首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
East African cichlids have evolved feeding apparatus morphologies adapted to their diverse feeding behaviors. The evolution of the oral jaw morphologies is accomplished by the diversity of bone formation during development. To further understand this evolutionary process, we examined the skeletal elements of the jaw and their temporal and sequential emergence, categorized by developmental stages, using the Nile tilapia Oreochromis niloticus as a model cichlid. We found that chondrogenesis started in Stage 17. The deposition of osteoid for the dermal bones commenced in Stage 18. The uptake of calcium dramatically shifted from the surface of larvae to the gills in Stage 20. The bone mineralization of the skeleton began in Stage 25. These data provide important information regarding the sequential events of craniofacial development in East African cichlids and lay the groundwork for studying the molecular mechanisms underlying adaptation of jaw structure to feeding behavior.  相似文献   

2.
The cichlids of East Africa are renowned as one of the most spectacular examples of adaptive radiation. They provide a unique opportunity to investigate the relationships between ecology, morphological diversity, and phylogeny in producing such remarkable diversity. Nevertheless, the parameters of the adaptive radiations of these fish have not been satisfactorily quantified yet. Lake Tanganyika possesses all of the major lineages of East African cichlid fish, so by using geometric morphometrics and comparative analyses of ecology and morphology, in an explicitly phylogenetic context, we quantify the role of ecology in driving adaptive speciation. We used geometric morphometric methods to describe the body shape of over 1000 specimens of East African cichlid fish, with a focus on the Lake Tanganyika species assemblage, which is composed of more than 200 endemic species. The main differences in shape concern the length of the whole body and the relative sizes of the head and caudal peduncle. We investigated the influence of phylogeny on similarity of shape using both distance-based and variance partitioning methods, finding that phylogenetic inertia exerts little influence on overall body shape. Therefore, we quantified the relative effect of major ecological traits on shape using phylogenetic generalized least squares and disparity analyses. These analyses conclude that body shape is most strongly predicted by feeding preferences (i.e., trophic niches) and the water depths at which species occur. Furthermore, the morphological disparity within tribes indicates that even though the morphological diversification associated with explosive speciation has happened in only a few tribes of the Tanganyikan assemblage, the potential to evolve diverse morphologies exists in all tribes. Quantitative data support the existence of extensive parallelism in several independent adaptive radiations in Lake Tanganyika. Notably, Tanganyikan mouthbrooders belonging to the C-lineage and the substrate spawning Lamprologini have evolved a multitude of different shapes from elongated and Lamprologus-like hypothetical ancestors. Together, these data demonstrate strong support for the adaptive character of East African cichlid radiations.  相似文献   

3.
Local adaptation to the littoral and pelagic zones in two cichlid haplochromine fish species from Lake Kivu was investigated using morphometrics. Cranial variation and inferred jaw mechanics in both sexes of the two species across the two habitat types were quantified and compared. Comparisons of littoral versus pelagic populations revealed habitat‐specific differences in the shape of the feeding apparatus. Also, kinematic transmission of the anterior jaw four‐bar linkage that promotes greater jaw protrusion was higher in the pelagic zone than in the littoral zone for both species. Inferred bite force was likewise higher in pelagic zone fish. There were also sex‐specific differences in craniofacial morphology as males exhibited longer heads than females in both habitats. As has been described for other cichlids in the East African Great Lakes, local adaptation to trophic resources in the littoral and pelagic habitats characterizes these two Lake Kivu cichlids. Similar studies involving other types of the Lake Kivu fishes are recommended to test the evidence of the observed trophic patterns and their genetic basis of divergences.  相似文献   

