210%. In contrast to these effects on marrow stromal cells, rapamycin, which may be relatively bone-sparing, increased OPG mRNA and protein production (by 120%, P < 0.001) in mature osteoblastic cells. Cyclosporine A also decreased OPG mRNA and protein production (by 52%, P < 0.001) of CASMC. In conclusion, immunosuppressants decrease OPG mRNA and protein production and increase RANKL gene expression by marrow stromal cells, and cyclosporine suppresses OPG production in CASMC. These studies thus provide a potential mechanism for immunosuppressant-induced bone loss, and the propensity of cyclosporine A to cause vascular disease.  相似文献   

7.
Osteoprotegerin (OPG) binds the ligand for receptor activator of nuclear factor kappaB (RANKL) to prevent association with its receptor RANK and inhibit osteoclast-mediated bone resorption. OPG has been reported, recently, to inhibit tumor necrosis factor-related apoptosis-induced ligand (TRAIL)-induced tumor cell apoptosis. This raises the possibility that OPG may play a unique role in regulating these two signaling pathways. However, there are little data on the interactions between OPG, RANKL, and TRAIL, and the relative affinity of OPG for these two ligands is unknown. In the present study we examined the ability of OPG to bind native human TRAIL and RANKL under physiological conditions. Native TRAIL was expressed in Escherichia coli, purified to homogeneity, and shown to induce human myeloma cell apoptosis. OPG inhibited native TRAIL from binding the TRAILR1 at 37 degrees C in vitro. Similarly, OPG prevented RANKL from binding to RANK. TRAIL also prevented OPG-mediated inhibition of RANKL from binding RANK. The affinity of OPG for native TRAIL and RANKL at 37 degrees C was determined by plasmon surface resonance analysis. OPG had a binding affinity for TRAIL of 45 nM, whereas the affinity of OPG for RANKL was 23 nM. These data suggest that OPG can bind both RANKL and TRAIL and that the affinity of OPG for these two ligands is of a similar order of magnitude. Furthermore, OPG prevented TRAIL-mediated reductions in cell viability, whereas TRAIL inhibited OPG-mediated inhibition of osteoclastogenesis in vitro. This highlights the pivotal role of OPG in regulating the biology of both RANKL and TRAIL.  相似文献   

8.
The discovery of the receptor activator of nuclear factor-kappaB ligand (RANKL)/RANK/osteoprotegerin (OPG) system and its role in the regulation of bone resorption exemplifies how both serendipity and a logic-based approach can identify factors that regulate cell function. Before this discovery in the mid to late 1990s, it had long been recognized that osteoclast formation was regulated by factors expressed by osteoblast/stromal cells, but it had not been anticipated that members of the tumor necrosis factor superfamily of ligands and receptors would be involved or that the factors involved would have extensive functions beyond bone remodeling. RANKL/RANK signaling regulates the formation of multinucleated osteoclasts from their precursors as well as their activation and survival in normal bone remodeling and in a variety of pathologic conditions. OPG protects the skeleton from excessive bone resorption by binding to RANKL and preventing it from binding to its receptor, RANK. Thus, RANKL/OPG ratio is an important determinant of bone mass and skeletal integrity. Genetic studies in mice indicate that RANKL/RANK signaling is also required for lymph node formation and mammary gland lactational hyperplasia, and that OPG also protects arteries from medial calcification. Thus, these tumor necrosis factor superfamily members have important functions outside bone. Although our understanding of the mechanisms whereby they regulate osteoclast formation has advanced rapidly during the past 10 years, many questions remain about their roles in health and disease. Here we review our current understanding of the role of the RANKL/RANK/OPG system in bone and other tissues.  相似文献   