4.
We examined 2 cichlid fish species native to México, Cichlasoma callolepis and C. fenestratum, and 2 introduced African cichlids, Oreochromis aureus and O. niloticus, from 3 localities in southeastern México for monogeneans. Six monogenean species infected the African cichlids: Cichlidogyrus haplochromii, C. dossoui, C. longicornis longicornis, C. sclerosus, C. tilapiae, and Enterogyrus malmbergi. We found all these parasite species, except C. haplochromii and C. dossoui, on the native C. fenestratum and C. callolepis. Prevalences of Cichlidogyrus spp. were 3-10% and abundances ranged from 0.03 +/- 0.2 to 0.1 +/- 0.3 for native cichlids. We only recovered a single E. malmbergi from 1 C. callolepis. We found Sciadicleithrum bravohollisae, a monogenean of native Cichlasoma spp., on the gills of the introduced O. aureus from Lake Catemaco (prevalence 3%, abundance 0.03 +/- 0.2). Although prevalence and abundance in atypical hosts were fairly low, the present findings provide evidence of monogenean transfer from African to American cichlids and vice versa. This is the first record of exotic monogeneans in the genus Cichlidogyrus and Enterogyrus infecting native American cichlid fish. It is also the first record from southeastern México of a native American monogenean infecting introduced African cichlids.  相似文献   

5.
The electric yellow cichlid Labidochromis caeruleus is a mouth‐brooding haplochromine cichlid from Lake Malawi and one of the most popular cichlids in the ornamental fish industry. To investigate the early development of L. caeruleus from hatching until the juvenile stage, we studied its morphological development and allometric growth patterns. In newly‐hatched larvae, most organs and body parts were not yet differentiated and continued to develop until 15 days post hatching (dph). The yolk sac was depleted at 13 dph. There was allometric growth, primarily in the anterior and posterior regions of the body, and inflection points when trajectories of allometric growth changed. Head and tail growth was prioritized, suggesting that body parts linked to feeding and swimming behaviour mature earlier than the rest of the body. Additionally, growth patterns revealed that development of organs related to vital functions such as branchial respiration, sensation, exogenous feeding and swimming was prioritized. Comparisons with other African and Neotropical cichlids revealed differences in ontogenetic processes and allometric growth along the anterior–posterior axis as well as variation in developmental timing. These results indicate how early morphological development and ontogenic processes might respond to the distinctive parental care observed in mouth‐brooding cichlids.  相似文献   

6.
Introgressive hybridization has an important evolutionary significance in terms of gene diversity and speciation. Among the major groups of vertebrates, fish show a strong propensity to hybridize. In order to highlight the possible occurrence of gene flow between two tilapia species, Oreochromis niloticus and O. aureus, a comparison of allozyme and mitochondrial DNA (mtDNA) polymorphism was performed on sympatric and allopatric populations of these two species. Nuclear data were congruent with the morphological identification of O. niloticus and O. aureus populations. In opposition, the mtDNA analysis resulted in two strictly differentiated groups which did not follow the morphological and nuclear DNA classification. The first group consisted of East African O. niloticus populations and the second included all the O. aureus populations and the West African O. niloticus populations. Moreover, in some cases, the same sequences were detected in both species. These data strongly support a differential introgression of mtDNA from O. aureus to O. niloticus involving all the West African area. This work points out the risk of misinterpretation of mtDNA or nuclear DNA data when only one single class of marker is used.  相似文献   

7.
Cichlid fishes in African rift lakes have undergone rapid speciation, resulting in “species flocks” with more than 300 endemic species in some of the lakes. Most researchers assume that there is little phenotypic variation in cichlid fishes. I report here extensive phenotypic plasticity in a Neotropical cichlid species. I examined the influence of diet on trophic morphology during ontogeny in Cichlasoma managuense. Two groups of full siblings were fed two different diets for eight months after the onset of feeding; thereafter both groups were fed a common diet. Phenotypes that differed significantly at 8.5 months converged almost completely at 16.5 months. If feeding on two different diets is continued after 8.5 months, the phenotypes remain distinct. Differences in diet and possibly in feeding mode are believed to have caused these phenotypic changes. Phenotypic plasticity is described in terms of a qualitative model of heterochrony in which phenotypic change in morphology is explained as retardation of the normal developmental rate. If phenotypic expression of morphology is equally plastic in African cichlid species as it may be in the American cichlids, as exemplified by C. managuense, then taxonomic, ecological, and evolutionary analyses of “species flocks” may be in need of revision. However, Old World cichlids may be less phenotypically plastic than New World cichlids, and this may contribute to the observed differences in speciation rate and degree of endemism.  相似文献   