9.
Breast cancer cells preferentially metastasize to bone, leading to the formation of primarily osteolytic lesions. Osteoprotegerin (OPG) plays multifactorial roles in the development of osteolytic bone metastases. An increase in the ratio of receptor activator of nuclear factor kappaB ligand (RANKL) to OPG increases osteoclastogenesis within the bone microenvironment. OPG also acts as a survival factor for cancer cells by protecting them from tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mediated apoptosis. This study compares OPG production in vitro in a number of breast cancer cell lines exhibiting both differences in metastatic capacity and in preferential metastasis to bone. Our studies demonstrated that OPG expression by MDA-231, MDA-MET, and MDA-231/K cancer cells was directly correlated with bone specific homing and colonization potential but not with metastasis of cancer cells to other organs; both in IL-1 beta stimulated and control cells. We also demonstrated expression of other bone-related markers including type I collagen, osteocalcin, osteopontin, and Runx2 in these cells. However, the generally lower expression of these markers in the bone selective cell line MDA-MET suggested that increased OPG expression in the bone specific variant was not merely a consequence of enhanced osteomimicry by these cells but that it has a significant role in the metastatic process. Co-culture of breast cancer cells with osteoblastic cells (hFOB 1.19) led to an overall downregulation in OPG production, which was not affected by the bone homing and colonization potential of the cell lines, suggesting that OPG alone is not indicative of osteolytic bone activity by breast cancer cells.  相似文献   

10.
Functions of RANKL/RANK/OPG in bone modeling and remodeling   总被引:1,自引:0,他引:1  
The discovery of the RANKL/RANK/OPG system in the mid 1990s for the regulation of bone resorption has led to major advances in our understanding of how bone modeling and remodeling are regulated. It had been known for many years before this discovery that osteoblastic stromal cells regulated osteoclast formation, but it had not been anticipated that they would do this through expression of members of the TNF superfamily: receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG), or that these cytokines and signaling through receptor activator of NF-κB (RANK) would have extensive functions beyond regulation of bone remodeling. RANKL/RANK signaling regulates osteoclast formation, activation and survival in normal bone modeling and remodeling and in a variety of pathologic conditions characterized by increased bone turnover. OPG protects bone from excessive resorption by binding to RANKL and preventing it from binding to RANK. Thus, the relative concentration of RANKL and OPG in bone is a major determinant of bone mass and strength. Here, we review our current understanding of the role of the RANKL/RANK/OPG system in bone modeling and remodeling.  相似文献   

11.
Osteoprotegerin (OPG) is a secreted member of the tumor necrosis factor receptor family, and has previously been shown to regulate bone mass by inhibiting osteoclast differentiation and activation. Recent evidence indicates that OPG also plays a role in the vascular system, since ablation of the OPG gene in mice results in calcification of the aorta and renal arteries, and association has been found between serum levels of OPG and cardiovascular mortality. This study presents a novel single nucleotide polymorphism, a T/C transition located 129 bp upstream the TATA-box of the human OPG gene, detected by sequence analysis. The OPG genotype was determined by restriction fragment length polymorphism in a cohort consisting of 59 healthy subjects. The intima-media thickness (IMT) in the common carotid artery and maximal post-ischemic forearm blood flow (FBF) were investigated. Subjects with the CC genotype showed a significantly increased IMT (p<0.05) and a concommitantly reduced maximal FBF (p<0.01) as compared to those with the T allele. Thus, our results show that the polymorphism in the promoter region of OPG is associated with both vascular morphology and function in apparently healthy subjects.  相似文献   

12.
Skeletal demineralization and mineral metabolism derangement are well-recognized features of untreated celiac disease (CD). Although treatment with a gluten-free diet appears to prevent bone loss while correcting skeletal demineralization in childhood, there is evidence that bone mineral density does not return to normal in celiacs diagnosed in adulthood. Osteoprotegerin (OPG), a member of the tumor necrosis factor receptor family, and ligand of receptor activator of NFkB (RANKL) are involved in the process of bone turnover and have been implicated in the pathogenesis of osteoporosis and other metabolic bone diseases. We measured OPG, RANKL, bone mineral density (BMD), and biochemical markers of bone turnover in 32 adult female premenopausal celiac patients on a gluten-free diet, and thirty age-matched healthy women. We correlated the OPG/RANKL ratio with the severity of bone loss. Celiac patients had a mean BMD lower than controls in lumbar spine and in the femoral neck. Serum levels of bone alkaline phosphatase (BAP, marker of bone formation), and urinary excretion of telopeptides of type I collagen (a marker of bone resorption) were significantly higher than in controls. Serum OPG and RANKL levels were significantly higher in CD patients than in controls, while the OPG/RANKL ratio was significantly lower in CD patients than in controls and was positively correlated with BMD at the spine. The role of elevated OPG in CD patients is unclear, but it might represent a compensatory mechanism against other factors that promote bone damage. Further studies are required to assess a possible therapeutic potential of osteoprotegerin in optimally treated celiacs with persistent osteopenia.  相似文献   