8.
The study of genetic evolution within the context of adaptive radiations offers insights to genes and selection pressures that result in rapid morphological change. Cichlid fishes are very species-rich and variable in coloration, behavior, and morphology, and so provide a classical model system for studying the genetics of adaptive radiation. In this study, we researched the evolution of the epithelial cell adhesion molecule (EPCAM), a candidate gene for the adaptive evolution of morphology broadly, and skin development specifically, in fishes. We compared EPCAM gene sequences from a rapidly speciating African cichlid lineage (the haplochromines), a species-poor African lineage (Nile tilapia Oreochromis niloticus), and a very young adaptive radiation in the Neotropics (sympatric crater lake Midas cichlids, Amphilophus sp.). Our results, based on a hierarchy of evolutionary analyses of nucleotide substitution, demonstrate that there are different selection pressures on the EPCAM gene among the cichlid lineages. Several waves of positive natural selection were identified not only on the terminal branches, but also on ancestral branches. Interestingly, significant positive or directional selection was found in the haplochromine cichlids only but not the comparatively species-poor tilapia lineage. We hypothesize that the strong signal of selection in the ancestral African cichlid lineage coincided with the transition from riverine to lacustrine habitat. The two neotropical species for which we collected new sequence data were invariant in the EPCAM locus. Our results suggest that functional changes promoted by positive Darwinian selection are widespread in the EPCAM gene during African cichlid evolution.  相似文献   

9.
The adaptive radiations of cichlid fishes in East Africa have been associated with the acquisition of evolutionary novelties as well as the ecological opportunities existing in the East African Great lakes. Two remarkable evolutionary innovations are the pharyngeal jaw apparatus, found in all cichlid species, and the anal fin egg-spots of mouthbrooding cichlids. Based on their conserved functions during the development of both the jaw apparatus and pigmentation, the endothelin ligands and receptors form a putative link between these naturally and sexually selected traits. Here we study the evolutionary history of four members of two endothelin pathways (Edn1/EdnrAa and Edn3b/EdnrB1a) to elucidate their possible roles during the evolution and development of key innovations in East African cichlids species. The analyses performed on partial sequences (ca. 6,000 bp per taxon) show that all four endothelin family members evolved under purifying selection, although both ligands are characterized by an accelerated rate of protein evolution in comparison to the receptors. In accordance with earlier findings, we show that the mature protein sequence of Edn1 and Edn3 are highly conserved, also in cichlids, whereas the preproendothelin parts are variable indicating relaxed selective constraints. In the receptors, nonsynonymous substitutions were mainly found in the ligand-binding domains suggesting functional divergence. Gene expression assays with Real-Time PCR indeed reveal that the two studied endothelin pathways are expressed in the cichlid pharyngeal jaw and in the haplochromine egg-spot (among other pigment-cell containing tissues), suggesting their involvement during morphogenesis of naturally and sexually selected traits in cichlids.  相似文献   

10.
East African cichlid fishes have evolved a stunning array of oral jaw morphologies. To better understand the adaptive evolution of this trait, we performed a morphological analysis of the jaws of two closely related species from Lake Malawi that have very different modes of feeding. Labeotropheus fuelleborni forages along the substrate with a "biting" mode of feeding, while Metriaclima zebra feeds in the water column with a "sucking" mode. We analyzed each of the four skeletal elements that make up the oral jaws: the dentary, articular, premaxilla, and maxilla. In addition, we performed the same analysis on the neurocranium, an element closely associated with the oral jaws. We used the thin-plate spline method to quantify morphological differences, which allowed us to relate our results to the functional biology of the species. We find many aspects of shape change that relate directly to the functional design of the cichlid head. The same series of measurements was made on hybrids between Labeotropheus and Metriaclima. For every character, hybrid progeny are statistically different from both parental species. These results suggest an additive mode of action of the alleles responsible for these phenotypes.  相似文献   