13.
14.
Receptor activator of nuclear factor-kB ligand (RANKL), a well-known membrane-bound molecule expressed on osteoblasts and bone marrow stromal cells, is believed to induce osteoclast differentiation and activation by binding to the receptor activator of nuclear factor-kB (RANK), which is expressed on the surface of osteoclast lineage cells. This induction is inhibited by osteoprotegerin (OPG) that is secreted by osteoblast lineage and acts as a decoy receptor of RANKL. Currently the essential role of the OPG/RANKL/RANK system in the process of osteoclast maturation, as well as activation, has been well established, and the majority of bone resorption regulators control osteoclast formation and activation through their effects on this system and especially on the relative expression levels of RANKL and OPG [1].  相似文献   

15.
Estrogen withdrawal is associated with a significant expansion in B cell precursor and mature B cell populations. However, despite significant circumstantial evidence the role of B lineage cells in ovariectomy-induced bone loss in vivo is unclear. In vitro studies have demonstrated that mature B cells have the potential to both positively and negatively impact osteoclastogenesis by virtue of their capacity to secrete pro-osteoclastogenic cytokines including receptor activator of NFkappaB ligand (RANKL), as well as anti-osteoclastogenic cytokines such as osteoprotegerin (OPG) and transforming growth factor beta (TGFbeta). Although several studies have suggested that expansion of the B lineage following ovariectomy may play a key role in the etiology of ovariectomy-induced bone loss, in vivo studies to directly test this notion have yet to be conducted. In this study, we performed ovariectomy on microMT(-/-) mice which are specifically deficient in mature B cells. Analysis of bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA) and micro-computed tomography (CT) demonstrate that mature B cell-deficient mice undergo an identical loss of bone mass relative to wild-type (WT) control mice. Our data demonstrate that mature B cells are not central mediators of ovariectomy-induced bone loss in vivo.  相似文献   

16.
Osteoprotegerin (OPG), a member of the TNF receptor superfamily, was initially found to modulate bone mass by blocking osteoclast maturation and function. Rodent models have also revealed a role for OPG as an inhibitor of vascular calcification. However, the precise mode of how OPG blocks mineralization is unclear. In this study, OPG was found in an in vitro assay to significantly inhibit calcification of vascular smooth muscle cells (VSMC) induced by high calcium/phosphate (Ca/P) treatment (p = 0.0063), although this effect was blunted at high OPG concentrations. By confocal microscopy, OPG was detected in VSMC in the Golgi, the same localization seen in osteoblasts, which express OPG in bone. Treatment of VSMC by minerals (Ca, P, or both) induced OPG mRNA expression as assessed by real-time quantitative PCR, and VSMC derived from atherosclerotic plaque material also exhibited higher OPG expression as compared to control cells (p < 0.05). Furthermore, OPG was detected by Western blotting in matrix vesicles (MV), nanoparticles that are released by VSMC with the capacity to nucleate mineral. In atherosclerotic arteries, OPG colocalized immunohistochemically with annexin VI, a calcium-dependent membrane and phospholipid binding protein found in MV. Thus, the calcification inhibitor OPG is contained in crystallizing MV and has a biphasic effect on VSMC: physiologic concentrations inhibit calcification, whereas high concentrations commonly seen in patients with vascular disease have no effect. Like other calcification inhibitors, OPG may be specifically loaded into these nanoparticles to be deposited at remote sites, where it acts to inhibit calcification.  相似文献   