11.
12.
13.
The fish feeding apparatus is among the most diverse functional systems in vertebrates. While morphological and mechanical variations of feeding systems are well studied, we know far less about the diversity of the motions that they produce. We explored patterns of feeding movements in African cichlids from Lakes Malawi and Tanganyika, asking whether the degree of kinesis is associated with dietary habits of species. We used geometric morphometrics to measure feeding kinesis as trajectories of shape change, based on 326 high‐speed videos in 56 species. Cranial morphology was significantly related to feeding movements, both of which were distributed along a dietary axis associated with prey evasiveness. Small‐mouthed cichlids that feed by scraping algae and detritus from rocks had low kinesis strikes, while large‐mouthed species that eat large, evasive prey (fishes and shrimps) generated the greatest kinesis. Despite having higher overall kinesis, comparisons of trajectory shape (linearity) revealed that cichlids that eat mobile prey also displayed more kinematically conserved, or efficient, feeding motions. Our work indicates that prey evasiveness is strongly related to the evolution of cichlid jaw mobility, suggesting that this same relationship may explain the origins and diversity of highly kinetic jaws that characterize the super‐radiation of spiny‐rayed fishes.  相似文献   

14.
East African cichlids exhibit an extraordinary level of morphological diversity. Key to their success has been a dramatic radiation in trophic biology, which has occurred rapidly and repeatedly in different lakes. In this report we take the first step in understanding the genetic basis of differences in cichlid oral jaw design. We estimate the effective number of genetic factors that control differences in the cichlid head through a comprehensive morphological assessment of two Lake Malawi cichlid species and their F(1) and F(2) hybrid progeny. We estimate that between one and 11 factors underlie shape difference of individual bony elements. We show that many of the skeletal differences in the head and oral jaw apparatus are inherited together, suggesting a degree of pleiotropy in the genetic architecture of this character complex. Moreover, we find that cosegregation of shape differences in different elements corresponds to developmental, rather than functional, units.  相似文献   

15.
Synopsis Juvenile cichlids, Tilapia zillii, of equal initial standard length were randomly assigned to one of five treatments to assess the relative importance of individual physiological and activity differences, disproportional food consumption, and social interaction on growth depensation and mean growth. Results substantiate the hypothesis that disproportional food acquisition is the primary mechanism responsible for the size hierarchy effect. Individual physiological and activity differences played a negligible role in the phenomenon. Dominant-subordinate relationships, set up in the aquarium, appear responsible for the disproportional food acquisition and thus mediate the size hierarchy effect. Dominant fish ingest more food by either acquiring a limited ration first, preventing a subordinate's food acquisition, or behaviorally inhibiting a subordinate's feeding behavior.  相似文献   

16.
Adaptive radiations are characterized by adaptive diversification intertwined with rapid speciation within a lineage resulting in many ecologically specialized, phenotypically diverse species. It has been proposed that adaptive radiations can originate from ancestral lineages with pronounced phenotypic plasticity in adaptive traits, facilitating ecologically driven phenotypic diversification that is ultimately fixed through genetic assimilation of gene regulatory regions. This study aimed to investigate how phenotypic plasticity is reflected in gene expression patterns in the trophic apparatus of several lineages of East African cichlid fishes, and whether the observed patterns support genetic assimilation. This investigation used a split brood experimental design to compare adaptive plasticity in species from within and outside of adaptive radiations. The plastic response was induced in the crushing pharyngeal jaws through feeding individuals either a hard or soft diet. We find that nonradiating, basal lineages show higher levels of adaptive morphological plasticity than the derived, radiated lineages, suggesting that these differences have become partially genetically fixed during the formation of the adaptive radiations. Two candidate genes that may have undergone genetic assimilation, gif and alas1, were identified, in addition to alterations in the wiring of LPJ patterning networks. Taken together, our results suggest that genetic assimilation may have dampened the inducibility of plasticity related genes during the adaptive radiations of East African cichlids, flattening the reaction norms and canalizing their feeding phenotypes, driving adaptation to progressively more narrow ecological niches.  相似文献   

17.
We described the developmental stages for the embryonic, larval and early juvenile periods of Nile tilapia Oreochromis niloticus to elucidate sequential events of craniofacial development. Craniofacial development of cichlids, especially differentiation and morphogenesis of the pharyngeal skeleton, progresses until about 30 days postfertilization (dpf). Because there is no comprehensive report describing the sequential processes of craniofacial development up to 30 dpf, we newly defined 32 stages using a numbered staging system. For embryonic development, we defined 18 stages (stages 1-18), which were grouped into seven periods named the zygote, cleavage, blastula, gastrula, segmentation, pharyngula and hatching periods. For larval development, we defined seven stages (stages 19-25), which were grouped into two periods, early larval and late larval. For juvenile development until 30 dpf, we defined seven stages (stages 26-32) in the early juvenile period. This developmental staging system for Nile tilapia O. niloticus will benefit researchers investigating skeletogenesis throughout tilapia ontogeny and will also facilitate comparative evolutionary developmental biology studies of haplochromine cichlids, which comprise the species flocks of Lakes Malawi and Victoria.  相似文献   

18.
A massive enlargement of the gill surface proved to be an important factor in the hypoxia survival of young cichlids. Because the heads of cichlids are densely packed with structures related to both feeding and breathing, we hypothesized that the extra space needed for gill enlargement requires such large structural reorganizations that outer head shape is affected. We used a three-dimensional model to describe changes in the outer head shape of cichlids. Broods of cichlids of different phylogenetic lineages, habitats, and trophic specialization were split and raised at either 10% or 80–90% air saturation. Despite the above-mentioned differences between the species that were used, all hypoxia raised groups showed similar volume enlargements. Volume increases were most prominent in the ventral suspensorial and ventral opercular subcompartments. A relation with the enlarged gills of hypoxia raised fish is likely because the gills are mainly located in these compartments. The differences in ventral width correspond to those found in other studies comprising a wide variety of genotypic and phenotypic variations. The present study shows that such variation in the ventral width is conceivable by phenotypic plasticity alone.   © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 608–619.  相似文献   

19.
Five closely related species of fossil cichlids collected from an Eocene site in Tanzania, East Africa, represent the oldest known cichlids. The specimens are whole-body, articulated fishes that are extremely well preserved and, therefore, have the potential to add to our knowledge of the history of this family. Modern cichlids are particularly well known for the numerous species flocks of the East African Great Lakes. A great deal of research is ongoing regarding all aspects of the fishes in these flocks, including their evolutionary history The new collection of fossils reported here is interpreted as representing a species flock that arose in a small crater lake. These fossils indicate that cichlids' ability to form species flocks evolved early in the history of this family.  相似文献   

20.
Ecological diversification through divergent selection is thought to be a major force during the process of adaptive radiations. However, the large sizes and complexity of most radiations such as those of the cichlids in the African Great Lakes make it impossible to infer the exact evolutionary history of any population divergence event. The genus Alcolapia, a small cichlid lineage endemic to Lakes Magadi and Natron in East Africa, exhibits phenotypes similar to some of those found in cichlids of the radiations of the African Great Lakes. The simplicity within Alcolapia makes it an excellent model system to investigate ecological diversification and speciation. We used an integrated approach including population genomics based on RAD‐seq data, geometric morphometrics and stable isotope analyses to investigate the eco‐morphological diversification of tilapia in Lake Magadi and its satellite lake Little Magadi. Additionally, we reconstructed the demographic history of the species using coalescent simulations based on the joint site frequency spectrum. The population in Little Magadi has a characteristically upturned mouth—possibly an adaptation to feeding on prey from the water surface. Eco‐morphological differences between populations within Lake Magadi are more subtle, but are consistent with known ecological differences between its lagoons such as high concentrations of nitrogen attributable to extensive guano deposits in Rest of Magadi relative to Fish Springs Lagoon. All populations diverged simultaneously only about 1100 generations ago. Differences in levels of gene flow between populations and the effective population sizes have likely resulted in the inferred heterogeneous patterns of genome‐wide differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号