17.
Osteoprotegerin (OPG) is a decoy receptor for receptor activator of nuclear factor kappaB ligand (RANKL), a key inducer of osteoclastogenesis via its receptor RANK. We previously showed that RANK, RANKL, and OPG are able to form a tertiary complex and that OPG must be also considered as a direct effector of osteoclast functions. As OPG contains a heparin-binding domain, the present study investigated the interactions between OPG and glycosaminoglycans (GAGs) by surface plasmon resonance and their involvement in the OPG functions. Kinetic data demonstrated that OPG binds to heparin with a high-affinity (KD: 0.28 nM) and that the pre-incubation of OPG with heparin inhibits in a dose-dependent manner the OPG binding to the complex RANK-RANKL. GAGs from different structure/origin (heparan sulfate, dermatan sulfate, and chondroitin sulfate) exert similar activity on OPG binding. The contribution of the sulfation pattern and the size of the oligosaccharide were determined in this inhibitory mechanism. The results demonstrated that sulfation is essential in the OPG-blocking function of GAGs since a totally desulfated heparin loses its capacity to bind and to block OPG binding to RANKL. Moreover, a decasaccharide is the minimal structure that totally inhibits the OPG binding to the complex RANK-RANKL. Western blot analysis performed in 293 cells surexpressing RANKL revealed that the pre-incubation of OPG with these GAGs strongly inhibits the OPG-induced decrease of membrane RANKL half-life. These data support an essential function of the related glycosaminoglycans heparin and heparan sulfate in the activity of the triad RANK-RANKL-OPG.  相似文献   

18.
The past decade has seen an explosion in the field of bone biology. The area of bone biology over this period of time has been marked by a number of key discoveries that have opened up entirely new areas for investigation. The recent identification of the receptor activator of nuclear factor κB ligand (RANKL), its cognate receptor RANK, and its decoy receptor osteoprotegerin (OPG) has led to a new molecular perspective on osteoclast biology and bone homeostasis. Specifically, the interaction between RANKL and RANK has been shown to be required for osteoclast differentiation. The third protagonist, OPG, acts as a soluble receptor antagonist for RANKL that prevents it from binding to and activating RANK. Any dysregulation of their respective expression leads to pathological conditions such as bone tumor-associated osteolysis, immune disease, or cardiovascular pathology. In this context, the OPG/RANK/RANKL triad opens novel therapeutic areas in diseases characterized by excessive bone resorption. The present article is an update and extension of an earlier review published by Kwan Tat et al. [Kwan Tat S, Padrines M, Théoleyre S, Heymann D, Fortun Y. IL-6, RANKL, TNF-/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev 2004;15:49–60].  相似文献   

19.
Vascular endothelial growth factors (VEGFs) activate three receptor tyrosine kinases, VEGFR-1, -2, and -3, which regulate angiogenic and lymphangiogenic signaling. VEGFR-2 is the most prominent receptor in angiogenic signaling by VEGF ligands. The extracellular part of VEGF receptors consists of seven immunoglobulin homology domains (Ig domains). Earlier studies showed that domains 2 and 3 (D23) mediate ligand binding, while structural analysis of dimeric ligand/receptor complexes by electron microscopy and small-angle solution scattering revealed additional homotypic contacts in membrane-proximal Ig domains D4 and D7. Here we show that D4 and D7 are indispensable for receptor signaling. To confirm the essential role of these domains in signaling, we isolated VEGFR-2-inhibitory "designed ankyrin repeat proteins" (DARPins) that interact with D23, D4, or D7. DARPins that interact with D23 inhibited ligand binding, receptor dimerization, and receptor kinase activation, while DARPins specific for D4 or D7 did not prevent ligand binding or receptor dimerization but effectively blocked receptor signaling and functional output. These data show that D4 and D7 allosterically regulate VEGFR-2 activity. We propose that these extracellular-domain-specific DARPins represent a novel generation of receptor-inhibitory drugs for in vivo applications such as targeting of VEGFRs in medical diagnostics and for treating vascular pathologies.  相似文献   

20.
Tumor development in bone is often associated with fractures, bone loss and bone pain, and improvement is still needed in therapeutic approaches. Bone tumors are related to the existence of a vicious cycle between bone resorption and tumor proliferation in which the molecular triad osteoprotegerin (OPG)/receptor activator of NF-kappaB (RANK)/RANK ligand (RANKL) plays a pivotal role. RANKL, a member of the TNF superfamily, is one of the main inducers of bone resorption. Its soluble receptor OPG represents a promising therapeutic candidate as it prevents bone lesions and inhibits associated tumor growth. However, its therapeutic use in bone tumors remains controversial due to its ability to bind and inhibit another member of the TNF superfamily, TNF related apoptosis inducing ligand (TRAIL), which is a potent inducer of tumor cell apoptosis. Through its heparin binding domain, OPG is also able to bind proteoglycans present in the bone matrix. This paper is an overview of the involvement of the micro-environment, as represented by the balance of RANKL/TRAIL and the presence of proteoglycans in the regulation of OPG biological activity in bone tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号